1	SARS-CoV-2 molecular testing and whole genome sequencing following RNA recovery
2	from used BinaxNOW COVID-19 Antigen Self Tests
3	
4	Phuong-Vi Nguyen, ^{a,b,*} and Ludy Registre Carmola, ^{c*} Ethan Wang, ^{b,c} Leda Bassit, ^{c,d} Anuradha
5	Rao, ^{b,e} Morgan Greenleaf, ^b Julie A. Sullivan, ^b Greg S. Martin, ^{a,b} Wilbur A. Lam, ^{b,e,f} Jesse J.
6	Waggoner ^{a,b,†,**} and Anne Piantadosi ^{a,b,c,†}
7	
8	^a Emory University Department of Medicine, Atlanta, GA, USA
9	^b Atlanta Center for Microsystems-Engineered Point-of-Care Technologies, Atlanta, GA, USA
10	^c Emory University Department of Pathology and Laboratory Medicine, Atlanta, GA, USA
11	^d Laboratory of Biochemical Pharmacology, Emory University, Atlanta, GA, USA
12	^e Emory University Department of Pediatrics, Atlanta, GA, USA
13	^f Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology
14	and Emory University, Atlanta, GA, USA
15	
16	* These first authors contributed equally.
17	† These last authors contributed equally. Author order was agreed upon by these authors on the
18	basis of early study conceptualization and involvement.
19	** Corresponding author: Jesse J. Waggoner, 1760 Haygood Drive NE, Room E-132, Atlanta,
20	GA, USA 30322. Email: jjwaggo@emory.edu
21	
22	Word count: Abstract, 94; Manuscript, 1923
23	Inserts: Figures, 2; Supplemental Figures, 5; Supplemental Tables, 6

24 Abstract

25	Widespread use of over-the-counter rapid diagnostic tests for SARS-CoV-2 has led to a decrease
26	in availability of clinical samples for viral genomic surveillance. As an alternative sample
27	source, we evaluated RNA isolated from BinaxNOW swabs stored at ambient temperature for
28	SARS-CoV-2 rRT-PCR and full viral genome sequencing. 81 of 103 samples (78.6%) yielded
29	detectable RNA, and 46 of 57 samples (80.7 %) yielded complete genome sequences. Our results
30	illustrate that SARS-CoV-2 RNA extracted from used Binax test swabs provides an important
31	opportunity for improving SARS-CoV-2 genomic surveillance, evaluating transmission clusters,
32	and monitoring within-patient evolution.
33	
34	Keywords: SARS-CoV-2, sequencing, COVID-19, rapid test, RT-PCR
35	

36 Introduction

37 Throughout the COVID-19 pandemic, phylogenetic studies of severe acute respiratory syndrome 38 coronavirus 2 (SARS-CoV-2) have been instrumental in monitoring the emergence and spread of 39 new variants, confirming diagnostic test performance, and estimating vaccine and anti-viral treatment efficacy (1-4). Monitoring is typically achieved by whole genome sequencing, but real-40 41 time reverse transcription PCRs (rRT-PCRs) have also been employed to provide rapid 42 genotyping and assist with sample selection for sequencing workflows (5-8). Current SARS-43 CoV-2 genomic surveillance approaches rely upon residual clinical samples from multiple 44 sources affiliated with the medical establishment, such as clinics, drive-through testing sites, and 45 hospitals. 46

47	Corresponding with the rise in omicron variant transmission in the United States from December			
48	2021 to early 2022, there was a significant increase in at-home testing for SARS-CoV-2 (9).			
49	Over-the-counter tests provide rapid and convenient testing. However, results are rarely reported			
50	to public health authorities, and samples are lost to current genomic surveillance approaches (9,			
51	10). The BinaxNOW COVID-19 Antigen Self Test (hereinafter referred to as the Binax test;			
52	Abbott, Chicago, IL) is a common over-the-counter method that provides qualitative detection of			
53	SARS-CoV-2 nucleocapsid antigen in 15 minutes (2). Individuals self-collect a nasal swab, place			
54	this in the buffer reservoir of the test cassette, close and seal the cassette, and read the results on			
55	a lateral flow strip.			
56				
57	The objective of this study was to store used Binax tests at ambient temperature with materials			
58	commonly found in the home and evaluate the performance of SARS-CoV-2 rRT-PCR and viral			
59	genome sequencing following RNA extraction from the test cassettes.			
60				
61	Materials and Methods			
62	Ethics statement. The study protocol was reviewed and approved by the Emory Institutional			
63	Review Board. Participants provided informed consent to collect samples and data specifically			
64	for this study, except for three individuals from whom residual, de-identified home Binax tests			
65	were obtained in the clinic. Demographic and clinical data were not available from these			
66	individuals.			
67				
68	Analytical evaluation. Eight samples (6 self-collected samples and 2 contrived samples) were			
69	used to evaluate the quantity of SARS-CoV-2 RNA extracted from different parts of the Binax			

