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Abstract 

Background  

Blood DNA methylation can inform us about the biological mechanisms that underlie 

common disease states. Previous epigenome-wide analyses of common diseases 

often focus solely on the prevalence or incidence of individual conditions and rely on 

small sample sizes, which may limit power to discover disease-associated loci.  

 

Results  

We conduct blood-based epigenome-wide association studies on the prevalence of 

14 common disease states in Generation Scotland (nindividuals≤18,413, nCpGs=752,722). 

We also utilise health record linkage to perform epigenome-wide analyses on the 

incidence of 19 disease states. We present a structured literature review on existing 

epigenome-wide analyses for all 19 disease states to assess the degree of replication 

within the existing literature and the novelty of the present findings.  

 

We identify 69 associations between CpGs and the prevalence of four disease states 

at baseline, of which 58 are novel. We also uncover 64 CpGs that associate with the 

incidence of two disease states (COPD and type 2 diabetes), of which 56 are novel. 

These associations were independent from common lifestyle risk factors. We highlight 

poor replication across the existing literature. Here, replication was defined by the 

reporting of at least one common gene in >2 studies examining the same disease 

state. Existing blood-based epigenome-wide analyses showed evidence of replication 

for only 4/19 disease states (with up-to-15% of unique genes replicated for lung 

cancer). 

 

Conclusions  

Our summary data and structured review of the literature provide an important platform 

to guide future studies that examine the role of blood DNA methylation in complex 

disease states.      

 

Keywords: DNA methylation, health record linkage, epigenome-wide association 

studies; literature review, causal inference  
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1. Introduction 

Epigenetic modifications to DNA represent an important mechanism by which the 

environment interacts with the genome (1). DNA methylation (DNAm) is one of the 

best-studied epigenetic mechanisms and involves the addition of methyl groups to 

DNA, typically in the context of cytosine-phosphate-guanine dinucleotides (CpG sites). 

In contrast to genetic sequence variation, these modifications are reversible and can 

modulate cell or tissue-specific patterns of gene expression (2). Genome-wide 

patterns of DNAm are most commonly assayed using microarray-based technologies 

such as the Illumina HumanMethylation 450K and HumanMethylationEPIC arrays. 

The arrays permit a cost-effective assessment of DNAm at a scale required for large-

scale population health studies (3, 4).  

 

Epigenome-wide association studies (EWAS) examine associations between the 

proportion of methylation at CpG sites and health outcomes of interest, such as 

chronic disease states (5). Primarily, EWAS have been conducted using whole-blood 

DNA methylation. Patterns of DNAm identified in blood do not necessarily mirror 

DNAm patterns in distal or disease-relevant tissues such as nervous tissue for 

Alzheimer’s disease (6, 7). However, blood sampling represents a minimally-invasive 

route for scalable biomarker measurement [10]. Blood-based EWAS have also 

implicated differential methylation at individual loci as candidate markers of disease 

risk. For example, TXNIP and ABCG1 are important regulators of glucose and 

cholesterol metabolism, respectively. Hypomethylation within TXNIP (cg19693031) 

and ABCG1 hypermethylation (cg06500161) have been associated with type 2 

diabetes risk across individuals of multiple ancestries (8-11).  

 

Existing EWAS on common disease can be categorised broadly into prevalence 

analyses (i.e. cross-sectional) and incidence analyses (i.e. longitudinal assessment of 

incident cases in unaffected individuals). EWAS often suffer from low sample sizes, 

which has limited the discovery of CpG sites that associate with disease states. Meta-

analyses can increase power but may be vulnerable to between-study heterogeneities. 

To date, no study has performed large-scale EWAS on the prevalence and incidence 

of multiple disease states in a single population. There is also a lack of structured 

literature reviews on EWAS of common disease states to assess the level of 

agreement in loci discovery among existing studies.  

