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Abstract 

Background: Mendelian randomisation (MR) is the use of genetic variants as instrumental variables. 

Mode-based estimators (MBE) are one of the most popular types of estimators used in univariable-

MR studies. However, because there are no plurality valid regression estimators, there are no 

existent modal estimators for multivariable-MR.  

Methods: We use the residual method for multivariable-MR to introduce two multivariable modal 

estimators: multivariable-MBE, which uses IVW to create residuals fed into a traditional plurality 

valid estimator, and multivariable-CM which instead has the residuals fed into the contamination 

mixture method. We then use Monte-Carlo simulations to explore the performance of these 

estimators when compared to existing ones and re-analyse the data used by Grant and Burgess 

(2021) looking at the causal effect of intelligence, education, and household income on Alzheimer’s 

disease as an applied example.  

Results: In our simulation, we found that multivariable-MBE was generally too variable to be much 

use. Multivariable-CM produced more precise estimates on the other hand. Multivariable-CM 

performed better than MR-Egger in almost all settings, and Weighted Median under balanced 

pleiotropy. However, it underperformed Weighted Median when there was a moderate amount of 

directional pleiotropy. Our re-analysis supported the conclusion of Grant and Burgess (2021), that 

intelligence had a protective effect on Alzheimer’s disease, while education, and household income 

do not have a causal effect.  

Conclusions: Here we introduced two, non-regression-based, plurality valid estimators for 

multivariable MR. Of these, “multivariable-CM” which uses IVW to create residuals fed into a 

contamination-mixture model, performed the best. This method uses a plurality of variants valid 

assumption, and appears to provided precise and unbiased estimates in the presence of balanced 

pleiotropy and small amounts of directional pleiotropy. We developed the MVMRmode R package 

(available from https://github.com/bar-woolf/MVMRmode/wiki) to facilitate the use of this 

estimator. We hope this will further enable the future triangulation of univariable MR studies which 

have used plurality valid estimators with multivariable MR designs.   

 

Key words: Mendelian randomisation, pleiotropy robust methods, multivariable Mendelian 

randomisation, contamination mixture, mode-based estimators, plurality valid estimators.  
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Background 

Mendelian randomisation (MR) is an increasingly popular method for causal inference in 

epidemiology which uses the random assignment of genetic variants at birth to justify the 

assumptions of an Instrumental variables analysis (1,2). In a traditional MR study, genetic variants 

(typically single-nucleotide polymorphisms, SNPs) which robustly associate (typically at genome-

wide significance) with an exposure of interest are selected as instruments (3). Because of the easy 

accessibility of Genome-Wide Association Study (GWAS) summary statistics for many 

epidemiological traits, MR is often implemented using summary data, in a so-called ‘two-sample MR’ 

analysis (4). In such a setting, the effect of the exposure on the outcome is estimated using a Wald 

ratio as the variant-outcome association divided by the genotype-exposure association. When there 

are multiple variants, their effects are generally combined using an inverse variance weighted (IVW) 

meta-analysis.  

On top of requiring a robust genotype-exposure association, instrumental variables analysis requires 

that there are no variant-outcome confounders, and that the variant can only cause the outcome via 

the exposure. The first of these assumptions is justified by Mendel’s laws of independent and 

random segregation. However, the second assumption is less plausible due to pleiotropy (the 

association of most variants with multiple traits). Pleiotropy can occur for two reasons: Firstly, if the 

exposure causes many other traits, then the genetic variants which associate with it should also 

associate with these other traits. This type of pleiotropy (often called vertical pleiotropy) is required 

for MR to work. However, the second type of pleiotropy (horizontal pleiotropy) occurs when the 

genetic variants independently cause two phenotypes. A second advantage of two-sample MR is 

that it allows for the implementation of ‘pleiotropy robust’ estimators (5). These methods generally 

allow for some variants to be pleiotropic by modifying the assumptions of the instrumental variables 

framework. One of the first methods proposed for doing this is MR-Egger. IVW can be 

conceptualised as a weighted intercept-free regression of the variant-outcome associations on the 

variant-exposure associations. MR-Egger fits the same model as IVW but with an intercept. This 

model is robust to pleiotropy if the instrument strength is independent of the strength of the direct, 

pleiotropic, effect (called the InSIDE assumption) (5).  

A recent systematic review of two-sample MR studies found that the most frequently implemented 

pleiotropy robust estimators were MR-Egger, weighted median, and weighted mode (7). Weighted 

Median will provide valid estimates if at least half the variants are valid instruments, and so is called 

a ‘majority valid’ estimator. Weighted mode makes the ZEro Modal Pleiotropy Assumption (ZEMPA), 

i.e. that there is zero pleiotropy in the modal estimand of the causal effect (8). ZEMPA is plausible 

because we should expect the causal effects for variants which are valid instruments to be similar, 

but each invalid variant to have its own unique pleiotropic bias (9). If the unique paths are 

independent of each other, then so too should the biases they exert on invalid variants. Thus, valid 

variants should have clustered effect estimates, while invalid variants should create heterogeneity. 

