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ABSTRACT 

The COVPN 5002 (COMPASS) study aimed to estimate the prevalence of SARS-CoV-2 (active 

SARS-CoV-2 or prior SARS-CoV-2 infection) in children and adults attending public venues in 15 

socio-demographically diverse communities in the United States. To protect against potential 

challenges in implementing traditional sampling strategies, time-location sampling (TLS) using 

complex sampling involving stratification, clustering of units, and unequal probabilities of 

selection was used to recruit individuals from neighborhoods in selected communities. The 

innovative design adapted to constraints such as closure of venues; changing infection hotspots; 

and uncertain policies. Recruitment of children and the elderly raised additional challenges in 

sample selection and implementation. To address these challenges, the TLS design adaptively 

updated both the sampling frame and the selection probabilities over time using information 

acquired from prior weeks. Although the study itself was specific to COVID-19, the strategies 

presented in this paper could serve as a case study that can be adapted for performing rigorous 

population-level inferences in similar settings and could help inform rapid and effective responses 

to future global public health challenges.  

 

KEY WORDS: Complex samples; Time-location sampling; COVID-19; Seroprevalence; Adaptive 

sampling; Sampling frame. 
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INTRODUCTION 
 

On March 11, 2020, the World Health Organization declared COVID-19 a pandemic. To mitigate the spread 

of the virus, many public and private sectors quickly adopted various forms of stay-at-home orders1-4. 

Despite these measures, the number of new infections and COVID-19-related deaths continued to rapidly 

rise. Community members who were unable to practice physical distancing were thus believed to be at great 

risk of both acquiring and transmitting the virus: This placed a disproportionate burden on individuals 

employed in essential industries who were afforded fewer opportunities to comply with stay-at-home 

orders; individuals who lived in high population-density areas who had higher risk of infection and lower 

access to health care resources including testing5,6; and individuals who regularly relied on in-person 

services such as transportation, childcare, food and retail. Furthermore, much of the early data of COVID-

19 infections were captured through healthcare facilities, which often overrepresented people who were 

more likely to engage in care. Despite the high burden of COVID-19 experienced by individuals attending 

public venues, there was limited data that could reliably inform its magnitude. The COVID-19 Prevention 

Network (CoVPN) 5002, known as the COMPASS study, aimed to bridge this gap by collecting data to 

estimate the community-level seroprevalence of SARS-CoV-2 IgG and prevalence of SARS-CoV-2 acute 

infection amongst individuals 2 months of age and older, who attended public venues. The venues were in 

communities near 15 urban clinical research centers with diverse sociodemographic populations that were 

heavily burdened by the COVID-19 pandemic.  

 

Traditional probability-based sampling methods rely on addresses, lists, or registries to sample and recruit 

participants7,8. The vast shutdowns at the beginning of the pandemic forced many well-established national 

probability surveys to pause or adapt new data collection strategies9-12, questioning the feasibility of 

implementing a new probability survey during the pandemic. Given logistical uncertainties in carrying out 

fieldwork, the COMPASS study team sought design strategies that would be more robust to changing 

guidelines. The COMPASS study used adaptive Time-Location Sampling (TLS)13 to recruit a 

representative random sample of individuals attending public venues. TLS was originally developed for 

hard-to-survey populations and assumes that individuals frequently congregate at specific locations and 

times14. TLS is a non-probability design that often used when the sampling frame is unknown. Its sampling 

units depend on both time and location, and the design approximates a probability sample as the number of 

time points and locations increase13, allowing approximate design-based inference15. The COMPASS study 

adapted TLS to target a broad and demographically diverse population with an unknown sampling frame. 

However, unlike traditional implementations of TLS, the specific locations and times of community 

congregation were not completely known in advance, and they needed to be updated as the study 
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progressed. Owing to the urgency in launching this study and the changing nature of the pandemic, 

flexibility in the design of the study sampling frame was an important feature.  