 

Here, we utilise Generation Scotland: the Scottish Family Health Study (GS), a large 

cohort with DNA methylation data (n=18,413). First, we integrate blood DNAm and 

self-reported disease data from questionnaires answered at the study baseline to 

perform EWAS on 14 prevalent disease states (cross-sectional analyses). Second, we 

conduct EWAS on 19 incident disease states ascertained through electronic health 

record linkage over up-to-14 years of follow-up (longitudinal analyses). Third, we 

perform a structured literature review to identify blood-based EWAS findings on all 19 

disease states considered in this study. We examine whether findings in this study 
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replicate previous analyses and highlight the level of agreement within previously 

published studies. Fourth, we employ genetic colocalisation analyses to determine 

whether CpG methylation at loci identified in our EWAS causally associate with 

disease risk (see Fig 1 for a summary of the study design).  
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Fig 1. Study design for epigenome-wide analyses on prevalent and incident disease states 

in Generation Scotland. A). Recruitment for Generation Scotland took place between 2006 and 

2011. Prevalence analyses: participants self-reported disease status and donated blood samples 

at the study baseline. Incidence analyses: linked healthcare data were used to determine if 

participants who were free from a particular condition at baseline went on to develop the condition 

over up-to-14 years of follow up. Controls were free of the disease at the baseline and during 

follow-up. B). Blood DNAm at baseline were available for 18,413 participants. EWAS tested for 

associations between blood CpG methylation and the prevalence of 14 disease states at baseline 

or the incidence (time-to-onset) of 19 disease states during follow-up. Significant findings were 

tested for replication in existing studies via a structured literature review. Replication within 

existing studies was also investigated. Causal inference analyses were employed to help dissect 

whether associations between DNAm and disease states reflected shared genetic architectures. 

Image created using Biorender.com. DNAm, DNA methylation; EWAS, epigenome-wide 

association studies.  
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2. Methods  

2.1 Generation Scotland cohort  

Generation Scotland, or GS, is a large family-structured cohort study that consists of 

24,000 individuals from across Scotland. It encompasses 5,573 families with a median 

family size of 3 (interquartile range=2–5 members; excluding 1,400 singletons without 

any relatives in the study). Recruitment for GS took place between 2006 and 2011. 

Full details on the cohort and baseline data collection have been described previously 

(12, 13).  

 

2.2. Preparation of DNA methylation data  

Whole blood DNAm was measured for GS participants using the Illumina Infinium 

MethylationEPIC array. Dasen normalisation was performed across all individuals 

(14). Methylation M-values were corrected for age, sex and experimental batch (n=121 

batches) prior to analyses. Methylation typing was performed in three distinct sets. 

Quality control steps are detailed in full in Additional file 1. Following quality control, 

there were 5,087, 4,450 and 8,876 individuals within Sets 1, 2 and 3, respectively. Set 

1 contained related individuals. Set 2 consisted of individuals who were unrelated to 

each other and those in Set 1. Set 3 consisted of related individuals, and individuals 

related to those in Sets 1 and 2. In total, 752,722 probes and 18,413 individuals passed 

quality control criteria and were considered in analyses. 

  

2.3 Preparation of disease phenotypes  

Nineteen common disease states were considered across prevalence and incidence 

analyses: (1) Alzheimer’s dementia (AD), (2) breast cancer, (3) chronic kidney disease 

(CKD), (4) chronic neck and/or back pain, (5) chronic obstructive pulmonary disorder 

(COPD), (6) colorectal cancer, (7) COVID-19 severity (requiring hospitalisation), (8) 

inflammatory bowel disease (IBD), (9) ischemic heart disease, (10) liver cirrhosis, (11) 

long COVID, (12) lung cancer, (13) osteoarthritis, (14) ovarian cancer, (15) 

Parkinson’s disease, (16) prostate cancer, (17) rheumatoid arthritis, (18) stroke and 

(19) type 2 diabetes. Outcomes were selected if they were present among the ten 

leading causes of death in high-income countries, the ten leading causes of disease 

burden (disease adjusted life years; DALYs) in high-income countries or self-reported 

diseases at the baseline (15-17). Depression was not considered as it is included in 

an ongoing meta-analysis EWAS. Although asthma can occur at any age, it has a 

higher prevalence among children aged 0-17 years than in adults. It was therefore 

excluded from the present analyses that used an adult sample with a broad age profile 

(18).  