Hence, in settings where there are some valid instruments, we should expect the most common 

effect estimated to be the valid causal parameter. Here in, we call this type of estimator, which will 

produce valid estimates when a plurality of SNPs are valid, ‘plurality valid’ estimators.  

Estimating modes directly from observed data can be difficult because no two estimates are ever 

exactly equal. Therefore, the most common observation at a given level of precision may be very 

different from the true mode. Traditional MBEs avoid this dilemma by smoothing the observed 

distribution using a parametric kernel-density-smoothed function. This converts the observed 

estimates into a probability density distribution, and then select the mode of this distribution. An 

alternative plurality valid estimator comes from the contamination mixture method (17).  
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The contamination mixture method uses a maximum likelihood approach, assuming the variant 

specific Wald ratios are normally distributed (17). It produces a consistent estimator of the causal 

effect under the plurality valid (ZEMPA) assumption. The advantages of the contamination mixture 

method are that it does not require the parametric assumptions of the kernel-density function, is 

more computationally efficient, and generally produces more precise estimates with potentially 

asymmetric confidence intervals (17).  

Multivariable MR (MVMR) is an extension of MR to allow for the simultaneous modelling of the 

effect of multiple exposures on an outcome (10). The effects of each exposure in an MVMR model 

are the direct effects of the exposure on the outcome conditional on the other exposures. This has 

resulted in MVMR being applied as a method for mediation analyses (11), but it is also used to adjust 

for known biases in an MR model (12–14). MVMR modifies the three instrumental Variables 

assumptions so that the variant is a valid instrument if: 1) the variant is robustly associated with at least 

one exposure, 2) there are no variant-outcome confounders, 3) the variant can only cause the 

outcome via one or more of the exposures.  

MVMR was originally introduced using a residual-based method, in which the effect of a second 

exposure on the outcome was removed from the variant-outcome association, and the effect of the 

second exposure on the exposure was removed from the variant-exposure association (13). These 

modified associations were then used as the input to a traditional MR estimator. However, given the 

analogy between IVW and weighted regression, two-sample MVMR is typically implemented as a 

type of multiple regression, in which the variant-outcome associations for the variants which 

associate with either exposure of interest are regressed on the variant-exposure associations in an 

intercept-free linear regression, inversely weighted by the variance in the variant-outcome 

association. MR-Egger can also be implemented by allowing for a non-zero regression intercept, and 

weighted median can be implemented using weighted quantile regression (15).  

However, we are not aware of an existing method for doing mode-based regression, and there are 

no existing  estimators for MVMR which make a plurality valid-type assumption like ZEMPA. The 

absence of a plurality valid estimator could hamper the comparison of univariable and multivariable 

MR studies. Here, we, therefore, introduce and validate a framework for implementing plurality 

valid estimators in two-sample MVMR.   

 

Methods 

Theoretical background 

Let  �� be a vector of genetic variant-outcome associations and  �� be a vector of genetic variant-

exposure associations. We shall denote with subscript i the ith element of any vector, which relates 

to the ith genetic variant. We assume the genetic variants are independently distributed. In practice, 

we do not observe ��  and �� , but may obtain estimates, for example from GWAS. We denote the 

vectors of association estimates by ��� and ���, and suppose that these  are related according to the 

model proposed by Bowden et al. (16): 

1) ��� �  ���� �  α � �  

where the elements of ε are independent with  ��  ~ 
�0, ��,�
� �. The scalar � represents the casual 

effect of the exposure on the outcome. The vector α represents pleiotropic effects, with αi = 0 if the 
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ith variant is a valid instrument. A plurality valid estimator should produce consistent estimates of θ 

provided that a plurality of the αi are zero, i.e. under the ZEMPA assumption. 

Now suppose we have estimates for two exposures, denoted by �� and ��, and we extend (1) as 

follows: 

2) ��� �  ������ � ������ � α �  � 

If we take the residuals from regressing (without an intercept) both sides of (2) on ����, then we have 

3)  β�� �  �� β��� � α� �  �̃  

where  β�� are the residuals from regressing β��  on β���,  β���are the residuals from regressing β���   on 

β��� , α� are the residuals from regressing α on β��� , and �̃ are the residuals from regressing ε on β���  

(where each of these regressions is performed without an intercept).  

Because we have now reformulated the equation for the variant-outcome association so that it is in 

terms of a univariable regression model,  β�� and  β��� can be used as the inputs to a traditional 

univariable mode-based estimator. When more than one exposure is of interest, then this process 

can be iterated for each exposure.  

It follows that a plurality valid estimator for the estimate θ from (3) will produce a valid estimate 

provided that a plurality of the values of α��  are zero. This seems likely to be the case if a plurality of 

the elements of α are zero and the non-zero elements are distributed around zero (i.e., balanced 

pleiotropy).  

