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Summary Deep learning-based models were used to assess whether fully automated 
segmentation is feasible for the main two disease sites in high grade serous ovarian cancer.  

Key Points 

· First automated approach for pelvic/ovarian and omental ovarian cancer lesion 
segmentation on CT images. 

· Automated segmentation of ovarian cancer lesions can be comparable with manual 
segmentation of trainee radiologists with three years of experience in oncological and 
gynecological imaging. 

· Careful hyper-parameter tuning can provide models significantly outperforming strong 
state-of-the-art baselines. 

Abstract 

Purpose: To determine if pelvic/ovarian and omental lesions of ovarian cancer can be 
reliably segmented on computed tomography (CT) using fully automated deep learning-
based methods. 

Materials and Methods: A deep learning model for the two most common disease sites of 
high grade serous ovarian cancer lesions (pelvis/ovaries and omentum) was developed and 
compared against the well-established “no-new-Net” (nnU-Net) framework and unrevised 
trainee radiologist segmentations. A total of 451 pre-treatment and post neoadjuvant 
chemotherapy (NACT) CT scans collected from four different institutions were used for 
training (n=276), hyper-parameter tuning (n=104) and testing (n=71) of the methods. The 
performance was evaluated using the Dice similarity coefficient (DSC) and compared using 
a Wilcoxon test on paired results 

Results:  Our model outperforms the nnU-Net framework by a significant margin for both 
disease (validation: p=1x10-4,1.5x10-6, test: p=0.004, 0.005) and it does not perform 
significantly different from a trainee radiologist for the pelvic/ovarian lesions (p=0.392). On 
an independent test set (n=71), the model achieves a performance of 72±19 mean DSC for 
the pelvic/ovarian and 64±24 for the omental lesions. 
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Conclusion: Automated ovarian cancer segmentation on CT using deep neural networks is 
feasible and achieves performance close to a trainee-level radiologist for pelvic/ovarian 
lesions. 

Keywords: Automated segmentation, high grade serous ovarian cancer, deep learning, 
computed tomography 

Abbreviations: 3D = three-dimensional, CT = Computed Tomography, DSC = Dice similarity 
coefficient, HGSOC = high grade serous ovarian carcinoma, IPS = immediate primary 
surgery, NACT = neoadjuvant chemotherapy, nnU-Net = no-new-Net 

  

Introduction 

After decades of unchanged treatment regimens for patient with ovarian cancer and little 
improvement in patients’ survival, this treatment landscape is currently changing, and 
an increasing number of therapeutic options can be offered. For standard treatments with 
chemotherapy, the interpretation of oncological computed tomography (CT) scans by an 
expert radiologist for evaluation of tumor spread usually includes only a small number of uni- 
or bidimensional lesion measurements that typically follow response evaluation criteria in 
solid tumors (RECIST 1.1) guidelines (1). However, these measurements are subjective, lack 
sensitivity for the early detection of treatment response and progression (2), and show only 
limited correlation with patient outcome (3,4). Novel treatments like immunotherapy, for 
example, require dedicated guidelines (5) and often several months of treatment monitoring 
before pseudo progression can reliably be distinguished from response. The development of 
non-invasive imaging biomarkers for response assessment as well as patient selection for 
such treatments is still in its infancy (6). Detailed volumetric response assessment as well as 
radiomics, have the potential to improve clinical decision making for both, patients 
undergoing standard of care chemotherapy and novel treatments. However, both 
require manual segmentation of the entire tumor burden by a radiologist. In advanced stage 
ovarian cancer with multi-site peritoneal disease, the detailed segmentation and annotation 
of a single scan can become a very time-consuming task and is only done for research 
purposes thus omitting potentially relevant information from clinical decision making. 

Recently, deep neural networks based on the U-Net architecture (7) have shown 
promising results in challenging medical image segmentation problems. For example, the 
nnU-Net framework (8,9) achieved state-of-the-art performance in various biomedical 
segmentation challenges, such as the Medical Segmentation Decathlon (10). A recent 
survey also showed that nine out of ten top two performing teams in the 2020 MICCAI 
segmentation challenges are built using the nnU-Net framework as a baseline (11).  