 

Self-report data were used for 12 disease states in cross-sectional analyses of disease 

prevalence. Self-reported parental history of AD was used a proxy variable for AD. 

Analyses on self-reported parental history of AD were restricted to participants who 
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were >45 years at baseline. This ensured that only participants whose parents were 

likely old enough at baseline to be at risk of AD were considered (i.e. >65 years). The 

CKD Epidemiology Collaboration, or CKD-EPI, equation was implemented to estimate 

glomerular filtration rate (eGFR) at baseline. Individuals with an eGFR 

<60 ml/min/1.73 m2 were deemed to have CKD (19). Therefore, 14 disease 

phenotypes were considered in prevalent analyses.  

 

All 19 phenotypes were included in longitudinal analyses via linkage to electronic 

health records (with the exception of self-reported long COVID). The primary and 

secondary care codes used to define incident phenotypes are available in Additional 

file 2. Prevalent cases from the study baseline were excluded for these analyses as 

were those where record linkage provided evidence of a diagnosis prior to baseline. 

Therefore, incident cases included those diagnosed after baseline who had died and 

those who received a diagnosis and remained alive. Controls were censored if they 

were free of a diagnosis at the time of death or at the end of the follow-up period. 

Further information on the pre-processing of incident phenotypes, including COVID 

phenotypes, is available in Additional file 1.  

  

2.4  Epigenome-wide association studies on prevalent disease  

First, logistic regression models were used to adjust prevalent phenotypes for 

chronological age and sex, with the exception of breast cancer and prostate cancer, 

which were adjusted for age after restricting the cohort to females and males, 

respectively. Second, linear regression models were used for EWAS via the OSCA 

(OmicS-data-based Complex trait Analysis) software (20). Residuals from the logistic 

regression models were entered as the dependent variable and age-, sex- and batch-

adjusted CpG M-values represented the independent variable. This strategy was 

employed to reduce computational burden. A Bonferroni-significance threshold was 

set at p<2.6x10-9 (=3.6x10-8/14 phenotypes) (21). Two models with different covariate 

strategies were employed, as described below:  

 

1. Basic model: Phenotype and CpG M-values, corrected as described above, 

including five Houseman-estimated white blood cell (WBC) proportions as fixed 

effect covariates (22):  

Phenotype ~ CpG M-values + methylation-predicted WBC proportions  

 

2. Fully-adjusted model: additional adjustments for five common lifestyle factors 

(23) and 20 genetic principal components (PCs; to control for population 

structure):   

 

Phenotype ~ CpG M-values + methylation-predicted WBC proportions + alcohol 

consumption (units/week) + body mass index (kg/m2) + deprivation index (Scottish 

Index of Multiple Deprivation) + education (an 11-category ordinal variable) + 

methylation-based smoking score (EpiSmokEr) + 20 genetic PCs  
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2.5 Epigenome-wide association studies on incident disease  

First, Cox proportional-hazards models were used to adjust incident phenotypes for 

age at baseline and sex (17/19 phenotypes). Only age was included for breast, ovarian 

and prostate cancer. Time-to-onset for the disease, or censoring, was the survival 

outcome in Cox proportional-hazards models. Only individuals with an age at event or 

censoring ≥65 years were considered for AD. Logistic regression models were used 

to adjust two remaining COVID phenotypes prior to EWAS analyses. Cox models were 

not employed for COVID phenotypes owing to the limited differences in time-to-event 

data between individuals with positive COVID diagnoses. Whereas DNAm was 

corrected for age at baseline (as well as sex and batch), COVID phenotypes were 

adjusted for sex and age at COVID testing or diagnosis. Here, age at COVID testing 

or diagnosis was considered given the variation in time elapsed between baseline 

visits (between 2006 and 2011) and the onset of the COVID pandemic. Second, 

martingale residuals or logistic regression residuals were extracted and included as 

dependent variables in OSCA. A Bonferroni-corrected significance threshold was set 

at p<1.9x10-9 (=3.6x10-8/19 phenotypes). Basic and fully-adjusted models were 

employed, as described in the previous section. Methods for sensitivity EWAS 

analyses are detailed under Additional file 1.  
 

