1	
2	Vaccine effectiveness of primary and booster COVID-19 vaccinations against SARS-CoV-2
3	infection in the Netherlands from 12 July 2021 to 6 June 2022: a prospective cohort study
4	
5	Anne J. Huiberts (1), Brechje de Gier (1), Christina E. Hoeve (1), Hester E. de Melker (1), Susan J.M.
6	Hahné (1), Gerco den Hartog (1), Diederick E. Grobbee (2), Janneke H.H.M. van de Wijgert (1,2),
7	Susan van den Hof (1), Mirjam J. Knol (1)
8	
9	
10	1. Centre for Infectious Disease Control, National Institute for Public Health and Environment
11	(RIVM), Bilthoven, the Netherlands
12	2. Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht
13	(UMCU), Utrecht, the Netherlands
14	
15	
_	
16	Abstract word count: 249
17	Manuscript word count: 3,937
18	
19	
20	Corresponding author
21	Mirjam J. Knol, Centre for Infectious Disease Control Netherlands, National Institute for Public Health
22	and the Environment (RIVM), Antonie van Leeuwenhoeklaan 9, 3721 MA Bilthoven, the Netherlands
23	E-mail: <u>mirjam.knol@rivm.nl</u>

24 Keywords

- 25 COVID-19, SARS-CoV-2, vaccine effectiveness
- 26

27 Running title

- 28 Effectiveness of COVID-19 vaccinations
- 29

30 Summary

- 31 This prospective cohort study contributes to vaccine policy of COVID-19 by showing the benefit of
- 32 booster vaccination in preventing SARS-CoV-2 infections, also in risk groups in which protection was
- 33 generally lower, although the additional protection was rather short-lived.

34

35 List of abbreviations

- 36 BEBO Beoordeling Ethiek Biomedisch Onderzoek
- 37 CIMS COVID-19 vaccination Information and Monitoring System
- 38 Ig immunoglobulin
- 39 N nucleocapsid protein
- 40 RIVM National Institute of Public Health and the Environment
- 41 VASCO VAccine Study COvid-19
- 42 VE vaccine effectiveness
- 43 WHO World Health Organization

45 Abstract

46	Introduction – Monitoring of COVID-19 vaccine effectiveness (VE) is needed to inform vaccine policy.
47	We estimated VE of primary vaccination, and first and second booster vaccination, against SARS-
48	CoV-2 infection overall, and in four risk groups defined by age and medical risk condition, in the
49	Delta and Omicron BA.1/BA.2 periods.
50	Methods – VASCO is an ongoing prospective cohort study among vaccinated and unvaccinated
51	Dutch adults. The primary endpoint was a self-reported positive SARS-CoV-2 test during 12 July
52	2021-6 June 2022. Participants with a prior SARS-CoV-2 infection, based on a positive test or
53	serology, were excluded. We used Cox proportional hazard models with vaccination status as time-
54	varying exposure and adjustment for age, sex, educational level, and medical risk condition. We
55	stratified by Delta and Omicron BA.1/BA.2 periods, risk group, and time since vaccination.
56	Results – 37,170 participants (mean age 57 years) were included. In the Delta period, VE <6 weeks
57	after primary vaccination was 80% (95%CI 69-87) and decreased to 71% (65-77) after 6 months. VE
58	increased to 96% (86-99) shortly after the first booster vaccination. In the Omicron period these
59	estimates were 46% (22-63), 25% (8-39) and 57% (52-62), respectively. VE was 50% (34-62) <6 weeks
60	after a second booster vaccination in participants aged \geq 60 years. For the Omicron period, an
61	interaction term between vaccination status and risk group significantly improved the model
62	(p<0.001), with generally lower VEs for those with a medical risk condition.
63	Conclusions – Our results show the benefit of booster vaccinations against infection, also in risk
64	groups, although the additional protection wanes quite rapidly.