Deep neural networks are a promising solution for time-efficient and observer-
independent segmentation of ovarian cancer lesions. Such methods allow volumetric 
response assessment of the disease instead of the currently used RECIST guidelines (1) 
and have the potential to reduce the manual annotation time (12,13) allowing researchers to 
create large scale datasets with high quality segmentations. Such datasets enable the 
creation of future disease quantification and response prediction tools to support clinical 
decision making and facilitate the development of clinical trials.  

This is the first paper to propose a deep learning (DL) based approach for the automated 
segmentation of the disease located in the pelvis/ovaries and omentum, which are the 
predominant disease sites. A recently proposed automated approach based on classical 
machine learning focused on perihepatic and perisplenic ovarian cancer metastases 
segmentation (14,15) but did not address the more common locations.  
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Materials and Methods 

 
Datasets 

Patients were recruited prospectively into the respective studies. All images used in 
this study were acquired per clinical request and subsequently collected after informed 
patient consent was obtained for use in research approved by the local ethical review board. 
We retrospectively collected scans using only contrast enhanced axial CT images from 
patients with high grade serous ovarian carcinoma (HGSOC). The diagnosis of HGSOC was 
confirmed in all patients through biopsy and histopathological analysis. Patients without 
contrast enhanced CT scans or with unclear histopathological diagnosis were excluded. 

For this study, we had a total of n=451 scans from four institutions and two countries 
available. As the majority (n=380) of data was obtained in the UK, we decided to use this part 
of the data for training and validation of the method. In particular, the larger subset (n=276) 
obtained at Addenbrooks Hospital Cambridge was used for training and the remaining scans 
(n=104) from St. Bartholomews Hospital London were used for validation. The remaining 
scans (n=71) obtained in the Gynecologic Cancer Center of Excellence program and the 
Cancer Imaging Archive (https://www.cancerimagingarchive.net/) from the US were used as 
a test set. 

The patients across all datasets were treated with either immediate primary surgery 
(IPS) or three to six cycles of NACT. Among the 157 patients in the training dataset, 119 
were treated with NACT for which both pre- and post-treatment scans were available. The 
remaining 38 patients were treated with IPS for which only the pre-treatment scan was 
available. The scans in the validation set were obtained from 53 patients that were treated 
with NACT. For all patients both pre- and post-NACT scans were available. However, two 
post-NACT scans were removed from the dataset as no disease was visible anymore after 
the treatment. All patients in the test data received IPS. Only pre-treatment scans are 
contained in this dataset. 

The dataset compositions, including information on the patient age and quantitative 
measures on the two disease sites are shown in Table 1 and further details describing the 
heterogeneity of the acquisition protocols are provided in the Supplementary Materials. 
Further information on the patients such as ethnicity and clinical condition were not available 
to us due to the anonymization of the scans. Examples of the two disease sites are shown in 
Figure 1. 

 
Manual Annotation 

All manual segmentations were performed using Microsoft Radiomics application 
(project InnerEye; https://www.microsoft.com/en-us/research/ project/medical-image-
analysis/), Microsoft, Redmond, WA, USA). 

All segmentations used as ground truth in this study were either manually segmented 
or corrected by RW (consultant radiologist with ten years of experience in oncological and 
gynecological imaging). The training data set was segmented solely by RW. The validation 
data set was pre-segmented by a trainee radiologist (three years of experience in oncological 
and gynecological imaging) and subsequently reviewed and corrected by RW. For all scans 
in this dataset, both the unrevised trainee and the ground truth segmentations were 
available. The test set was segmented by HS (initials blinded; six years of experience in 
oncological and gynecological imaging) and reviewed by RW. All segmentations in this 
dataset were found to be of satisfying quality; therefore, only one set of segmentations 
(ground truth) was available for these scans. 
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Deep Learning Model 
 

As no literature exists on the segmentation of pelvic/ovarian and omental lesions in 
ovarian cancer, we first used the 3D full resolution U-Net of the nnU-Net framework (8,9) as a 
baseline for this segmentation task. The framework automatically adapts to new datasets, 
suggests model hyper-parameters and can be considered the current state-of-the-art in 3D 
biomedical image segmentation (10, 11). Our model was obtained by reimplementing the 
nnU-Net framework from scratch, benchmarking both implementations and performing 
extensive hyper-parameter optimization. As already observed by the authors of nnU-Net 
(8,9), we did not find an impact of minor architectural changes to the performance of our 
model. Instead, we decided to focus on fine tuning the hyper-parameters suggested by the 
nnU-Net framework. 