2.6 Structured literature review on blood-based EWAS of common disease  

MEDLINE, Embase (Ovid interface, 1980 onwards), Web of Science (core collection, 

Thomson Reuters), and preprint servers were searched to identify relevant articles 

indexed as of August 31, 2022. Search terms are outlined under Additional file 1. 

The search strategy returned approximately unique 2,000 articles, of which 53 passed 

inclusion criteria. Inclusion criteria were as follows: (i) original research article, (ii) 

EWAS performed with blood DNAm, (iii) there were at least 20 individuals in each 

comparison group (i.e. cases and controls) and (iv) the study examined at least one 

of the 19 common disease states outlined in our study.  
 

2.7  Colocalisation analyses  

Colocalisation analyses required GWAS summary statistics for CpG sites (i.e. 

methylation Quantitative Trait Loci – mQTLs, trait 1) and for respective disease states 

(trait 2 (24-29)). The GoDMC mQTL resource represents the largest mQTL study to 

date in terms of sample size but only focused on 450k array sites (30). Therefore, the 

GoDMC resource was utilised for sites in our study that are common to the EPIC and 

450k arrays; however, mQTL analyses were also conducted in GS in order to generate 

mQTL summary statistics for sites present on the EPIC array only (Additional file 1). 

The coloc.abf function in R package coloc was used to test for colocalisation and 

default parameters were applied (version 5.1.0) (31). SNPs ±1 Mb surrounding each 

CpG site were extracted from the mQTL and respective disease GWAS summary 

statistics. The method tests for five mutually exclusive hypotheses, H0: there are no 

causal variants for either trait in the tested region; H1 and H2: causal variant for trait 

1 and trait 2 only, respectively; H3: distinct causal variants for both traits and H4: the 

traits share a causal variant. Posterior probabilities ≥95% for H4 provided strong 

evidence in favour of colocalisation. 
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3. Results 

3.1 Demographics in Generation Scotland 

The mean age of the sample was 47.5 years (n=18,413, standard deviation 

(SD)=14.9) and the sample was 58.8% female. Summary data for demographic 

variables and disease counts are displayed in Additional file 3: Tables S1-S3. 

Associations between covariates and disease states are displayed in Additional file 

3: Tables S4 and S5 for prevalent and incident disease states, respectively (also 

available in Additional file 4: Fig S1 and S2).  

 

3.2 Epigenome-wide analyses of prevalent disease  

We first tested for cross-sectional associations between blood CpG methylation and 

fourteen disease states at the study baseline. There were 1,340 significant 

associations involving ten diseases in a basic model that adjusted for age, sex and 

estimated blood cell proportions (p<2.6x10-9, Fig 2A, Additional file 3: Table S6). 

Over 90% of these associations (n=1,246) were attributed to type 2 diabetes (n=703 

associations, 52.2%), COPD (n=301, 22.5%) and chronic pain (n=242, 18.1%). Look-

up analyses in the EWAS Catalog showed that 617/1,340 associations involve CpGs 

that were previously associated with common disease risk factors including body mass 

index, smoking and alcohol consumption (32).   

 

Next, we conducted a fully-adjusted model that further accounted for five common 

lifestyle risk factors and population structure, which returned 78 associations across 8 

disease states (p<2.6x10-9, Fig 2B, Additional file 3: Table S7). Sixty-nine 

associations from the basic model were also present in the fully-adjusted analysis. The 

69 associations were spread across four disease states: CKD (n=1); ischemic heart 

disease (n=6); breast cancer (n=10); and type 2 diabetes (n=52). The findings included 

associations between self-reported history of breast cancer and hypomethylation 

within cg06072257 and cg06123699, which are located near UBIAD1 and TPRG1 on 

chromosomes 1 and 3, respectively (p=6.5x10-103 and p=2.4x10-101, respectively). The 

site cg17944885 located between ZNF788 and ZNF20 on chromosome 19 associated 

with prevalent CKD (p=1.7x10-12). Furthermore, CpGs annotated to ABCG1, DHCR24 

and MYLIP were common to ischemic heart disease and type 2 diabetes (Fig 2B).  