test. Used Binax cassettes were disassembled, the swab was removed, and the pad that contacts
the swab was separated from the cassette. The swab and pad were each placed into $200 \mu L$ of
MagMAX Viral/Pathogen Binding Solution (Thermo Fisher Scientific, Waltham, MA).
After observing better RNA recovery from swabs, dilution series of pooled samples containing
SARS-CoV-2 delta (n=11 dilutions) and omicron variant (sublineage BA.1, n=12 dilutions) were
used to evaluate the analytical performance of the extraction protocol. 50μ L of each dilution was
spiked onto swabs provided with the Binax test in duplicate. The tests were completed according
to manufacturer instructions. For one concentration of delta and omicron, swabs were retrieved
immediately after test completion (day 0) or stored at room temperature in the Binax cassette for
2 and 7 days. For the remaining dilutions, swabs were retrieved on day 0.
Clinical samples. From May to October 2022, self-administered Binax tests were obtained from
31 participants. Demographic and clinical data were recorded. Following test completion, Binax
cassettes were stored at room temperature in zipper-locked bags with the desiccant packet
provided within each Binax kit until nucleic acid extraction could be performed (Figure S1).
Nucleic acid extraction and rRT-PCR. Binax swabs were swirled in the tube containing
Binding Solution 10 times and removed while squeezing out buffer against the side of the tube.
Sample pads were incubated for 10 minutes. For all samples, the entire volume of Binding
Solution was used as the starting material for extraction in the MagMAX Viral/Pathogen Nucleic
Acid Isolation Kit with elution into 50μ L of Tris-HCl, performed on a KingFisher Apex
instrument (Thermo Fisher Scientific) according to manufacturer recommendations. After

93	extraction, eluates were tested with three rRT-PCRs: 1) a multiplex reaction for Flu A, Flu B, the
94	N2 target and RNase P (Flu-SC2) (11); 2) Spike SNP with 5 probes for K417, L452R, T478K,
95	E484K, N501Y (5, 6); and 3) a triplex assay for <i>spike</i> Δ 69/70 and ORF1a Δ 3675-3677 (7).
96	Assays were performed as previously described except for Flu-SC2, modified as shown in Table
97	S1.
98	
99	Sequencing. Extracted RNA was used to synthesize cDNA using SuperScript IV (Invitrogen),
100	and libraries were constructed using the xGen SARS-CoV-2 Amplicon panel (IDT) following the
101	manufacturer's protocol. Libraries were quantified using KAPA universal complete kit (Roche),
102	pooled to 4nM and sequenced on an Illumina Miseq with paired-end 150-bp reads. Consensus
103	viral genome sequences were assembled using viralrecon v2.4.4 (12). Pangolin v1.16 was used

105

106 **Phylogenetic analysis.** Forty-five sequences obtained from 19 participants were aligned with 107 reference sequences Wuhan/Hu-1/2019 and Wuhan/WHO/2019, as well as 266 SARS-CoV-2 108 sequences collected in Georgia between 20 May and 06 October 2022 (14). One sequence from 109 participant 7, a traveler returning from Kenya, was aligned with 2,796 BA.5.2.1 sequences 110 collected between 29 May and 06 June 2022. Reference sequences were downloaded from the 111 Global Initiative on Sharing Avian Influenza Data (GISAID) (14). Alignments were performed 112 using Nextalign within the Nextstrain v3.2.4 pipeline (15). For ease of visualization, the Georgia 113 dataset was downsampled to 100 sequences using Nextstrain subsampling scheme "all". The 114 BA.5.2.1 dataset was downsampled to 50 sequences using a custom scheme, in which crowd penalty was set to 0.0 and proximity filter was set to the traveler sequence to select the most 115