As all current state-of-the-art 3D biomedical segmentation networks, nnU-Net is 
based upon the U-Net architecture (7,11). For our dataset nnU-Net suggested a simple U-Net 
with six stages, LReLU activation functions, Instance Normalization and 32 filters in the first 
block doubling at each stage. We found it beneficial to reduce the number of stages to four 
and replace the encoder with a ResNet (16) of 1, 2, 6, and 3 blocks per stage. The nnU-Net 
framework further suggests training the networks for 250.000 batches of size 2 using an SGD 
optimizer with Nesterov's momentum of factor 0.99, weight decay of 3x10-5, and a 
polynomial decaying learning rate from 0.01 to 0. We instead found it beneficial to increase 
the batch size to 4, the weight decay to 10-4, decrease the momentum to 0.98 and change 
the learning rate schedule to a linear ascent plus cosine decay with maximum learning rate 
0.02. 

The framework uses resizing of voxel spacing and Z-normalization of the grey values 
as preprocessing and various spatial (rotation, scaling, flipping) and grey value based 
(Gaussian noise, multiplicative scaling, contrast, blurring, gamma) transformations on the fly 
for data augmentation. During inference, a Sliding Window algorithm with a Gaussian 
weighting and test-time augmentations by evaluating all eight permutations of flipping over x-, 
y- and z-axis was applied. We found no benefit in changing the pre-processing, data 
augmentation and evaluation based on the Sliding Window algorithm, hence they were left 
unchanged and applied as suggested by the authors of nnU-Net (8,9).  
 
Code and Model Availability 
 

All code was developed using Python (version 3.9.4) as a programming language and 
the deep learning framework PyTorch (version 1.9.0). To make the training reproducible and 
share our model with the research community, we made the training code, inference code 
and model hyper-parameters and weights publicly available on our code repository at 
https://github.com/ThomasBudd/ovseg. 
 
Statistical Analysis 

To test whether differences in DSC were significant, we computed p-values using the 
Wilcoxon test on paired results. These computations were performed using the Python 
package SciPy. 

  

Results 

Performance assessment 
 

All metrics were only computed on scans containing the corresponding disease site. 
The results (expressed as mean ± standard deviation) are summarized in Figure 2 and 
Supplementary Table 1. On the validation set our model achieved mean DSCs of 66 and 51 
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for pelvic/ovarian and omental lesions respectively outperforming the baseline by a significant 
margin (p=1x  and 1.5x ). On the test set our model achieved mean DSCs of 72 and 64 which 
was also found to be a significant improvement over the baseline (p=0.004 and 0.005). 
Additionally, we compared the DSCs achieved by both automated methods and the trainee 
radiologist on the validation set. Both models performed significantly worse than the trainee 
radiologist for the segmentation of omental lesions (p=1x  and 3.6x ). However, considering 
the pelvic/ovarian lesions, the baseline model performs significantly inferior to the trainee 
radiologist (p=0.041), while there was no such significant difference between our proposed 
model and the trainee radiologist (p=0.392). 

Additionally, we compared the disease volume of the ground truth with the automated 
annotations of our proposed model. Despite the presence of some outliers, Figure 2 shows 
close agreement in volume for both disease sites considering the volume comparison of 
individual scans (second column) and the difference of pre- and post-NACT volume. The 
Bland-Altman plot shows that on average the ground truth volume is greater than the 
predicted volume for both sites. 

Examples of automated and trainee radiologist segmentations are presented in the 
left and middle columns of Figure 3. 

Outlier and Error Analysis 
To assess common errors and outliers, the validation and test set were pooled 

(n=175) and inspected visually and quantitatively. 
Low DSC values were regularly found on scans with low ground truth volume. In the 

subset of scans with the bottom 25% DSC performance, lower median disease volume was 
found compared to the full set (omentum: 6 vs. 21 cm3, pelvis/ovaries: 9 vs. 37 cm3). Vice 
versa, on the scans with the 25% lowest volumes, lower mean DSC performance was found 
when compared to the full set (omentum: 35 vs. 55, pelvis/ovaries: 46 vs. 68). 