 

This paper describes the adaptive TLS sampling design used for the COMPASS study. The primary study 

outcome was based on objective blood samples that were collected by trained clinical professionals and 

phlebotomists, reducing measurement and processing errors in the assays16. To guard against nonresponse 

due to evolving stay-at-home guidelines, the study developed a novel adaptive sampling frame that adjusted 

to current closure policies and updated the selection probabilities based on enrollment information from 

previous weeks. To achieve desired representation of different demographic groups, unequal selection 

probabilities were used to oversample children, adults 60 years and older, and other community-specific 

hard-to-survey segments of the population. Post-stratification was used to adjust the weights on key 

demographic variables. To our knowledge, this study was one of the few COVID-19 studies that rigorously 

recruited children across diverse groups and communities.  

 

METHODS 
 

OVERVIEW OF STUDY DESIGN 

 

Fifteen clinical research sites (CRSs) participated in the study on a voluntary basis. The sites were in 

Atlanta, GA; Aurora, CO; Baltimore, MD; Chicago, IL; Cincinnati, OH; Houston, TX; Miami, FL; New 

Orleans, LA; New York, NY (three CRSs); Newark, NJ; Philadelphia, PA; Pittsburgh, PA; and Ponce, 

Puerto Rico. Ethics approval was obtained from a central institutional review board (IRB) and additionally, 

from IRBs at participating cites, as required. Catchment areas for each site were defined as the zip code for 

each CRS plus all contiguous zip codes, and expanded to include additional surrounding zip codes until the 

required population threshold was reached17. The study targeted four age groups: 2 months to 17 years; 18-

39 years; 40-59 years; and 60 years and older.  For each site and age group, the target population was 

determined, as individuals attending selected community venues in their catchment area during operating 

hours of both the venues and the participating CRSs.  

 

TLS was used to recruit participants from community venues. All participants went through the informed 

consent process. Consent for minors 17 years and younger was provided by a parent or guardian. Individuals 

7 to 17 years also provided assent. Remote consent was permissible for individuals aged 15 to 17. The study 

collected blood serum, nasal swabs, and saliva. Dried blood spots were collected from young children and 

other participants who were unable to provide blood. Face-to-face interviews were used for questionnaires. 

The COMPASS study opened on January 11, 2021 and completed enrollments on July 31, 2021.  
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CONSTRUCTION OF THE WEEKLY SAMPLING FRAME 

 

For each catchment area, CRSs created a comprehensive roster of recruitment venues with their 

availabilities for each week of the study. Eligibility criteria for the venues was broad and informed by local 

guidelines and availability17. The roster was partitioned into 21 distinct and non-overlapping 4-hour time 

blocks per week, which we called the unrestricted Venue-Day-Time (VDT) sampling frame. The 

unrestricted VDT frame was then constrained to accommodate venue availability and CRS staff schedules 

for that week, which reduced the number of non-overlapping 4-hour time blocks for week 𝑙  to 𝐻𝑙 ≤ 21. 

Sites were then asked to determine the number of VDTs they could visit in each of the 𝐻𝑙 4-hour time 

blocks for week 𝑙. These numbers were informed by staff availability and the acquired information from 

previous weeks.  

 

VDTs in the restricted sampling frame were flagged for (i) special events, such as farmer’s markets or food 

donation drives; or whether VDTs attracted (ii) children; (iii) adults over the age of 60; or (iv) hard-to-

sample populations (HTS). The VDT flags could be features of venues such as playgrounds that attracted 

children; features of time such as food services around noon; or features of the venue and time, such as 

department stores offering senior discounts or religious centers where people would congregate on certain 

days. The VDT flags were updated each week as additional information was acquired from previous weeks.  

 

Figure 1 describes construction of the weekly VDT frame. The weekly restricted VDT frame, the VDT 

flags, and the number of VDTs to be sampled in each time block, were uploaded to a web-portal managed 

by the central statistical and data management center two weeks in advance of sampling. Figure 2 outlines 

the steps taken by clinical research staff in each CRS: These steps were repeated for each site until the 

desired sample size was achieved for all age groups. CRSs also completed an end-of-the-day checklist that 

included comments on the reasons that sampled VDTs were refused (weather, policy changes, etc.) and the 

number of people approached in each VDT aggregated over age groups – these numbers were not 

disaggregated by age group as information on age would not be known prior to consent for participation.  

 

TLS SAMPLING DESIGN 

 

For each catchment area, a stratified cluster sample of VDTs was drawn, with the 4-hour time blocks in the 

restricted VDT frame as the sampling strata--- this choice of stratification was to ease implementation. 