116	genetically related sequences. Maximum likelihood phylogenetic trees were constructed using		
117	default settings of the Nextstrain SARS-CoV-2 Workflow with TreeTime v0.8.6 8. Trees were		
118	visualized using Auspice v2.37.3.		
119			
120	Statistical analysis. Calculation of means and standard deviations were done in Excel software		
121	(IBM). ANOVA and two-sided t-tests were performed in GraphPad Prism, version 9.3.1		
122	(GraphPad Software).		
123			
124	Results		
125	Analytical evaluation. For eight samples, RNA was extracted from both the swab and specimen		
126	pad in the Binax cassette. Ct values were significantly lower (higher RNA concentration) from		
127	the swabs (Figure S2), which were then used in all subsequent evaluations. Compared to the		
128	original Cts for delta and omicron dilutions, Cts for RNA extracted from Binax swabs on day 0		
129	were a mean of 7.4 (standard deviation, 1.9) and 7.3 (1.1) cycles later, respectively (Table S2).		
130	All samples with a detectable test line on the Binax card were positive in the Flu-SC2 (Figure		
131	S3). In addition, the two omicron dilutions with no visible test line had detectable SARS-CoV-2		
132	RNA. SARS-CoV-2 RNA remained detectable for at least 7 days of storage on the swab at room		
133	temperature, though Ct values increased with time (Figure S2B).		
134			
135	Clinical Evaluation. 103 Binax samples were obtained from 31 participants. Demographic and		
136	sample data are shown in Table S3. Binax test results were positive for 89/103 samples (86.4%).		
137	Following extraction from the used swab, 81/103 samples (78.6%) yielded detectable SARS-		
138	CoV-2 RNA in the Flu-SC2 assay (Table S4). SARS-CoV-2 RNA was detectable in six swabs		

139	despite negative Binax results, including two individuals with longitudinal sampling, who were
140	symptomatic and RNA positive prior to Binax antigen detection. All samples were positive for
141	RNase P detection, demonstrating successful nucleic acid extraction and absence of PCR
142	inhibitors. Mean duration of Binax swab storage was 4.6 days (SD 3.2), and SARS-CoV-2 RNA
143	remained detectable following swab storage for up to 16 days prior to extraction. The duration of
144	storage was not significantly different for samples that tested positive in the Flu-SC2 assay
145	versus negative (Figure S4). In rRT-PCRs to detect specific SARS-CoV-2 mutations, 66/81 Flu-
146	SC2-positive samples (81.5%) tested positive in the Spike SNP assay and 74/81 samples (91.4
147	%) tested positive in the triplex assay for <i>spike</i> Δ 69/70 and ORF1a 3675-3677. Results from
148	Spike SNP and triplex testing were all consistent with omicron sublineage BA.2, BA.4, or BA.5.
149	
150	Sequencing. Full viral genome sequencing was attempted from 57 samples with Ct values less
151	than 32: 46 samples from 23 participants yielded complete, high-quality sequences (Table S5).
152	Cts of unsuccessful samples were high (range 29.0-34.3, mean-32.0) compared to successfully
153	sequenced samples (range 15.6-33.7, mean-26.2). Pangolin lineage assignments confirmed Spike
154	SNP and triplex assay results (Table S5).
155	

156 Specific applications of SARS-CoV-2 sequencing from Binax swabs

Longitudinal sampling. Time courses from eight participants who provided sequential samples
during their illness demonstrated consistent and concordant SARS-CoV-2 detection by the Binax
test and rRT-PCR from the swab throughout most of the symptomatic period (Figure 1 and
Figure S5). However, this was flanked by periods of inconsistent test results during the first 1-2

days of symptoms and again as symptoms waned. Interestingly, in several individuals, rRT-PCR

- turned positive prior to Binax antigen results (Figures 1 and S5). One individual self-tested
- 163 twice-a-day; no consistent difference in Flu-SC2 Ct value was observed between morning and

164 evening (Figure 1D).