A visual evaluation revealed common false positive predictions in the extreme ends of 
the scan volumes outside of anatomic regions where disease commonly occurs. On 41 scans 
omental disease was falsely annotated in breast tissue, in 13 cases near the scapulae, and in 
five cases false positive annotations were found in the thighs. Examples of such false 
positive annotations can be found in the right column of Figure 3. 

To better understand the influence of false positive and false negative predictions we 
computed the sensitivity and precision. For both disease sites the sensitivity was found to be 
lower than the precision (omentum: 52 vs. 70, pelvis/ovaries: 69 vs. 73). 

Another source of error was the confusion between classes. We found that in 12 out 
of 170 cases containing pelvic/ovarian disease, at least parts of the ground truth annotation 
intersected with automated annotation of omental disease. Vice versa in 18 out of 155 scans 
containing omental disease at least one voxel of omental disease was marked as 
pelvic/ovarian disease by the algorithm. Even to the trained radiologist’s eye, it can be 
challenging to distinguish between extensive pelvic and omental disease when tumors form 
conglomerates. 
  
Discussion 

This work presents the first automated deep learning-based ovarian cancer CT 
segmentation approach for the two main disease sites: the pelvis/ovaries and the omentum, 
while previous work only addressed less common disease sites (14,15). While the relatively 
low DSC values suggest inferior performance compared to expert consultant radiologists, we 
could demonstrate similar performance to a trainee radiologist with three years of experience 
for the pelvic/ovarian lesions despite the complexity of the disease and using only a few 
hundred scans for training. Further, we demonstrated that our model significantly 
outperforms the well-established state-of-the-art framework nnU-Net and generalizes to a 
test set from a different country. The heterogeneity of the disease between patients was 
demonstrated in Figure 1. This causes great challenges for both manual and automated 
segmentation and might be the main reason for the performance gap between our model and 
the ground truth. The fact that our model performed better on the test set compared to the 
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validation set, for which the hyper-parameters were tuned, is most likely a result of 
heterogeneity between the datasets.  

We believe that the model in its current form is already of clinical relevance. Previous 
approaches have already demonstrated that deployed deep learning models can decrease 
the manual preparation time in clinical routine (12) and in a research setting for the creation 
of large scale datasets (13). These datasets might ultimately allow the creation of 
sophisticated chemotherapy response or survival prediction models (17) and improve patient 
care. Further, Figure 2 suggests that the model might be ready to allow volumetric 
assessment of the disease without requiring manual interventions. This might be of particular 
interest for centers without specialization in high grade serous ovarian cancer. 

Our main limitations are the following. The imbalance between sensitivity and 
precision, which was especially large for the omental lesions, indicates that the DSC can be 
further improved by careful calibration of the model parameters as suggested in (18). This 
might also be a solution for underestimation of disease volume as shown in the Bland-Altman 
plots of Figure 2. The false positive predictions in the extreme ends of the scans, such as the 
breast tissue and the lower limbs, might be removed in two different ways. Firstly, organ 
segmentation (13) can be applied to identify the regions in which the lesions typically occur. 
Secondly, the patch sampling scheme can be modified as the currently employed schemes 
undersample the extreme ends of the volumes. Next, augmenting the model with other 
frameworks can be attempted to improve the performance. For example, a recently 
introduced vision transformer-based framework has shown inferior performance when being 
compared to nnU-Net but could demonstrate the ensembling both methods outperform the 
standalone frameworks (19). In addition, future approaches should integrate the other 
disease sites of HGSOC into automated segmentation approaches. However, those occur 
less frequently, are on average of lower volume and often spread throughout the whole 
abdomen and beyond, thus imposing challenges for automated segmentation models. For 
the training of future models, it is also desirable to have access to larger datasets with high 
quality annotations. This was not available to us in this initial study as annotations are time-
consuming to obtain and experts for this disease are rare. We believe that larger datasets 
along with continuously exploring new training methods will help closing the performance gap 
between the consultant radiologists and the deep learning model. 