66 Introduction

67	After implementation of a vaccination program, real world vaccine effectiveness should be
68	monitored to inform further vaccination policy [1]. The COVID-19 vaccination program in the
69	Netherlands started on 6 January 2021. By 18 April 2021, four different COVID-19 vaccines had been
70	approved and were used in the initial vaccination programme: Comirnaty (BNT162b2;
71	BioNTech/Pfizer, Mainz, Germany/New York, United States (US)), Spikevax (mRNA-1273, Moderna,
72	Cambridge, US), Vaxzevria (ChAdOx1-S; AstraZeneca, Cambridge, United Kingdom), and Jcovden
73	(Ad26.COV2-S (recombinant), Janssen-Cilag International NV, Beerse, Belgium). Different vaccines
74	were recommended and administered in varying age groups [2, 3]. The first booster campaign for
75	adults was initiated on 18 November 2021, prioritizing health care workers and those ≥60 years. By
76	June 2022, a primary series coverage of 83% and a booster vaccination coverage of 64% of the Dutch
77	population ≥18 years had been reached [4]. From 4 March 2022, a second booster vaccination was
78	offered to adults \geq 60 years, and uptake was relatively low (44% by June 2022) [5].
79	Since the start of the vaccination programme, various new SARS-CoV-2 variants of concern emerged,
80	including the Delta (B.1.617.2) and Omicron (B.1.1.529) variants. The Delta variant was first detected
81	in the Netherlands in April 2021 and replaced the Alpha variant as the dominant strain in July 2021
82	[6]. The Omicron variant was first detected in late November 2021 and caused 90% of the infections
83	six weeks later.
84	As in other countries, nationwide COVID-19 surveillance data in the Netherlands including testing
85	and contact tracing data have been used to monitor and evaluate VE against SARS-CoV-2 infections
86	[7-9]. The advantages of using national surveillance data are the large sample size and data
87	availability in real-time. The disadvantages are dependence on testing infrastructure and testing
88	behaviour. For example, the Dutch government scaled down free-of-charge testing at community
89	test centers from 11 April 2022 onwards; the general public was encouraged to self-test when
90	having symptoms from that date onwards.

91	The VAccine Study COvid-19 (VASCO) is a large population-based prospective cohort study that was
92	initiated during the COVID-19 vaccination roll-out in the Netherlands enabled us to study vaccine-
93	effectiveness irrespective of available registration data [10]. Both vaccinated and unvaccinated
94	Dutch adults are followed for a five-year period during which extensive data, including
95	demographics, vaccination data, and positive (self-)tests, are being collected from participants using
96	regular online questionnaires.
97	Here we report on the VE of primary vaccination by any of the four available COVID-19 vaccines, as
98	well as first and second booster vaccination, against self-reported SARS-CoV-2 infection by time
99	since vaccination and in four subpopulations defined by age and medical risk condition, during 12
100	July 2021 to 6 June 2022, the period in which the Delta and Omicron BA.1 and BA.2 variants were
101	sequentially dominant.
102	
103	Methods
104	Study design and study population
105	VASCO is an ongoing population-based prospective cohort study with five-year follow-up [10]. The
106	study was initiated during the roll-out of the COVID-19 vaccination program in the Netherlands.
107	Between 3 May 2021 and 15 December 2021, 45,552 community-dwelling adults aged 18 to 85 years
108	were included. Participants had to be able to understand Dutch, as all study materials were written
109	in Dutch, and were included irrespective of their COVID-19 vaccination status or intention to get
110	vaccinated. Participants were asked to complete monthly online questionnaires in the first year, and
111	
	three-monthly online questionnaires in years 2-5, including questions on sociodemographic factors,
112	three-monthly online questionnaires in years 2-5, including questions on sociodemographic factors, health status, COVID-19 vaccination, SARS-CoV-2-related symptoms, testing results, and test

- participants were asked to take a self-collected fingerprick blood sample at home. Samples were
- 115 tested for SARS-CoV-2 antibodies by Elecsys Anti-SARS-CoV-2 immunoassay (Roche Diagnostics,

116	Vienna, Austria) using the NIBSC 20/136 WHO standard for quantification. In the current analysis,
117	serology data were used to identify participants who had had a SARS-CoV-2 infection prior to the
118	study period by determining the presence of immunoglobulin (Ig) antibodies against the SARS-CoV-2
119	nucleocapsid protein (anti-N). Written informed consent was obtained from all participants prior to
120	enrollment into the study. The VASCO study is conducted in accordance with the principles of the
121	Declaration of Helsinki and the study protocol was approved by the not-for-profit independent
122	Medical Ethics Committee of the Stichting Beoordeling Ethiek Biomedisch Onderzoek (BEBO), Assen,
123	the Netherlands).

124

125 Vaccination status

126 Self-reported vaccination data were linked to vaccination data registered in the Dutch national 127 COVID-19 vaccination Information and Monitoring System (CIMS) [3]. Vaccination data from the 128 CIMS registry were considered the primary source, except when the participant did not provide 129 informed consent for vaccination registration in CIMS or for linking study and CIMS data. If CIMS 130 and/or self-reported data were incomplete, data from both sources were combined (see Additional 131 file 1 and Table S1 for a detailed description). Vaccination status was categorized as unvaccinated 132 (no vaccination received), primary vaccination series received (one dose of Jcovden 28+ days ago, or 133 two doses of Vaxzevria, Comirnaty or Spikevax 14+ days ago), primary vaccination series and one 134 booster received (primary vaccination series + one additional dose 7+ days ago), or primary 135 vaccination series and two boosters received (primary vaccination series + two additional doses 7+ 136 days ago) [2, 3]. For individuals with a severe immune deficiency primary vaccination consisted of 137 three doses. Therefore, a third dose administered before the start of the general public booster 138 campaign (18 November 2021) was considered an additional primary series vaccination and not a 139 booster vaccination. A second booster vaccination in the spring of 2022 was only available for 140 individuals aged 60 years and above and some highly vulnerable groups. The 7, 14 or 28 person-days