Figure 1. A-D) Time course of Binax results and SARS-CoV-2 rRT-PCR Cts using RNA extracted from Binax cassettes versus days post-symptom onset for four participants in the clinical evaluation. A) Gray shaded area indicates time on treatment with Paxlovid. B-D) Purple shaded areas indicate the symptomatic period. The participant for time course D collected AM and PM samples for 8 days. Symbols show the following Binax and rRT-PCR (Flu-SC2) results for individual samples: closed circles, both positive; B, Binax positive only; R, rRT-PCR positive only; open circle, both negative.

173	Phylogenetic analysis revealed that sequential samples from seven participants clustered by		
174	participant (Figure 2A). Within each participant, sequences were either identical or contained 1-2		
175	SNPs relative to the earliest sequence. Sequences from three participants (1, 2, and 3), who were		
176	known close contacts, were all identical (Figure 2A).		
177 178	Antiviral treatment. One participant (20) with longitudinal sampling received Paxlovid, and		
179	Binax results and SARS-CoV-2 RNA converted from positive to negative on day 3 of antiviral		
180	treatment (Figure 1A). However, the day following discontinuation, the participant experienced a		
181	return of symptoms and a rebound in both Binax and RNA positivity. The sequence from this		
182	last sample did not cluster with the others and was a different lineage, indicating possible		
183	reinfection (Figure 2A).		
184			
185	Returned traveler. Participant 7 developed COVID-19 following travel to Kenya. Sequencing		
186	identified omicron sublineage BA.5.2.1, and phylogenetic analysis revealed that the sequence		

187 was closely related to a sequence from Kenya, supporting a travel related infection (Figure 2B).

Figure 2. A-B) SARS-CoV-2 phylogenetic analysis of RNA extracted from used Binax tests. A)
Phylogenetic tree contains SARS-CoV-2 sequences from 20 participants and illustrates:
clustering of sequences from participants P1-P3, who had known epidemiologic linkage;
clustering of longitudinal sequences in participants P28, P29, P36, and P37; and potential
reinfection in participant P20. B) Phylogenetic tree illustrates clustering of sequence from
participant P7, a returning traveler, with international sequences.

196 **Discussion**

197	This study demonstrates that SARS-CoV-2 RNA, extracted from used Binax test swabs, is of			
198	sufficient quality for genotyping by rRT-PCR and whole genome sequencing for phylogenetic			
199	studies. With a storage protocol that was purposefully kept simple to improve acceptability and			
200	feasibility, SARS-CoV-2 RNA remained detectable for up to 16 days. These data add to the			
201	scant literature on viral RNA recovery from rapid diagnostic tests (16-18), including for SARS-			
202	CoV-2 (19, 20), and importantly extend available information to include the Binax test, which is			
203	a common self-test sold directly to consumers in the United States (2). Wide implementation of			
204	SARS-CoV-2 sequencing from home tests could substantially enhance population-level			
205	surveillance of emerging variants, including from populations who may be otherwise under-			
206	represented among current surveillance approaches (9, 10, 21).			
207				
208	Furthermore, this study describes a set of use cases for the protocol beyond surveillance. Time			
209	courses demonstrate that sequential samples can be conveniently collected for the study of viral			
210	dynamics and monitoring within-host virus evolution. This may be particularly useful for			
211	identifying mutations in immunocompromised patients or following antiviral treatment (22).			
212	Notably, we identified a rebound in SARS-CoV-2 viremia following Paxlovid that may have			
213	resulted from re-infection. Additionally, phylogenetic clustering of sequences from known			
214	contacts demonstrates the use of this method to evaluate potential transmission events. Finally,			
215	we demonstrate the feasibility of using this method to detect potential SARS-CoV-2			
216	introductions following international travel.			
217				

- 218 A limitation of this study was the lack of concurrent standard-of-care molecular testing.
- However, this would not have been feasible for all participants across all time points. Ct results
- 220 may have improved with a shorter, defined duration of Binax storage, but this would have
- 221 impacted convenience for participants and feasibility for laboratory testing.
- 222
- 223 In conclusion, SARS-CoV-2 RNA extraction from used Binax swabs stored at ambient
- temperature combines the convenience of rapid diagnostic results with the potential for genomic
- surveillance from home. This approach greatly facilitates investigation into viral dynamics,
- transmission clusters, and intra-host viral evolution.