To summarize, we presented the first deep learning-based approach for ovarian 
cancer segmentation on CT and the first automated approach for the segmentation of 
pelvic/ovarian and omental lesions and demonstrated both state-of-the-art performance, as 
well as common errors of our method. 
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Table 1. Composition of the three datasets (total number of scans: 451) including information 
on voxel spacing and disease expression along all available time points. Due to the 
anonymization of the datasets, no information on the ethnicity of the patients was prevalent 
and the patient age was not available in 14 out of 71 patients in the test data. Additional 
information on the acquisition settings of the Computed Tomography scanners is given in the 
Supplementary Materials. NACT = neoadjuvant chemotherapy 
 

Dataset Training Validation Test 

Number of scans 276 104 71 

Pre-treatment scans 157 53 71 

Post-NACT scans 119 51 0 

Patient age [years] 
   

median 65.5 65.5 63 

min-max 29-90 35-85 41-80 

Pixel spacing [mm] 
   

median 0.68 0.76 0.77 

min-max 0.53-0.93 0.61-0.96 0.57-0.98 

Slice thickness [mm] 
   

median 5.0 5.0 5.0 

min-max 1.25-5.0 1.5-5.0 2.0-7.5 

Pelvic/ovarian tumor 
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Number of scans showing tumor in this location 246 102 69 

Mean volume [cm3] 275 241 381 

Mean number of connected components 2.4 2.6 2.4 

Omental tumor 
   

Number of scans showing tumor in this location 198 98 56 

Mean volume [cm3] 119 197 146 

Mean number of connected components 6.7 5.3 5.7 
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Figure 1. Examples of 3D volume renderings (a-d, i-l) and axial slices (e-h, m-p) for 
pelvic/ovarian and omental lesions of HGSOC patients. For each example, the ground truth 
tumor volume (Vol) and number of connected components (#CCs) are shown. The scans 
shown were all contained in the training set and selected such that their lesion volume 
equals the 25, 50, 75 and 90 percentiles of the lesion volume in the training set (left to right). 
The horizontal green line in the rendering visualizations correspond to the axial slice shown 
below. Both disease sites demonstrate a great variability of disease expression among 
different patients, which poses a great challenge for manual and automated segmentation 
methods. 
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Figure 2. Evaluation of model performance on unseen datasets in terms of DSC (a,e) and 
volume (b-d, f-h). Trainee radiologist segmentations were only available on the validation set. 
The brackets indicate significant differences. All volumes are given in cm3. It can be 
observed in panels a) and e) that our method outperforms the nnU-Net baseline for both 
sites on the validation and test set and that our method does not perform significantly 
different from a trainee radiologist in segmenting pelvic/ovarian lesions in contrast to nnU-
Net. Panels b-d and f-h suggest that the model in its current state can be used to determine 
disease volume for both sites. DSC = Dice similarity coefficient. 
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Figure 3. Examples of ground truth, automated and trainee radiologist segmentations (pink, 
cyan and blue respectively). The first two columns (a, b, d, e) show the cases with median 
and 90-percentile DSC from the pooled validation and test set. The visual comparison 
between the automatically generated and manual trainee radiologist segmentation 
demonstrates typical mistakes of the two instances. Both seem to struggle with the inclusion 
and exclusion of objects close to the segmentation boundary. The last column (c, f) shows 
examples of outliers at the extreme ends of the volumes. The segmentation model confused 
dense components of breast tissue with omental disease as both are embedded in fat. 
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Supplementary Materials 

 

Acquisition Characteristics of the Analyzed Ovarian Cancer CT Datasets 

There is high variation in image acquisition parameters and scanner manufacturers across all 
three datasets. In the training data, the most used scanner manufacturer was Siemens 
followed by GE, Philips, and Toshiba with 204, 56, 12 and 4 scans, respectively. In this 
dataset, one, 45, 115, 110 and 5 scans were acquired at a KVP of 80, 100, 120, 130 and 140 
respectively. In the validation data, the most used scanner manufacturer was Siemens 
followed by Toshiba, Philips, and GE with 64, 24, 8 and 8 scans, respectively. Here all scans 
were acquired at a KVP of 120, except one for which 100 KVP was used. In the test dataset, 
38 scans were acquired using GE scanners, followed by 26 Siemens, four Toshiba, one 
Philips, one Imatron, and one MPTronic scanner. In this dataset eight, 58, and five scans 
were acquired at 100, 120, 130 KVP respectively. 