Sampling was implemented by drawing a new sample each week from that week’s restricted VDT frame 
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and adding it to the previous sample. To avoid duplicates, prior enrollment in the study was set as an 

exclusion criteria17. 

 

For week 𝑙, VDTs flagged as holding special events were sampled with a probability one. Selection 

probabilities for the remaining VDTs were determined using a discrete size variable 𝑥ℎ𝑙𝑖
18-20. The default 

value of 𝑥ℎ𝑙𝑖 was set to 1; set to 2 for VDT(s) attracting adults over the age of 60; and set to 3 for VDTs 

attracting children under the age of 18. For VDTs attracting rare HTS populations, such as individuals 

experiencing homelessness or migrant workers, the size variable 𝑥ℎ𝑙𝑖 was defined as  

𝑥ℎ𝑙𝑖(𝐾𝑙, 𝐻𝑙) =  
4

1+3(
𝐾𝑙
𝐻𝑙

)
2     (1), 

where 𝐾𝑙 was the total number of strata that included an HTS in week 𝑙. Eq. (1) gives a size variable that is 

bounded between 1 and 4. This ensures that VDTs flagged as HTS get assigned the highest weights when 

there are only a few strata with an HTS in that week but reduces the VDT weight to 1 when many VDTs 

are labeled as attracting HTSs during that week. If a VDT was assigned more than one flag, its largest 

possible size variable was used. VDT flags were reassessed at the end of each week and used to determine 

the VDT flags for future weeks.  

 

For stratum ℎ𝑙 in the restricted VDT frame for week 𝑙, a random sample without replacement of 𝑚ℎ𝑙
 VDTs 

from all the 𝑀ℎ𝑙
 VDTs in stratum ℎ𝒍 was selected using the unequal selection probabilities described above. 

The value 𝑚ℎ𝑙
 corresponded to the number of research teams deployed for data collection in that time block, 

which was determined based on staff availability for that week and chosen to reach prespecified weekly 

enrollment targets. The probability of selecting the 𝑖th VDT in the ℎ𝒍th stratum was thus 

𝜋ℎ𝑙𝑖 =  𝑃( 𝑉𝐷𝑇 𝑖 𝑖𝑛 𝑠𝑡𝑟𝑎𝑡𝑢𝑚 ℎ𝑙) =
𝑚ℎ𝑙𝑥ℎ𝑙𝑖

𝑋ℎ𝑙

, ℎ𝑙 = 1, … , 𝐻𝑙     (2), 

where 𝑋ℎ𝑙
=  ∑ 𝑥ℎ𝑙𝑖

𝑀ℎ𝑙

𝑖=1
 is the population total of the size variables in stratum ℎ𝑙. 

 

At each sampled VDT, research teams approached everyone walking past the booth, handed them an 

informational pamphlet, and offered to answer questions, including study procedures, compensation, and 

return of results. Special pamphlets were designed for children. All interested participants were then 

recruited into the study. Random selection of individuals within VDTs was not utilized because of (i) 

unknown population sizes and lack of reliable projections for the expected number of individuals in the 

different age groups; and (ii) concerns over perceived discrimination in public settings. Because of the 

unknown number of individuals attending VDT 𝑖 and the age of approached participants who chose not to 

enroll in the study, the selection probability of participants within each sampled VDT was estimated as  
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𝜋𝑗|ℎ𝑙𝑖 =  𝑃( 𝑃𝑒𝑟𝑠𝑜𝑛 𝑗 𝑖𝑛 𝑉𝐷𝑇 𝑖 𝑤𝑖𝑡ℎ𝑖𝑛 𝑠𝑡𝑟𝑎𝑡𝑢𝑚 ℎ𝑙) =
𝑟ℎ𝑙𝑖

𝑛ℎ𝑙𝑖
, ℎ𝑙 = 1, … , 𝐻𝑙    (3) 

where 𝑛ℎ𝑙𝑖 was the total number of people (regardless of age group) who were approached by CRS staff 

and 𝑟ℎ𝑙𝑖 was the total number who enrolled in the study at VDT 𝑖 in stratum ℎ𝑙, respectively. When weather 

became problematic or venues were unexpectedly not available because of local events or COVID 

restrictions, CRS staff selected from a set of randomly ordered backup VDTs to reach the desired number 

of VDTs. This strategy was used to mitigate missingness in VDTs and facilitate nonresponse adjustment. 