227 Acknowledgements

228	We gratefully acknowledge all data contributors, i.e., the Authors and their Originating
229	laboratories responsible for obtaining the specimens, and their Submitting laboratories for
230	generating the genetic sequence and metadata and sharing via the GISAID Initiative, on which
231	this research is based.
232	
233	Conflicts of Interest
234	None
235	
236	Funding Statement
237	This work was supported by the National Institute of Biomedical Imaging and Bioengineering at
238	the National Institutes of Health under award U54 EB027690 and the National Center for
239	Advancing Translational Sciences of the National Institutes of Health under Award Number
240	UL1TR002378. The content is solely the responsibility of the authors and does not necessarily
241	represent the official views of the National Institutes of Health.
242	
243	Author Contributions
244	Conceptualization, P-V. N., L.R.C., J.J.W., A.P.; Methodology, P-V. N., L.R.C., L.B., A.R.,
245	J.J.W., A.P.; Software, P-V. N., L.R.C., J.J.W., A.P.; Validation, P-V. N., L.R.C., L.B., A.R.,
246	J.J.W., A.P.; Formal Analysis, P-V. N., L.R.C., J.J.W., A.P.; Investigation, P-V.N., L.R.C.,
247	E.W., L.B., A.R., J.J.W., A.P.; Resources, P-V.N., L.R.C., L.B., A.R., M.G., J.A.S., G.S.M.,
248	W.A.L, J.J.W., A.P.; Data Curation, P-V. N., L.R.C., J.J.W., A.P.; Writing - Original Draft
249	Preparation, P-V.N., L.R.C., J.J.W., A.P.; Writing – Review & Editing, P-V.N., L.R.C., E.W.,

- 250 L.B., A.R., M.G., J.A.S., G.S.M., W.A.L, J.J.W., A.P.; Visualization, P-V. N., L.R.C., M.G.,
- 251 W.A.L., J.J.W., A.P.; Supervision, J.J.W., A.P.; Project Administration, M.G., J.A.S., J.J.W.,
- 252 A.P.; Funding Acquisition, J.A.S, G.S.M, W.A.L.
- 253
- 254 Institutional Review Board Statement
- 255 The study protocol was reviewed and approved by the Emory Institutional Review Board.
- 256
- 257 Informed Consent Statement
- 258 Participants provided informed consent to collect samples and data specifically for this study,
- 259 except for three individuals from whom residual, de-identified home Binax tests were obtained in
- the clinic. Demographic and clinical data were not available from these individuals.
- 261

262 Data Availability

- 263 All sequences newly generated in this study were deposited in NCBI under BioProject
- 264 PRJNA634356 and GISAID under accession numbers EPI_ISL_15938303-331. Data availability
- 265 of sequences downloaded from GISAID is listed in Table S6.