We analyzed the influence of the acquisition protocol on the performance of the model in 
terms of DSC. Therefore, we pooled the validation and test set. As the resulting dataset only 
showed large heterogeneity in terms of manufacturer, but not in terms of KVP we decided to 
focus only on the influence of the manufacturer to the performance and removed the two 
scans acquired my Imatron and MPTronic scanners from the dataset due to low sample size. 
Supplementary Figure 1 shows the manufacturer of the CT scanner versus the performance 
of the model in terms of DSC. It can be observed that differences are difficult to spot by eye 
due to the high variability of the DSC. We further compared each manufacturer against the 
remaining ones using the Wilcoxon Rank test. For the pelvic/ovarian disease we computed 
the p-values 0.296 (GE Medical Systems), 0.527 (Siemens), 0.743 (Toshiba), and 0.244 
(Philips). For omental disease the p-values were computed as 0.625 (GE Medical Systems), 
0.292 (Siemens), 0.043 (Toshiba), and 0.887 (Philips). 

To summarize, in all except one case no significantly different performance in dependence of 
the scanner manufacturer could be found. 

Hyper-parameter tuning 

In the first step of our hyper-parameter tuning we reduced the in-plane resolution of the scans 
from 0.67 mm (as suggested by nnU-Net) to 0.8mm, which later allowed us to reduce the 
patch size. We also applied progressive learning by splitting the training into four quarters 
and reducing both the number of voxels per sample and the magnitude of the grey value 
augmentations by a factor of four, three and two over the first three quarters of the training. 
The last quarter was applied as usual. 

Next, we applied several architectural modifications, but only found increase the capacity of 
the network to by replacing the decoder with a ResNet to be beneficial. In detail we changed 
the six stage U-Net (i.e. a U-Net with five downsampling operations in the decoder) to a four 
stage U-Net with 1, 2, 6 and 3 residual blocks in the corresponding stages. We used 
standard residual blocks where each block consisted of two convolution-Instance 
normalization-LReLU units followed by a skip connection. As now the number of 
downsampling operations was reduced from five to three we could reduce the patch size 
from 224 to 216 which reduced the training time again. 

Lastly, we found a great improvement by altering the convergence parameters. We found a 
benefit in changing the learning rate schedule from the almost linear decay from 0.01 to 0 as 
suggested by nnU-Net to a linear ascent plus cosine decay with maximum learning rate 0.02. 
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The increase in maximum learning rate was not possible without using the linear warmup, 
which happened over the first five percent of the training. Next, we made use of the full 24GB 
of VRAM in our GPUs and increased the batch size from two to four. Initially this caused a 
performance decrease, but we finally obtained an increase in performance when decreasing 
the momentum factor of the SGD from 0.99 to 0.98 and increasing the weight decay from 
3x10-5 to 10-4. 
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Supplementary Table 1. Model and trainee performance on unseen datasets in terms of 
DSC (mean ± std). Significant differences between our model and the baseline and the 
trainee and our model are marked with an asterisk. Trainee radiologist segmentations were 
only available on the validation set. Our implementation is available at 
https://github.com/ThomasBudd/ovseg. 

  Validation Test 

 Implementation pelvis/ovaries omentum pelvis/ovaries omentum 

Baseline nnU-Net (6,7) 62±27 43±28 69±21 60±26 

Tuned Ours 66±26* 51±27* 72±19* 64±24* 

Trainee  66±34 62±29* - - 

 
  

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 11, 2023. ; https://doi.org/10.1101/2023.01.10.22279679doi: medRxiv preprint 

https://doi.org/10.1101/2023.01.10.22279679
http://creativecommons.org/licenses/by/4.0/


 

 

Supplementary Figure 1. Comparison of the models performance in terms of DSC on 
scanners from different manufacturers. DSC = Dice similarity coefficient 
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