In settings with only two exposures, the residuals could be obtained through univariable MR of the 

outcome on the second exposure, and of the first exposure on the second exposure. Where there 

are more than two exposures, an existing multivariable MR method could be used instead be used to 

create residuals. Here we explore two types of plurality valid estimators. Firstly, we explore an 

estimator which uses a regression model to create the residuals fed into a traditional mode-based 

estimator (MBE) (8), which we dub ‘multivariable-MBE’. This regression model could be created 

using any of the existing MVMR-estimators. Here we model the residuals using IVW (i.e. intercept-

free linear regression). Although ultimately arbitrary, we focused on IVW, rather than another type 

of MR estimator, because it provides the most intuitive to understand validity conditions. Since the 

contamination mixture method has several advantages, discussed above, we also implemented this 

method using both the contamination mixture method. This ‘multivariable-CM’ estimator uses IVW 

to create residuals fed into a contamination mixture model. 

Deriving a standard error multivariable-MBE and multivariable-CM 

Assuming we have strong instruments (i.e. the first MR assumption is valid) we can use the first 

order approximation for the standard error of the Wald ratio that is typically used in two-sample MR 

studies. In a traditional univariable model this is defined as:   

4) SEwald,i = SEy,i/|��,�| 

Where SEy,i is the standard error of the ith variant-outcome association estimate.  

In effect, this standard error is assuming that the variant-exposure association is measured with 

sufficient precision that we can assume that it contributes no error to the estimate of the causal 

effect. Under this assumption, the process of creating residuals will not increase the random error in 
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the standard error of the Wald ratio. Hence, we model the standard error of the ith Wald ratio 

estimate as: 

5) SEresid,i = SEy,i/| β���,�| 

 

Simulation study  

We report our simulation study using the ADEMP (aims, data-generating mechanisms, estimands, 

methods, and performance measures) approach (18). 

Aims: We ran a simple simulation study to assess the performance of our plurality valid estimators 

when compared to other MVMR estimators. 

Data-generating mechanisms: We broadly simulate a setting in which there are two putative causal 

exposures for a single outcome. In the primary simulation we explore a setting in which the second 

exposure is pleiotropic (Figure 1), and where either both or neither of the exposures have a casual 

association with the outcome. We then explore how well the methods do under varying amounts of 

balanced and directional pleiotropy.  

More formally, we simulated 200 single nucleotide polymorphisms (SNPs, which are common 

genetic variants) as independent and identically distributed binomial variables with the following 

parameters:  

SNP ~ B(1, 0.4) + B(1, 0.4) 

We additionally simulated the SNP effects on the exposures as independent and identically 

distributed normal variables  

 bSNP ~ N(0.05, 0.02
2
) 

For settings in which we simulated pleiotropy (Figures 1.2A and 1.2B), the pleiotropic SNP effects 

were simulated as: 

pSNP ~ N(BETA, SE
2
) 

Each simulation was repeated with BETA being set to either 0 or -0.03 to represent balanced and 

directional pleiotropy respectively. SE was always set to 0.1. 

We then simulated a confounder as a normally distributed variable with the following parameters:

 C ~ N(0, 12) 

We then defined the first exposure as:  

E1 =  0.3 * C + 

∑ �bSNP  � �
 !��
�  + ε1 

where ε is an error term such that ε1 ~ N(0, 12). 

The second exposure was defined as:  

EPl =  0.4 * C + 

∑ �bSNP   � �
 !���
�  + ε3 

where ε is an error term such that ε3 ~ N(0, 1
2
). 

When both exposures had null effects on the outcome (Figures 1.1B and 1.2B), the outcome was 

defined as: 
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 ON;P = C + ∑ �pSNP  � �
 !	

�  + ε4 

where ε is an error term such that ε4 ~ N(0, 1
2
). P could take the value of 0, 20, 40, or 80 to represent 

pleiotropic effects for 0, 10%, 20% or 40% of SNPs.  

When both exposures had  non-null effects on the outcome (Figures 1.1A and 1.2A),the outcomes 

were defined as:  

 OE1,EPl;P = C  + 0.3 * E1 + 0.4 * EPl + ∑ �pSNP �  B$1, P&  � �
 !���
�  + ε4 

GWAS summary statistics for each exposure variable were estimated from linear regression models. 

Each genetic association with each exposure, and the outcome, were estimated from a unique 

sample of 200,000 participants with no sample overlap with the other GWASs.   

 

Estimands: The causal effects of each exposure on the outcome.  

Methods: We compare five methods for estimating the causal effect of the exposure on the 

outcome: IVW (intercept free multiple regression of the variant-outcome associations on the 

variant-exposure associations weighted by the inverse variance in the variant-outcome association), 

MR-Egger (multiple regression of the variant-outcome associations on the variant-exposure 

associations weighted by the inverse variance in the variant-outcome association), Weighted Median 

(quantile regression of the variant-outcome associations on the variant-exposure associations 

weighted by the inverse variance in the variant-outcome association), multivariable-MBE (using IVW 

to create the residuals and an MBE to estimate the causal effect), and multivariable-CM (using IVW 

to create the residuals and the contamination mixture method estimate the causal effect). IVW, MR-

Egger, and weighted median were chosen because they appear to be some of the most widely used 

estimators which use different assumptions.  

Performance measure: The primary performance measures were mean bias, 95% CI width, and the 

percentage of times that the confidence intervals include zero. When there is no causal effect, this 

will represent the type-2 error rate. When there is a casual effect, it measures one minus the type-1 

error rate. In additional analyses we also explore the standard deviation of the effect estimate 

(overall 1000 simulations), and coverage for the causal effect of the exposure on the outcome over 

the 1000 iterations.  