 

Genetic colocalisation analyses provided weak evidence for a shared causal variant 

underlying methylation at cg00857282 (MYLIP) and risk of ischemic heart disease 

(PP=63%, Additional file 3: Table S8). There was also moderate evidence for distinct 

causal variants underlying ten of the 69 prevalent associations (PP>75%).  
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Fig 2. Epigenome-wide association studies on 14 prevalent disease states in Generation Scotland. 

A). Diseases with CpG associations in only the basic model or the fully-adjusted model are shown in bold. 

Colorectal cancer was present in both the basic and fully-adjusted model but no CpGs were common to 

both models for this condition. B). Ideogram showing 78 Bonferroni-corrected significant loci from the fully-

adjusted model, which associated with 8 unique disease states. Loci are denoted with ‘*’ if they were 

replicated in the literature and with ‘+’ if they were also present in the basic model. Gene names that are 

greater than 10 characters in length were truncated for clarity. Full information is available in Additional 

file 3: Table S7. Image created using Biorender.com. CKD, chronic kidney disease; COPD, chronic 

obstructive pulmonary disease; WBC, white blood cells.  
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3.3 Epigenome-wide analyses on incident disease  

Using health record linkage, we tested whether CpGs measured at baseline 

associated with the future onset of 19 disease states. We observed 14,047 

associations between baseline CpG methylation and the incidence of 11 disease 

states in the basic model (p<1.9x10-9, Fig 3A, Additional file 3: Table S9). Of these, 

11,305 (80.4%) and 2,657 (18.9%) were attributed to COPD and type 2 diabetes, 

respectively. Well-established smoking-associated probes (e.g. cg14391737 within 

PRSS23 and cg05575921 within AHRR) associated with the incidence of COPD, lung 

cancer, ischemic heart disease, stroke, pain and/or CKD.  

 

There were 79 unique associations in the fully-adjusted model, which were spread 

across five disease states (Fig 3B, Additional file 3: Table S10). However, only 64 

associations for COPD (n=6) and type 2 diabetes (n=58) were present across both 

basic and fully-adjusted models. Genes annotated to CpGs that associated with COPD 

included ALPG, C11orf91, CPOX, GPR15, HLA-DRB5 and PRSS23. Genes 

annotated to CpGs that were associated with type 2 diabetes included ABCA1, 

ABCG1, CPT1A, SREBF1, SLC7A11, SLC7A5, and TXNIP among others (see 

Additional file 3: Table S10 for full details). Only type 2 diabetes had CpGs common 

to cross-sectional and longitudinal analyses and reflected 17 CpGs annotated to 11 

unique genes.  

 

There was only moderate evidence for distinct causal variants underlying 11/64 

incident associations (PP>75%). No associations showed strong evidence of 

colocalisation (Additional file 3: Table S11).  
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Fig 3. Epigenome-wide association studies on 19 incident disease states in Generation Scotland. 

Diseases that were identified in only the basic model or only the fully-adjusted model are shown in bold. 

COVID severity, liver cirrhosis and ovarian cancer were present in both a basic and fully-adjusted model 

but there were no overlapping CpGs for these disease states in both models. B). Ideogram showing 79 

Bonferroni-corrected significant loci from the fully-adjusted model, which associated with 5 unique disease 

states. Loci are denoted with ‘*’ if they were replicated in the literature and with ‘+’ if they were also present 

in the basic model. Gene names that are greater than 10 characters in length were truncated for clarity. 