 

SAMPLE SIZE 

 

The sample size was determined to achieve a prespecified margin of error (MOE) for the estimated 

prevalence of SARS-CoV-2 IgG seropositivity among individuals in the participating communities21. The 

MOE was chosen based on clinical relevance and was set to +/-2.5% for assumed prevalence lower than 

0.05 and +/-5% for assumed prevalence greater than 0.1. A design effect of 2.5 was used to account for the 

clustering in the complex TLS sampling design22-24. Table 1 shows the sample sizes needed to achieve 

required MOE for a range of true infection-induced prevalence for each of the four target age groups. The 

sample size was first obtained for a simple random sample based on an asymptotic 95% confidence interval 

on the estimated prevalence and then multiplied by the design effect25. The target number of completed 

interviews for each of the four age groups was determined to be 730, which corresponded to an assumed 

SARS-CoV-2 IgG prevalence of 5%.  

 

SURVEY WEIGHTING AND ANALYSIS 

 

Combining (2) and (3) described above, the probability of selecting the 𝑗th individual at the 𝑖th VDT in 

stratum ℎ𝑙 was  

𝜋ℎ𝑙𝑖𝑗 = 𝑃(𝑉𝐷𝑇 𝑖, 𝑝𝑒𝑟𝑠𝑜𝑛 𝑗, 𝑠𝑡𝑟𝑎𝑡𝑢𝑚 ℎ𝑙) =
𝑟ℎ𝑙𝑖

𝑛ℎ𝑙𝑖

𝑚ℎ𝑙𝑥ℎ𝑙𝑖

𝑋ℎ𝑙

    (4), 

which gave a base sampling weight of 𝑤ℎ𝑙𝑖𝑗 = 1/𝜋ℎ𝑙𝑖𝑗. Unlike previous applications of TLS which were 

focused on recruiting from tightly knit populations and adjusted the weights for frequency of visits13, it was 

deemed unnecessary in this study, as the goal of the weights for frequency of visits is to achieve proportional 

representation, which instead achieved using post-stratification.  

 

Raking was used to poststratify the base weights 𝑤ℎ𝑙𝑖𝑗 to external population margins 26 on race, ethnicity, 

and sex at birth for each of the four age categories using 2015-2019 county-level estimates from the U.S. 

Census Bureau’s American Community Survey 27. If a catchment area included two or more counties, we 
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used average estimates from all those counties. Income and gender identity were not considered for 

poststratification because of their large missingness. The weights were further trimmed to bound extreme 

values and standardized.  

 

DISCUSSION 
 

This paper presents the design of a large population-based COVID-19 seroprevalence survey in the United 

States. The study design facilitated robust estimation of finite population prevalence of SARS-CoV-2 acute 

infection and immunologic evidence of prior infection among children and adults in 15 U.S. communities. 

The study adapted TLS, a method often used to select for specific, hard-to-survey populations to recruit 

individuals from broad and diverse demographic groups in the general population. To the best of our 

knowledge, TLS has not previously been used to recruit individuals from the general population. One 

implication of this adaptation affected the construction of the survey weights, where we performed 

postratification instead of adjustment for frequency of visits. The study design is also novel in that it was 

(i) the first such survey to enroll a representative sample of community members who attended public 

venues; and (ii) one of the few COVID-19 surveys that directly targeted pediatric populations. 

 

The COVID-19 pandemic created a pressing need for new, high-quality data; yet the stay-at-home policies 

for mitigating its spread profoundly impacted many well-established ongoing surveys such as the national 

health and nutrition examination survey9-12. Several strategies were used or proposed for sampling 

participants. These included using social media platforms, such as Facebook, to recruit participants28,29, 

using rapid-turnaround emails30,31, or proposed household surveys with mail-in testing kits32. Although 

surveys using social media or can provide large quantities of data with increased coverage of diverse 

populations, they suffer from significant data quality issues33, usually do not collect biospecimen data to 

capture accurate seroprevalence estimates, and are often restricted to questionnaire data or are used as only 

a recruitment tool34. Many traditional household surveys including those using email lists were also limited 

by their inability to collect biospecimens and suffered incredibly high nonresponse. Even proposed surveys 

using mail-in home testing kits were at risk of nonresponse and measurement error as the specimens were 

collected by study participants without supervision by study staff.   