266 **References**

- Babiker A, Martin MA, Marvil C, Bellman S, Petit Iii RA, Bradley HL, Stittleburg VD, Ingersoll J, Kraft CS, Li Y, Zhang J, Paden CR, Read TD, Waggoner JJ, Koelle K, Piantadosi A. 2022. Unrecognized introductions of SARS-CoV-2 into the US state of Georgia shaped the early epidemic. Virus Evol 8:veac011.
- Frediani JK, Levy JM, Rao A, Bassit L, Figueroa J, Vos MB, Wood A, Jerris R, Van L-P, Gonzalez MD,
 Rogers BB, Mavigner M, Schinazi RF, Schoof N, Waggoner JJ, Kempker RR, Rebolledo PA, O'Neal JW,
 Stone C, Chahroudi A, Morris CR, Suessmith A, Sullivan J, Farmer S, Foster A, Roback JD, Ramachandra
 T, Washington C, Le K, Cordero MC, Esper A, Nehl EJ, Wang YF, Tyburski EA, Martin GS, Lam WA.
 2021. Multidisciplinary assessment of the Abbott BinaxNOW SARS-CoV-2 point-of-care antigen test in
 the context of emerging viral variants and self-administration. Sci Rep 11:14604.
- Sexton ME, Waggoner JJ, Carmola LR, Nguyen PV, Wang E, Khosravi D, Taz A, Arthur R, Patel M, Edara VV, Foster SL, Moore KM, Gagne M, Roberts-Torres J, Henry AR, Godbole S, Douek DC, Rouphael N, Suthar MS, Piantadosi A. 2022. Rapid detection and characterization of SARS-CoV-2 omicron variant in a returning traveler. Clin Infect Dis doi:10.1093/cid/ciac032.
- Bruel T, Hadjadj J, Maes P, Planas D, Seve A, Staropoli I, Guivel-Benhassine F, Porrot F, Bolland WH, Nguyen Y, Casadevall M, Charre C, Pere H, Veyer D, Prot M, Baidaliuk A, Cuypers L, Planchais C, Mouquet H, Baele G, Mouthon L, Hocqueloux L, Simon-Loriere E, Andre E, Terrier B, Prazuck T, Schwartz O. 2022. Serum neutralization of SARS-CoV-2 Omicron sublineages BA.1 and BA.2 in patients receiving monoclonal antibodies. Nat Med 28:1297-1302.
- 5. Babiker A, Immergluck K, Stampfer SD, Rao A, Bassit L, Su M, Nguyen V, Stittleburg V, Ingersoll JM,
 Bradley HL, Mavigner M, Schoof N, Kraft CS, Chahroudi A, Schinazi RF, Martin GS, Piantadosi A, Lam
 WA, Waggoner JJ. 2021. Single-Amplicon Multiplex Real-Time Reverse Transcription-PCR with Tiled
 Probes To Detect SARS-CoV-2 spike Mutations Associated with Variants of Concern. J Clin Microbiol
 59:e0144621.
- Martinez M, Nguyen P-V, Su M, Cardozo F, Valenzuela A, Franco L, Galeano ME, Rojas LE, Díaz Acosta CC, Fernández J, Ortiz J, Puerto Fd, Mendoza L, Nara E, Rojas A, Waggoner JJ. 2022. SARS-CoV-2 variants in Paraguay: Detection and surveillance with an economical and scalable molecular protocol. Viruses 14:873.
- Vogels CBF, Breban MI, Ott IM, Alpert T, Petrone ME, Watkins AE, Kalinich CC, Earnest R, Rothman JE, Goes de Jesus J, Morales Claro I, Magalhaes Ferreira G, Crispim MAE, Brazil UKCGN, Singh L, Tegally H, Anyaneji UJ, Network for Genomic Surveillance in South A, Hodcroft EB, Mason CE, Khullar G, Metti J, Dudley JT, MacKay MJ, Nash M, Wang J, Liu C, Hui P, Murphy S, Neal C, Laszlo E, Landry ML, Muyombwe A, Downing R, Razeq J, de Oliveira T, Faria NR, Sabino EC, Neher RA, Fauver JR, Grubaugh ND. 2021. Multiplex qPCR discriminates variants of concern to enhance global surveillance of SARS-CoV-2. PLoS Biol 19:e3001236.
- 8. Wang H, Miller JA, Verghese M, Sibai M, Solis D, Mfuh KO, Jiang B, Iwai N, Mar M, Huang C, Yamamoto F, Sahoo MK, Zehnder J, Pinsky BA. 2021. Multiplex SARS-CoV-2 Genotyping Reverse Transcriptase PCR for Population-Level Variant Screening and Epidemiologic Surveillance. J Clin Microbiol 59:e0085921.
- Rader B, Gertz A, Iuliano AD, Gilmer M, Wronski L, Astley CM, Sewalk K, Varrelman TJ, Cohen J,
 Parikh R, Reese HE, Reed C, Brownstein JS. 2022. Use of At-Home COVID-19 Tests United States,
 August 23, 2021-March 12, 2022. MMWR Morb Mortal Wkly Rep 71:489-494.