Full information is available in Additional file 3: Table S10. Image created using Biorender.com. COPD, 

chronic obstructive pulmonary disease; WBC, white blood cells.  
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3.4 Associations between CpG methylation and disease states are robust in 

sensitivity analyses  

Mixed-effects models that included a kinship matrix were used to account for 

relatedness as sensitivity analyses. Effect sizes correlated >0.99 with associations 

from the standard EWAS, which included related individuals (Additional file 3: 

Tables S12 and S13, Additional file 4: Fig S3). Further, fourteen of the 64 incident 

associations failed the proportional hazard assumption for the CpG variable (p<0.05 

between Schoenfeld residuals and time, Additional file 3: Table S14). However, 

there were negligible differences between CpG effect sizes between follow-up 

periods that satisfied the assumption versus those that did not (Additional file 3: 

Table S15).  

 

Fully-adjusted models were repeated using logistic regression (prevalent disease) or 

Cox models (incident disease) with age and sex included as fixed-effect covariates. 

This differs from the main analytical strategy that used linear regression models with 

adjusted phenotype and methylation variables, and allowed us to return effect sizes 

on an interpretable scale. Fig 4 shows odds ratios and hazard ratios associated with 

a per-1 SD increase in adjusted CpG methylation M-values for all 69 and 64 prevalent 

and incident disease associations (Additional file 3: Table S16).  
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Fig 4. Blood CpGs associated with prevalent or incident disease states showing effect sizes 

on interpretable scale. Effect sizes were re-estimated using logistic regression (prevalent disease, 

blue points) or Cox proportional-hazards models (incident disease, violet points) to return more 

interpretable effect sizes. Effect sizes represent a per-1 standard-deviation increase in age-, sex- and 

experimental batch-adjusted CpG methylation M-values (or age- and batch-adjusted for breast 

cancer). CpGs shown were significant in both basic and fully-adjusted models. Odds ratios and hazard 

ratios are detailed in Additional file 3: Table S16.  
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3.5 Structured literature review on existing epigenome-wide analyses of 

common diseases 

We performed a structured review of the literature to identify blood-based EWAS on 

the 19 disease states considered in our study (n=53 studies, Fig 5A). Fourteen 

disease states had at least one EWAS reported in the literature. The number of studies 

ranged from one (for long COVID) to seven (for type 2 diabetes) (Additional file 3: 

Tables S17 and S18).  

 

There were 10 disease states that were available for testing (i.e. had >1 study with 

complete summary statistic data). The number of unique CpGs that were reported as 

significant by the study authors ranged from 7 (for COPD) to 2,746 (for ovarian 

cancer). Four of the ten disease states had evidence of replication across existing 

studies with respect to the genes identified by EWAS. They were IBD (0.69% of genes 

replicated), ovarian cancer (2.4%), type 2 diabetes (12.0%) and lung cancer (15.0%) 

(Fig 5B). Whereas, CKD had no common genes identified across existing studies, 

6/115 unique intergenic CpGs were replicated across studies (Additional file 3: Table 

S19). 

 

Only 11/69 prevalent associations in this study (including 1 for CKD and 10 for type 2 

diabetes) and 8/64 incident associations (for type 2 diabetes only) were replicated in 

in the literature (at p<2x10-5, which represented the least conservative threshold 

across studies for these traits). The replicated associations for type 2 diabetes 

implicated genes including ABCG1, CPT1A, SREBF1 and TXNIP.  
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Fig 5. Summary of novelty of present study and poor replication within existing EWAS on 

common disease states. In some cases, there is an existing blood-based EWAS that examined 

the prevalence of the disease but no EWAS exists that analysed the incidence of the disease, 

and vice versa. In some cases, we present the first large-scale, blood-based EWAS of the 

disease. Further, few studies have performed EWAS with the recent Illumina EPIC array. Owing 

to these criteria, we define six possible categories in which we present the first EWAS on disease. 