 

The strengths of the COMPASS study’s sampling methods include the innovative use of TLS that trades 

increased coverage error for reductions in nonresponse, specification, and measurement error. The sampling 

method was suitable for adaptation to unknown logistical and policy constraints. Limitations of the study 

sampling method included the nonrandom selection of the catchment areas, preventing generalizability to 
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the national population. Another limitation is that research staff determined the venue flags, a process that 

may have been both subjective and operationally inefficient. Automated machine learning methods that 

predict the populations attending different venues by leveraging available data such as sales history, traffic 

patterns, or satellite images may be a promising direction for future research on alternative approaches to 

TLS survey methods. Finally, venues could only be used with permission from venue operators, which 

created some restrictions on where recruitment could take place. 

 

Household and facility-based surveys continue to be successful for producing robust and routine estimates 

of the civilian non-institutionalized population. However, samples are often drawn several months ahead 

of field operations and can be sensitive to abrupt changes such as those experienced by COVID-19. 

Furthermore, such designs are limited in their ability to reach all portions of the population and often 

underrepresent historically marginalized populations, such as those experiencing homelessness or 

institutionalization. Moreover, with continuously declining response rates, probability samples are no 

longer shielded from various biases35. The TLS sampling design presented here does not replace household 

and facility surveys; rather, the future of surveys requires integrating multiple strategies for reaching 

different segments of the population. There has been growing interest in data modernization to enhance 

such traditional designs with nonprobability sampling designs such as TLS36,37. The TLS sampling design 

presented here can serve as an effective design for reaching historically underrepresented populations.  

 

CONCLUSION 
 

Many of the challenges experienced in conducting this study were specific to the COVID-19 pandemic and 

the disruptions and uncertainties associated with it. However, resource limitations and unknown constraints 

are a constant and increasing challenge, especially in areas susceptible to natural disasters, in communities 

experiencing political unrest, or among individuals living in conflict zones. The methods used in this study 

can serve as a model that can be adapted for other studies that aim to conduct rigorous population-level 

assessments in such settings and thereby inform rapid and effective responses to future global public health 

challenges. 

 

ACKNOWLEDGEMENTS 
 

This research was supported by the National Institute of Allergy and Infectious Diseases of the National 

Institutes of Health under Award UM1 AI068619. The content is solely the responsibility of the authors 

and does not necessarily represent the official views of the National Institutes of Health. 

 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 11, 2023. ; https://doi.org/10.1101/2023.01.10.23284400doi: medRxiv preprint 

https://doi.org/10.1101/2023.01.10.23284400
http://creativecommons.org/licenses/by-nc-nd/4.0/


9 

 

REFERENCES 
 

1. Kraemer MU, Yang C-H, Gutierrez B, et al. The effect of human mobility and control measures 

on the COVID-19 epidemic in China. Science. 2020;368(6490):493-497. 

2. Matrajt L, Leung T. Evaluating the effectiveness of social distancing interventions to delay or 

flatten the epidemic curve of coronavirus disease. Emerging infectious diseases. 2020;26(8):1740. 

3. Tuite AR, Fisman DN, Greer AL. Mathematical modelling of COVID-19 transmission and 

mitigation strategies in the population of Ontario, Canada. Cmaj. 2020;192(19):E497-E505. 

4. Moreland A, Herlihy C, Tynan MA, et al. Timing of state and territorial COVID-19 stay-at-home 

orders and changes in population movement—United States, March 1–May 31, 2020. Morbidity 

and Mortality Weekly Report. 2020;69(35):1198. 

5. Hawkins D. Differential occupational risk for COVID‐19 and other infection exposure according 

to race and ethnicity. American journal of industrial medicine. 2020;63(9):817-820. 

6. Noël RA. Race, economics, and social status. 2018. 

7. Cochran WG. Sampling techniques. John Wiley & Sons; 2007. 

8. Lohr SL. Sampling: design and analysis. Chapman and Hall/CRC; 2019. 

9. Blumberg SJ, Parker JD, Moyer BC. National Health Interview Survey, COVID-19, and Online 

Data Collection Platforms: Adaptations, Tradeoffs, and New Directions. American journal of 

public health. 2021;111(12):2167-2175. 