 

Applied example 

We re-analysed the applied example (on the effect of intelligence, education, and household income 

on Alzheimer’s disease) from Grant and Burgess’ (2021) paper on pleiotropy robust estimators for 

MMVR (19). This had previously been studied by Davies et al and Anderson et al. (20,21). Anderson 

et al., in particular, had shown that a multivariable model was important for accounting for the 

collinearity between intelligence and education. Grant and Burgess then added household income to 

explore how the models worked with an additional risk factor.  

Here we re-analysed the data used by Grant and Burgess (2021).  They used 213 genetic variants 

from Davies et al. as instruments. These instruments had been clumped to ensure independence 

from each other and all had F statistics greater than 10, although the mean conditional F statistics 

ranged between 1.5 and 2.5. They used the Hill et al GWAS of intelligence (n = 199,242 male and 

female European ancestry individuals) (22), Okbay et al GWAS of years of education (n = 293,723 
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male and female European ancestry individuals) (23), and the Neale Lab UK Biobank GWAS of 

household income (n = 337,199 male and female European ancestry individuals) as sources of 

exposure data (24). Since household income is an ordinal categorical variable, the genetic variant 

associations represent the increase in log odds of being in a higher income category per extra effect 

allele. Grant and Burgess (2021) additionally used Lambert et al. as a source of Alzheimer’s data (n = 

74,046 male and female European ancestry individuals) (25). More information on the data sources 

can be found in the original publications.  

We implemented our two novel estimators, as well as IVW, MR-Egger, and MR-Median. Since the 

genetic associations with education and intelligence were in the same direction, the MR-Egger 

estimates can be interpreted as being oriented in the direction of either of these exposures.  

 

Results 

Simulation  

Table 1 presents the results for the primary performance measures (bias and 95% CI width) of the 

simulations from the settings in which both exposures cause the outcome, while in Table 2 neither 

exposure exerts a causal effect on the outcome. The mean conditional F statistic for Exposure 1 was 

around 197, and 186 for Exposure 2 (Supplementary Table 1).  

Bias 

In both Table 1 and Table 2, all methods performed well in the no-bias setting. The small amount of 

bias observed (0.1% - 0.5%) is explicable by weak instrument bias (Supplementary Table 1) and the 

variability in the estimates (Supplementary Table 2 and 3). When there was balanced pleiotropy, the 

multivariable-MBE seemed to underperform the non-plurality valid estimators while the 

multivariable -CM estimator appeared to do slightly better. Multivariable-CM was comparatively 

unbiased by even large amounts of balanced pleiotropy. However, moderate amounts of directional 

pleiotropy were sufficient to bias estimates more than the Median estimator. For example, in the 

setting where both exposures are causal and there was 40% directional pleiotropy, the first and 

second exposure estimates were biased by -0.055 and -0.008 respectively for the Median estimator, 

but 0.073 and 0.054 for multivariable-CM. Multivariable-MBE was more biased than multivariable-

CM in all settings. For example, using the same simulation as above, multivariable-MBE was biased 

by 0.253 and -0.113 in the estimates for exposure 1 and 2 respectively.  

95% CI Width 

The multivariable-MBE had the widest 95% CIs of all the estimators. For example, in the no bias 

simulation, the 95% CI widths were five to ten time larger than for the other estimators. The non-

plurality valid estimators generally had similarly wide 95% CI. Multivariable-CM generally had tighter 

95% CI than the other estimators.  

Coverage and power 

Since it had wide 95% CI, multivariable-MBE unsurprisingly had a low type-1 error rate (the 95% CI 

included the null in all settings > 98% when there was no association), but a high type-2 (the 95% CI 

included the null up to 35% of the time in settings where there was a true association). 

Multivariable-CM conversely had a very low type-2 error rate (the 95% CI never included the null 

when there was a true association). Multivariable-CM had a type-1 error rate at the nominal level 

(5%) for the 0% and 10% balance pleiotropy scenarios. In contrast, the Median estimator had type-1 
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error rates well below the nominal level in these scenarios. The type-1 error rates for Multivariable-

CM were above the nominal level from 20% balanced pleiotropy, and for all levels of directional 

pleiotropy.  

Additional outcomes 

Standard deviation of the effect estimates across the 1000 simulations: The SD of effect estimates 

between the multivariable-CM estimator and the non-plurality valid estimators were similar in the 

no-bias setting and when there was balanced pleiotropy (Supplementary Tables 2 and 3). However, 

multivariable-MBE had much wider SD, possibility because MBE produces less precise estimates than 

the contamination mixture method. In addition, all the plurality valid estimators had larger standard 

deviations when there was directional pleiotropy.  

Coverage: Although all the estimators achieved 95% coverage when neither exposure was causals 

and there was no bias (Supplementary Table 3), surprisingly, except for Weighted Median and 

Multivariable-MBE, most estimators did not achieve at least 95% coverage when both exposures 

were causal (Supplementary Table 2). This might be because Weighted Median and Multivariable-

MBE had the widest CI width (Table 1 and 2) and all estimators were being effected by weak-

instrument bias.  