Interpretation: For example, we present the first incident analyses on 4 diseases (category 2) but 

all 4 have at least one existing study examining prevalent disease and with the EPIC array. For 

another 4 diseases (category 3), we present the first EWAS on incident disease and the first with 

the EPIC array as any existing studies examining the prevalence of this disease have used earlier 

arrays only. We also highlight in a structured literature review the poor replication that exists 

between blood-based EWAS on disease, which extends to limited replication for our study. Image 

created using Biorender.com. CKD, chronic kidney disease; IBD, inflammatory bowel disease.  
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Discussion  

Using one of the world’s largest methylation datasets, we perform a series of EWAS 

on the prevalence and incidence of a broad range of conditions. We undertook a large-

scale, comprehensive review of the literature and highlight the poor agreement that 

exists across previous epigenome-wide analyses that examine the same condition. By 

comparing these data with our own findings, we uncover 58 novel associations with 

the prevalence of three self-reported disease states at the study baseline (breast 

cancer, ischemic heart disease and type 2 diabetes). We also identify 56 novel 

associations between CpGs and the time-to-onset of two disease states (COPD and 

type 2 diabetes). These associations were independent of common lifestyle risk 

factors. However, we also observe a vast number of additional associations whereby 

CpGs index or track associations between lifestyle factors and common disease 

states, further highlighting the appropriateness of DNAm as a biomarker of lifestyle 

behaviours.   

 

The novel associations observed in this study could strengthen evidence for candidate 

molecular pathways underlying peripheral disease states. For instance, self-reported 

history of breast cancer associated with differential methylation at cg06072257 

(UBIAD1) and cg06123699 (TPRG1). UBIAD1 (UbiA Prenyltransferase Domain 

Containing 1) is a biosynthetic enzyme that converts vitamin K1 (phylloquinone) to 

menaquinone, which is the most abundant form of vitamin K2 in human tissue (33). 

Low expression of UBIAD1 in human breast tumours correlates with reduced survival 

(34), and also associates with risk for bladder cancer (35). TPRG1 encodes for 

Tumour protein P63 Regulated 1 and its expression is associated with estrogen 

receptor-positive and triple-negative breast cancers (36, 37). IGF1 and SHC2 

hypomethylation correlated with breast cancer prevalence in the present study. 

Whereas it is unclear how SHC2 (chromosome 19) relates to cancer risk, SHC1 

(chromosome 1) and IGF1 play central and causal roles in the pathogenesis of breast 

cancer (38-40). Furthermore, in relation to COPD, cg23353945 (C11orf91) correlated 

with incidence of the disease and has been associated in trans with CCL21 protein 

levels (41). Serum CCL21 levels are elevated in COPD patients and may contribute 

to the development of lung cancer (42, 43). This may suggest that a C11orf91-CCL21 

axis contributes to risk of pulmonary disease independently from lifestyle risk factors. 

However, these findings warrant further investigation in mechanistic in vitro and in vivo 

studies.  

 

The poor replication across existing studies reflects a number of possible factors. 

These include the use of different significance thresholds, arrays with different CpG 

content (e.g. 450k vs. EPIC arrays), different study designs (e.g. community-based 

designs with no enrichment for a particular disease vs. targeted case/control designs), 

variation in phenotype definitions for health record linkage analyses and the use of 

disparate covariate strategies. Some studies also did not make full summary statistics 

available. Nevertheless, our review is critical and timely given that the scale of EWAS 
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continues to rise in tandem with enhancements in array technologies, population 

biobank sizes and health record phenotyping algorithms. We recommend that studies 

examining the same condition should reach consensus on covariate strategies in 

consortium efforts or report clearly the output of nested models such as models with 

and without adjustments for lifestyle risk factors.  

 

Our study has a number of limitations. First, we did not adjust for medication data, 

which may confound associations between peripheral methylation and disease. 

Second, we did not consider disease subtypes as this may have reduced power to 

detect associations. Third, our findings in blood might not reflect important changes in 

distal, disease-relevant tissues. Fourth, our analyses consisted of individuals with 

European ancestry and might not be generalisable to individuals of other ancestries.  

 

Conclusions  

Our epigenome-wide analyses uncovered over 100 novel associations between blood 

CpGs and common disease states that act independently of major confounding risk 

factors. Our summary data and synthesis of the literature provide a timely foundation 

that will expedite discoveries into the role of blood DNA methylation in common 

disease states.  
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All code associated with this manuscript is available open access at the following 
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DataShare upon publication.  
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