10. Zuvekas SH, Kashihara D. The Impacts of the COVID-19 Pandemic on the Medical Expenditure 

Panel Survey. American journal of public health. 2021;111(12):2157-2166. 

11. Paulose-Ram R, Graber JE, Woodwell D, Ahluwalia N. The National Health and Nutrition 

Examination Survey (NHANES), 2021–2022: Adapting Data Collection in a COVID-19 

Environment. American journal of public health. 2021;111(12):2149-2156. 

12. Ward BW, Sengupta M, DeFrances CJ, Lau DT. COVID-19 Pandemic Impact on the National 

Health Care Surveys. American journal of public health. 2021;111(12):2141-2148. 

13. Karon JM, Wejnert C. Statistical methods for the analysis of time–location sampling data. 

Journal of Urban Health. 2012;89(3):565-586. 

14. Lee S, Wagner J, Valliant R, Heeringa S. Recent developments of sampling hard-to-survey 

populations: An assessment. 2014. 

15. Leon L, Jauffret-Roustide M, Le Strat Y. Design-based inference in time-location sampling. 

Biostatistics. 2015;16(3):565-579. 

16. Lippi G, Caola I, Cervellin G, Milanesi B, Morandini M, Giavarina D. Error rates during blood 

collection in emergency departments and outpatient clinics: Results of a prospective multicenter 

study. Clinica chimica acta; international journal of clinical chemistry. 2015;445:91-92. 

17. Justman J, Amos C. SARS-COV-2 PREVALENCE STUDY. 2021. 

18. Brewer KR, Hanif M. Sampling with unequal probabilities. Vol 15: Springer Science & Business 

Media; 2013. 

19. Hanif M, Brewer K. Sampling with unequal probabilities without replacement: a review. 

International Statistical Review/Revue Internationale de Statistique. 1980:317-335. 

20. Berger YG, Tillé Y. Sampling with unequal probabilities. In: Handbook of statistics. Vol 29. 

Elsevier; 2009:39-54. 

21. Lohr SL. Sampling: design and analysis. Chapman and Hall/CRC; 2021. 

22. Kish L, Frankel MR. Inference from complex samples. Journal of the Royal Statistical Society: 

Series B (Methodological). 1974;36(1):1-22. 

23. Paz-Bailey G, Miller W, Shiraishi RW, Jacobson JO, Abimbola TO, Chen SY. Reaching men 

who have sex with men: a comparison of respondent-driven sampling and time-location sampling 

in Guatemala City. AIDS and Behavior. 2013;17(9):3081-3090. 

24. Chatrchi G, Duval M-C, Brisebois F, Thomas S. The impact of typical survey weighting 

adjustments on the design effect: A case study. Survey Methods: Insights from the Field. 2015:15. 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 11, 2023. ; https://doi.org/10.1101/2023.01.10.23284400doi: medRxiv preprint 

https://doi.org/10.1101/2023.01.10.23284400
http://creativecommons.org/licenses/by-nc-nd/4.0/


10 

 

25. Valliant R, Dever JA, Kreuter F. Practical tools for designing and weighting survey samples. Vol 

1: Springer; 2013. 

26. Battaglia MP, Hoaglin DC, Frankel MR. Practical considerations in raking survey data. Survey 

Practice. 2009;2(5):2953. 

27. Council NR. Using the American Community Survey: benefits and challenges. 2007. 

28. Kreuter F, Barkay N, Bilinski A, et al. Partnering with Facebook on a university-based rapid turn-

around global survey. Survey Research Methods: SRM. 2020;14(2):159-163. 

29. Barkay N, Cobb C, Eilat R, et al. Weights and methodology brief for the COVID-19 symptom 

survey by University of Maryland and Carnegie Mellon University, in partnership with Facebook. 

arXiv preprint arXiv:200914675. 2020. 

30. Buffington C, Fields J, Foster L. Measuring the impact of COVID-19 on businesses and people: 

lessons from the census bureau's experience. Paper presented at: Aea papers and 

proceedings2021. 