 

Applied example  

As with Grant and Burgess (2021), the pleiotropy robust estimators provided consistent estimates of 

the effects of education, intelligence, and household income on Alzheimer’s disease (Table 3). All 

estimators concluded a null effect of education on Alzheimer’s, conditional on the other exposures. 

However, they all implied a negative effect on intelligence, although the 95% CI for MR-Egger and 

multivariable-MBE included the null hypotheses. All estimators estimated a log odds ratio of 

household income around 0.3, but again with 95% CI which included zero. As the original study 

concluded “[t]he consistency of the findings give strength to the assertion that intelligence has a 

causally protective effect on Alzheimer’s disease, conditional on years of education and household 

income. However, there is no evidence of a direct effect of years of education or household income 

on Alzheimer’s disease.” 

 

Discussion 

Here we introduce two plurality valid estimators for multivariable Mendelian randomisation. Unlike 

most existing estimators, these use residual methods rather than multivariable regression models to 

produce the final effect estimates. We then used simulations with varying amounts of directional 

and balanced pleiotropy, as well as a re-analysis of the effect of intelligence, years of education, and 

household income on Alzheimer’s disease to compare the relative performance of our estimators 

with each other and existing estimators for MVMR.  

As with previous analyses, our estimators implied that intelligence has a protective effect on 

Alzheimer’s disease, while years of education and household income do not. This has two important 

implications, firstly that as the years of mandatory education increase, there should not be a 

corresponding increase in Alzheimer’s. Secondly, our results imply that public health interventions to 

boost intelligence, beyond additional years of education, may be useful in reducing the burden of 

Alzheimer’s, although further research would be needed to confirm this hypothesis.  
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Of the two plurality valid estimators, multivariable-CM, which uses IVW to create the residuals fed 

into a contamination mixture model, overall performed the best. It generally performed at least as 

well, if not better, than MR-Egger and IVW in terms of bias and precision in all settings. Indeed, 

when there was balanced pleiotropy, it was both more precise and less biased than IVW. However, 

in settings with moderate-to-high amounts of directional pleiotropy it was a lot more biased than 

Weighted median. Indeed, the high precision of the CM estimates is probably detrimental in this 

setting as it resulted in lower coverage than the other methods. The divergence in performance 

between balanced and directional settings is probably, as discussed in the methods section, due to 

the multivariable-CM method assuming balanced pleiotropy. Hence, we would expect the method to 

perform better under situations where the distribution of Wald ratios with directional pleiotropy is 

similar to the assumed model with balanced pleiotropy, such as when the absolute amount of 

directional bias is small. Thus, while we think it can help triangulate results between a univariate and 

multivariable setting by allowing the use of a plurality valid estimator in both analyses, or between 

multiple multivariable estimators, we cannot recommend using it alone unless there is a priori 

evidence that there should be no directional pleiotropy. Multivariable-MBE was sufficiently 

imprecise that they might be uninformative in practice. We developed the MVMRmode R package 

(available from https://github.com/bar-woolf/MVMRmode/wiki) to help facilitate the use of the 

estimators. 

Our simulations are not without limitations. Firstly, although pleiotropy can vary continuously 

between studies, we explore only discrete amounts of this biases. This could potentially mask non-

linearities in the performance of pleiotropy robust estimators for MVMR in the presence of these 

biases. In addition, all our simulations assume linearity and homogeneity (i.e. no effect modification 

or interaction) of the effects of the risk factors on the outcomes. Finally, although multivariable-CM 

and multivariable-MBE could be implemented using estimates other than IVW to create residuals, 

here we have implemented it explicitly using IVW because the interpretation of the validity 

assumption using the other estimators is unclear.   

In summary, here we introduce a framework for implementing plurality valid estimators for 

multivariable Mendelian randomisation in the absence of modal regression. Of these, the 

multivariable-CM estimator, which uses IVW to create residuals then fed into a contamination 

mixture method, appeared to perform the best. Although it performed very well with large amounts 

of balanced pleiotropy, it underperformed methods like Weighted median when there was 

directional pleiotropy. We hope these estimators (available from https://github.com/bar-

woolf/MVMRmode/wiki) will further enable the future triangulation of univariable MR studies which 

have used plurality valid estimators with multivariable MR designs.   

 

Declarations  

Ethics approval and consent to participate 

Not applicable 

Consent for publication 

All authors consent to this work being published.  

Availability of data and materials 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 11, 2023. ; https://doi.org/10.1101/2023.01.09.23284345doi: medRxiv preprint 

https://doi.org/10.1101/2023.01.09.23284345
http://creativecommons.org/licenses/by/4.0/


 

 

The R code used in this study is available from https://doi.org/10.17605/OSF.IO/8DZKU. We have 

also created an R package available from github (https://github.com/bar-woolf/MVMRmode/wiki) to 

facilitate the implementation of our proposed method.  All data produced in the present study are 

available upon reasonable request to the authors. 

Competing interests 

DG is employed part-time by Novo Nordisk. The other authors declare no conflicts of interest.  