309 310 311	10.	Ritchey MD, Rosenblum HG, Del Guercio K, Humbard M, Santos S, Hall J, Chaitram J, Salerno RM. 2022. COVID-19 Self-Test Data: Challenges and Opportunities - United States, October 31, 2021-June 11, 2022. MMWR Morb Mortal Wkly Rep 71:1005-1010.
312 313 314	11.	Centers for Disease Control and Prevention. 2021. Research Use Only CDC Influenza SARS-CoV-2 (Flu SC2) Multiplex Assay Primers and Probes. <u>https://www.cdc.gov/coronavirus/2019-ncov/lab/multiplex-primer-probes.html</u> . Accessed
315 316	12.	Patel H, Varona S, Monzón S, Espinosa-Carrasco J, Heuer ML, Gabernet G, Ewels P, Miguel J, Kelly S, Sameith K, Garcia MU, Menden K. 2021. nf-core/viralrecon: nf-core/viralrecon v2.2 - Tin Turtle.
317 318 319	13.	Rambaut A, Holmes EC, O'Toole A, Hill V, McCrone JT, Ruis C, du Plessis L, Pybus OG. 2020. A dynamic nomenclature proposal for SARS-CoV-2 lineages to assist genomic epidemiology. Nat Microbiol 5:1403-1407.
320 321	14.	Shu Y, McCauley J. 2017. GISAID: Global initiative on sharing all influenza data - from vision to reality. Euro Surveill 22.
322 323	15.	Hadfield J, Megill C, Bell SM, Huddleston J, Potter B, Callender C, Sagulenko P, Bedford T, Neher RA. 2018. Nextstrain: real-time tracking of pathogen evolution. Bioinformatics 34:4121-4123.
324 325 326	16.	Cassidy-Seyoum S, Vongsouvath M, Sengvilaipaseuth O, Seephonelee M, Bharucha T, de Lamballerie X, Newton PN, Dubot-Peres A. 2019. Rapid Diagnostic Tests as a Source of Dengue Virus RNA for Envelope Gene Amplification: A Proof of Concept. Am J Trop Med Hyg 101:451-455.
327 328 329	17.	Vongsouvath M, Bharucha T, Seephonelee M, de Lamballerie X, Newton PN, Dubot-Peres A. 2020. Harnessing Dengue Rapid Diagnostic Tests for the Combined Surveillance of Dengue, Zika, and Chikungunya Viruses in Laos. Am J Trop Med Hyg 102:1244-1248.
330 331 332 333	18.	Vongsouvath M, Phommasone K, Sengvilaipaseuth O, Kosoltanapiwat N, Chantratita N, Blacksell SD, Lee SJ, de Lamballerie X, Mayxay M, Keomany S, Newton PN, Dubot-Peres A. 2016. Using Rapid Diagnostic Tests as a Source of Viral RNA for Dengue Serotyping by RT-PCR - A Novel Epidemiological Tool. PLoS Negl Trop Dis 10:e0004704.
334 335 336	19.	Macori G, Russell T, Barry G, McCarthy SC, Koolman L, Wall P, Sammin D, Mulcahy G, Fanning S. 2022. Inactivation and Recovery of High Quality RNA From Positive SARS-CoV-2 Rapid Antigen Tests Suitable for Whole Virus Genome Sequencing. Front Public Health 10:863862.
337 338 339	20.	Martin GE, Taiaroa G, Taouk ML, Savic I, O'Keefe J, Quach R, Prestedge J, Krysiak M, Caly L, Williamson DA. 2022. Maintaining genomic surveillance using whole-genome sequencing of SARS-CoV-2 from rapid antigen test devices. Lancet Infect Dis 22:1417-1418.
340 341 342	21.	Reese H, Iuliano AD, Patel NN, Garg S, Kim L, Silk BJ, Hall AJ, Fry A, Reed C. 2021. Estimated Incidence of Coronavirus Disease 2019 (COVID-19) Illness and Hospitalization-United States, February-September 2020. Clin Infect Dis 72:e1010-e1017.
343 344 345 346 347	22.	Scherer EM, Babiker A, Adelman MW, Allman B, Key A, Kleinhenz JM, Langsjoen RM, Nguyen PV, Onyechi I, Sherman JD, Simon TW, Soloff H, Tarabay J, Varkey J, Webster AS, Weiskopf D, Weissman DB, Xu Y, Waggoner JJ, Koelle K, Rouphael N, Pouch SM, Piantadosi A. 2022. SARS-CoV-2 Evolution and Immune Escape in Immunocompromised Patients. N Engl J Med 386:2436-2438.