31. Cai C, Woolhandler S, Himmelstein DU, Gaffney A. Trends in anxiety and depression symptoms 

during the COVID-19 pandemic: Results from the US Census Bureau’s Household Pulse Survey. 

Journal of General Internal Medicine. 2021;36(6):1841-1843. 

32. Frasier A, Guyer H, DiGrande L, Domanico R, Cooney D, Eckman S. Design for a Mail Survey 

to Determine Prevalence of SARS-CoV-2 (COVID-19) Antibodies in the United States. Paper 

presented at: Survey Research Methods2020. 

33. Bradley VC, Kuriwaki S, Isakov M, Sejdinovic D, Meng X-L, Flaxman S. Unrepresentative big 

surveys significantly overestimated US vaccine uptake. Nature. 2021;600(7890):695-700. 

34. Menachemi N, Yiannoutsos CT, Dixon BE, et al. Population point prevalence of SARS-CoV-2 

infection based on a statewide random sample—Indiana, April 25–29, 2020. Morbidity and 

Mortality Weekly Report. 2020;69(29):960. 

35. Groves RM. Nonresponse rates and nonresponse bias in household surveys. Public opinion 

quarterly. 2006;70(5):646-675. 

36. Bostic Jr WG, Jarmin RS, Moyer B. Modernizing federal economic statistics. American 

Economic Review. 2016;106(5):161-164. 

37. Initiative NM. Modernization Initiative. 

 

 

 

 

 

 

 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 11, 2023. ; https://doi.org/10.1101/2023.01.10.23284400doi: medRxiv preprint 

https://doi.org/10.1101/2023.01.10.23284400
http://creativecommons.org/licenses/by-nc-nd/4.0/


11 

 

Figure 1. Description of the VDT sampling frame construction. 

 

Caption. Figure 1 depicts the construction of the sampling frame. The 3 square boxes on the top describe construction of the Venue-Day-Time 

(VDT) units corresponding to the first venue. In this example, of the maximum of the 21 strata, three are assumed to be infeasible, leaving 18 

feasible time blocks. The wide rectangle in the bottom depicts the complete listings of VDTs for each of 18 strata in the restricted sampling frame 

for a given week. The numeric values m1, …, m18 shown in red present the number of VDTs to be sampled and visited in each of the 18 strata. 
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Figure 2. Steps for constructing the VDT sampling frame. 

1. Identify a comprehensive list of all possible public venues in the catchment area surrounding the CRSs. The possible venues consisted 

of businesses, parks, parking lots, transit stations, daycares, senior centers, or housing complexes or encampments. They also included 

public events such as farmer’s markets, sports events, or fairs. Repeat this process each week and expand the list if/when possible. 

2. Contact identified venues in Step 1 and seek their ability and interest in participating in the study. 

3. Document operating hours and hours that these venues attract a special population (e.g., whether a store offers special senior discounts 

on certain days). List all time-blocks that intersect with 8am-12pm, 12-4 pm, or 4-8 pm in each day. 

4. Create a list of all possible VDTs for the prospective week using the information obtained in Steps 2 and 3. Call this the unrestricted 

VDT frame for the prospective weekly calendar cycle. 

5. Superimpose all VDTs in the unrestricted VDT frame on the prospective calendar with each day partitioned into the same 4-hour time 

blocks. The Unrestricted VDT frame consists of at most 𝐻𝑈 = 21 time blocks in each week. 

6. Omit the time-blocks for which there are no study staff available. Call this the restricted VDT frame, which consists of a total of 𝐻𝑙 4-

hour time blocks which is shown in Figure 1. 

7. Flag each VDT in one of four categories according to populations they attract. 

8. Add number of VDTs to be sampled within each time block based on number of teams sites could deploy at that time block.  
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Table 1. Sample size requirement (per age group) to achieve +/- 5% and +/- 2.5% margin of 

error for a range of assumed seroprevalence after using a design effect of 2.5. 

Assumed SARS COV-2 Prevalence 0.02 0.05 0.1 0.15 0.2 0.25 

+/- 5% MOE* 75 182 346 490 615 720 

+/- 2.5% MOE* 301 730 1,383 1,959 2,459 2,881 

 * MOE = margin of error. 
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