Funding 

Benjamin Woolf is funded by an Economic and Social Research Council (ESRC) South West Doctoral 

Training Partnership (SWDTP) 1+3 PhD Studentship Award (ES/P000630/1).  

Authors' contributions 

BW conceived of the study. All authors contributed to the design and writing of the manuscript.  

Acknowledgements 

This work was carried out using the computational facilities of the Advanced Computing Research 

Centre, University of Bristol - http://www.bris.ac.uk/acrc/.  

 

References  

1. Davey Smith G, Hemani G. Mendelian randomization: genetic anchors for causal inference in 

epidemiological studies. Human Molecular Genetics. 2014 Sep 15;23(R1):R89–98.  

2. Davey Smith G, Holmes MV, Davies NM, Ebrahim S. Mendel’s laws, Mendelian randomization 

and causal inference in observational data: substantive and nomenclatural issues. Eur J 

Epidemiol. 2020 Feb 1;35(2):99–111.  

3. Burgess S, Small DS, Thompson SG. A review of instrumental variable estimators for Mendelian 

randomization. Stat Methods Med Res. 2017 Oct;26(5):2333–55.  

4. Hartwig FP, Davies NM, Hemani G, Smith GD. Two-sample Mendelian randomization: avoiding 

the downsides of a powerful, widely applicable but potentially fallible technique. International 

Journal of Epidemiology. 2016 Dec;45(6):1717–26.  

5. Slob EAW, Burgess S. A comparison of robust Mendelian randomization methods using summary 

data. Genetic Epidemiology. 2020;44(4):313–29.  

6. Bowden J, Davey Smith G, Burgess S. Mendelian randomization with invalid instruments: effect 

estimation and bias detection through Egger regression. International Journal of Epidemiology. 

2015 Apr 1;44(2):512–25.  

7. Woolf B, Di Cara N, Moreno-Stokoe C, Skrivankova V, Drax K, Higgins JPT, et al. Investigating the 

transparency of reporting in two-sample summary data Mendelian randomization studies using 

the MR-Base platform. International Journal of Epidemiology. 2022 Apr 6;dyac074.  

8. Hartwig FP, Davey Smith G, Bowden J. Robust inference in summary data Mendelian 

randomization via the zero modal pleiotropy assumption. Int J Epidemiol. 2017 Dec;46(6):1985–

98.  

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 11, 2023. ; https://doi.org/10.1101/2023.01.09.23284345doi: medRxiv preprint 

https://doi.org/10.1101/2023.01.09.23284345
http://creativecommons.org/licenses/by/4.0/


 

 

9. Bowden J, Hemani G, Davey Smith G. Invited Commentary: Detecting Individual and Global 

Horizontal Pleiotropy in Mendelian Randomization—A Job for the Humble Heterogeneity 

Statistic? Am J Epidemiol. 2018 Dec 1;187(12):2681–5.  

10. Sanderson E, Spiller W, Bowden J. Testing and correcting for weak and pleiotropic instruments in 

two-sample multivariable Mendelian randomization. Statistics in Medicine. 2021;40(25):5434–

52.  

11. Carter AR, Sanderson E, Hammerton G, Richmond RC, Davey Smith G, Heron J, et al. Mendelian 

randomisation for mediation analysis: current methods and challenges for implementation. Eur J 

Epidemiol. 2021 May 1;36(5):465–78.  

12. Schooling CM, Lopez PM, Yang Z, Zhao JV, Au Yeung SL, Huang JV. Use of Multivariable 

Mendelian Randomization to Address Biases Due to Competing Risk Before Recruitment. 

Frontiers in Genetics [Internet]. 2021 [cited 2022 Apr 6];11. Available from: 

https://www.frontiersin.org/article/10.3389/fgene.2020.610852 

13. Burgess S, Thompson SG. Multivariable Mendelian randomization: the use of pleiotropic genetic 

variants to estimate causal effects. Am J Epidemiol. 2015 Feb 15;181(4):251–60.  

14. Woolf B. mesrument error and MR. 2021 Dec 13 [cited 2022 Apr 23]; Available from: 

https://osf.io/yxzwc/ 

15. Rees JMB, Wood AM, Burgess S. Extending the MR-Egger method for multivariable Mendelian 

randomization to correct for both measured and unmeasured pleiotropy. Stat Med. 2017 Dec 

20;36(29):4705–18.  

16. Bowden J, Del Greco M F, Minelli C, Davey Smith G, Sheehan N, Thompson J. A framework for 

the investigation of pleiotropy in two-sample summary data Mendelian randomization. Stat 

Med. 2017 May 20;36(11):1783–802.  

17. Burgess S, Foley CN, Allara E, Staley JR, Howson JMM. A robust and efficient method for 

Mendelian randomization with hundreds of genetic variants. Nat Commun. 2020 Jan 

17;11(1):376.  

18. Morris TP, White IR, Crowther MJ. Using simulation studies to evaluate statistical methods. 

Statistics in Medicine. 2019;38(11):2074–102.  

19. Grant AJ, Burgess S. Pleiotropy robust methods for multivariable Mendelian randomization. Stat 

Med. 2021 Nov 20;40(26):5813–30.  

20. Anderson EL, Howe LD, Wade KH, Ben-Shlomo Y, Hill WD, Deary IJ, et al. Education, intelligence 

and Alzheimer’s disease: evidence from a multivariable two-sample Mendelian randomization 

study. International Journal of Epidemiology. 2020 Aug 1;49(4):1163–72.  

21. Davies NM, Hill WD, Anderson EL, Sanderson E, Deary IJ, Davey Smith G. Multivariable two-

sample Mendelian randomization estimates of the effects of intelligence and education on 

health. Teare MD, Franco E, Burgess S, editors. eLife. 2019 Sep 17;8:e43990.  

22. Hill WD, Marioni RE, Maghzian O, Ritchie SJ, Hagenaars SP, McIntosh AM, et al. A combined 

analysis of genetically correlated traits identifies 187 loci and a role for neurogenesis and 

myelination in intelligence. Mol Psychiatry. 2019 Feb;24(2):169–81.  

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 11, 2023. ; https://doi.org/10.1101/2023.01.09.23284345doi: medRxiv preprint 

https://doi.org/10.1101/2023.01.09.23284345
http://creativecommons.org/licenses/by/4.0/


 

 

23. Okbay A, Beauchamp JP, Fontana MA, Lee JJ, Pers TH, Rietveld CA, et al. Genome-wide 

association study identifies 74 loci associated with educational attainment. Nature. 2016 

May;533(7604):539–42.  

24. Rapid GWAS of thousands of phenotypes for 337,000 samples in the UK Biobank [Internet]. 

Neale lab. [cited 2022 Jul 18]. Available from: http://www.nealelab.is/blog/2017/7/19/rapid-

gwas-of-thousands-of-phenotypes-for-337000-samples-in-the-uk-biobank 

25. Lambert JC, Ibrahim-Verbaas CA, Harold D, Naj AC, Sims R, Bellenguez C, et al. Meta-analysis of 

74,046 individuals identifies 11 new susceptibility loci for Alzheimer’s disease. Nat Genet. 2013 

Dec;45(12):1452–8.  

 

 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 11, 2023. ; https://doi.org/10.1101/2023.01.09.23284345doi: medRxiv preprint 

https://doi.org/10.1101/2023.01.09.23284345
http://creativecommons.org/licenses/by/4.0/


 No bias 10% 

balanced 

pleiotropy 

20% balanced 

pleiotropy 

40% 

balanced 

pleiotropy 

10% 

directional 

pleiotropy 

20% 

directional 

pleiotropy 

40% 

directional 

pleiotropy 

Bias IVW Exposure 1 0.001 -0.003 0.003 0.001 -0.026 -0.048 -0.109 

Exposure 2 -0.006 -0.002 -0.008 -0.004 -0.034 -0.067 -0.121 

MR 

Egger 

Exposure 1 0.06 0.056 0.061 0.059 0.053 0.059 0.045 

Exposure 2 -0.051 -0.047 -0.046 -0.048 -0.05 -0.056 -0.055 

Median Exposure 1 0.006 0.007 0.006 0.009 0.003 0.001 -0.008 

Exposure 2 -0.012 -0.012 -0.012 -0.014 -0.015 -0.02 -0.031 

multivar

iable-

CM  

Exposure 1 0.003 0.002 0.003 0.004 0.006 0.015 0.073 

Exposure 2 

-0.005 -0.006 -0.007 -0.007 -0.005 0.001 0.054 

multivar

iable-

MBE 

Exposure 1 -0.001 0.001 -0.079 0.149 -0.055 0.154 0.253 

Exposure 2 
0.074 -0.049 0.179 0.598 -0.117 0.054 -0.113 

95% CI 

width 

IVW Exposure 1 0.096 0.328 0.459 0.641 0.339 0.473 0.662 

Exposure 2 0.096 0.328 0.459 0.641 0.339 0.473 0.662 

MR 

Egger 

Exposure 1 0.172 0.464 0.638 0.885 0.478 0.656 0.91 

Exposure 2 0.173 0.464 0.637 0.883 0.477 0.655 0.908 

Median Exposure 1 0.14 0.147 0.156 0.18 0.147 0.155 0.178 

Exposure 2 0.14 0.148 0.157 0.18 0.147 0.156 0.179 

multivar

iable-

CM  

Exposure 1 0.093 0.102 0.114 0.144 0.107 0.131 0.209 

Exposure 2 

0.092 0.102 0.114 0.145 0.105 0.127 0.206 

multivar

iable-

MBE 

Exposure 1 1.09 1.752 2.38 4.061 2.516 2.732 3.961 

Exposure 2 

1.607 2.117 2.722 5.567 2.754 4.672 4.502 

% of 

times 

the 

95% CI 

includ

IVW Exposure 1 0% 0% 0% 0% 0% 0% 0.5% 

Exposure 2 0% 0% 0% 0% 0% 0% 0.1% 

MR 

Egger 

Exposure 1 0% 0% 0% 2.2% 0% 0% 2.6% 

Exposure 2 0% 0% 0% 0.9% 0% 0% 0.7% 

Median Exposure 1 0% 0% 0% 0% 0% 0% 0% 
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es 0 Exposure 2 0% 0% 0% 0% 0% 0% 0% 

multivar

iable-

CM  

Exposure 1 0% 0% 0% 0% 0% 0% 0% 

Exposure 2 

0% 0% 0% 0% 0% 0% 0% 

multivar

iable-

MBE 

Exposure 1 6.4% 13.3% 22% 31.9% 15% 24.6% 35.5% 

Exposure 2 

7.5% 14.5% 21.6% 33.8% 13.8% 20.5% 35% 

Table 1: Primary results for setting where both exposures cause the outcome, and exposure 2 is pleiotropic. 
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 No 

bias 

10% 

balanced 

pleiotropy 

20% 

balanced 

pleiotropy 

40% 

balanced 

pleiotropy 

10% 

directional 

pleiotropy 

20% 

directional 

pleiotropy 

40% 

directional 

pleiotropy 

Bias IVW Exposure 1 0 0.004 -0.002 0.003 -0.029 -0.056 -0.111 

Exposure 2 0 -0.004 0.002 -0.001 -0.03 -0.059 -0.116 

MR 

Egger 

Exposure 1 0 0.002 0.001 0.006 -0.006 -0.015 -0.022 

Exposure 2 0 -0.005 0.003 0.002 0 -0.003 -0.007 

Median Exposure 1 0 0 0 0.001 -0.001 -0.002 -0.007 

Exposure 2 0 0 0 0 -0.001 -0.003 -0.007 

multivari

able-CM  

Exposure 1 0 0 0 -0.001 0.009 0.047 0.166 

Exposure 2 0 0 0 -0.001 0.009 0.046 0.167 

multivari

able-

MBE 

Exposure 1 0.004 -0.062 -0.168 -0.276 0.097 -0.17 0.208 

Exposure 2 

0.008 0.02 0.12 -0.062 -0.117 0.189 0.903 

95% CI 

width 

IVW Exposure 1 0.032 0.318 0.451 0.638 0.332 0.469 0.658 

Exposure 2 0.032 0.317 0.451 0.637 0.332 0.468 0.658 

MR 

Egger 

Exposure 1 0.044 0.435 0.618 0.873 0.454 0.641 0.9 

Exposure 2 0.044 0.434 0.616 0.871 0.453 0.64 0.898 

Median Exposure 1 0.046 0.051 0.057 0.071 0.052 0.057 0.073 

Exposure 2 0.046 0.051 0.057 0.071 0.052 0.057 0.073 

multivari

able-CM  

Exposure 1 0.033 0.041 0.051 0.075 0.050 0.078 0.147 

Exposure 2 0.033 0.041 0.051 0.074 0.051 0.080 0.147 

multivari

able-

MBE 

Exposure 1 0.324 1.146 1.743 2.888 1.326 2.083 3.375 

Exposure 2 

0.433 2.058 2.078 4.628 1.380 2.120 5.276 

% of times 

the 95% CI 

includes 0 

IVW Exposure 1 95.7% 95.6% 94.7% 95.7% 93.5% 93.1% 90.2% 

Exposure 2 94.6% 96.2% 95.1% 94.5% 92.2% 92% 88.3% 

MR 

Egger 

Exposure 1 94.8% 95.3% 94.5% 95.4% 94% 96.3% 95% 

Exposure 2 95.1% 94.9% 94.4% 94.7% 94.4% 95.8% 94.8% 

Median Exposure 1 
97.1% 98% 95.7% 91.9% 96.8% 96.5% 89.1% 

Exposure 2 97.2% 96.3% 95.4% 91.1% 97.2% 95.9% 90.7% 

multivari Exposure 1 95.4% 95.3% 92.1% 86.1% 89.7% 63.3% 23.5% 
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able-CM  Exposure 2 94.7% 95.1% 91.7% 85.4% 88.1% 65% 24.7% 

multivari

able-

MBE 

Exposure 1 99.4% 99.2% 99.2% 99% 99.2% 98.7% 98.9% 

Exposure 2 

99.7% 99.5% 99% 98.9% 99.1% 99% 98% 

Table 2: Primary results for setting where neither exposure causes the outcome, and exposure 2 is pleiotropic. 

 

 . 
C

C
-B

Y
 4.0 International license

It is m
ade available under a 
 is the author/funder, w

ho has granted m
edR

xiv a license to display the preprint in perpetuity. 
(w

h
ich

 w
as n

o
t certified

 b
y p

eer review
)

T
he copyright holder for this preprint 

this version posted January 11, 2023. 
; 

https://doi.org/10.1101/2023.01.09.23284345
doi: 

m
edR

xiv preprint 

https://doi.org/10.1101/2023.01.09.23284345
http://creativecommons.org/licenses/by/4.0/


 

 

Bias 1) No bias  2) Pleiotropy  

A) Both exposures 

cause the outcome   

 

 

 

 
 

B) Neither exposure 
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Figure 1: Directed Acyclic Graphs of the simulation data generative models. E and E2 are the first and 

second exposures respectively, GRS is the genetic liability to the exposures, and O is the outcome, 

and C is a confounder. 
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