141 between vaccine administration and obtained vaccination status were excluded because we

assumed that immunity was not yet fully established. Participants were excluded if they reported to

have received more doses than possible according to the Dutch vaccination strategy [2].

144

145 SARS-CoV-2 infections

146	The primary endpoint was a self-reported positive SARS-CoV-2 test. Participants were asked to notify
147	all positive SARS-CoV-2 tests via the study website or app (either a test by a community testing
148	center free-of-charge, a test at a commercial test center, or a self-administered antigen-test).
149	Community testing was scaled down from 11 April 2022 onwards. To facilitate testing after that date
150	in case of symptoms associated with COVID-19 and/or contact with a person infected with SARS-
151	CoV-2, the study team provided self-tests to participants from May 2022 onwards. Participants could
152	report positive tests in real time, and in addition, each scheduled follow-up questionnaire contained
153	questions regarding recent positive SARS-CoV-2 tests. Reported infections were considered Delta
154	infections if the positive test date was between 12 July 2021 and 19 December 2021, the period in
155	which >90% of the cases was caused by the Delta variant [11]. Reported positive tests from 10
156	January 2022 until 6 June 2022 were attributed to the Omicron BA.1 or BA.2 variant. Participants
157	who had reported a positive test or tested positive for N-antibodies prior to start of follow-up in the
158	current analysis were excluded from the analysis in order to estimate effects of vaccination only.
159	

160 <u>Covariates</u>

Sociodemographic data such as age and sex were collected at baseline and during follow-up.
Educational level was classified as low (no education or primary education), intermediate (secondary
school or vocational training), or high (bachelor's degree, university). A medical risk condition was
present when a participant reported to have one or more of the following conditions: diabetes

mellitus, lung disease or asthma, asplenia, cardiovascular disease, immune deficiency, cancer
(currently untreated but treated in the past, currently treated, untreated), liver disease, neurological
disease, renal disease, organ or bone marrow transplantation. Four risk groups were defined by age
(18-59 and 60-85 years) and presence of a medical risk condition (present or absent).

169

170 <u>Statistical analyses</u>

171 Data were inspected using descriptive statistics and graphical displays. Cox proportional hazard 172 models were used to estimate VE of primary series, and first and second booster vaccination against 173 SARS-CoV-2 infection in the Delta and Omicron BA.1/BA.2 period. Vaccination status was included as 174 a time-varying exposure. Participants entered the study at the start of the study period (12 July 175 2021) or the date of completion of the baseline guestionnaire, if they became a participant later 176 than 12 July 2021. Participants were followed until the date of the first reported positive test. If no 177 positive test was reported, participants were followed until the most recent questionnaire 178 completion date plus the median time between follow-up questionnaires for that participant (to 179 include only person-time in which participants were assumed to be active), or the end date of the 180 study period (6 June 2022), whichever came first. Median time between follow-up questionnaires 181 was determined per person and separately for the first year in which participants received monthly 182 questionnaires, and after year 1 when they received questionnaires every three months. Calendar 183 time was used as the underlying timescale for the Cox regression. This effectively means that at each 184 date participants with different vaccination statuses were compared, thereby adjusting for factors 185 changing over time during the pandemic, i.e. infection pressure, and the number of vaccinated 186 persons in the population. Potential violation of assumptions regarding proportional hazards was 187 checked using graphical diagnostics based on the scaled Schoenfeld residuals.

188 Models were stratified by Delta and Omicron periods and by time since start of the vaccination
189 status in 6-week intervals. Analyses were first adjusted for sex, educational level, and age group, and

190	then additionally for the presence of a medical risk condition. Age group and the presence of a
191	medical risk condition were included as time-varying confounders. Risk group membership based on
192	age (18-59 and 60-85 years) and medical risk condition (present or absent) was examined as a
193	potential effect modifier by extending the model with an interaction term and by stratified analysis.
194	As sensitivity analyses, analyses were repeated in two specific subpopulation. The first sensitivity
195	analysis was done in participants who reported to (almost) always test for SARS-CoV-2 infection in
196	case of SARS-CoV-2 related symptoms. Secondly, the analysis was repeated in participants who had
197	received only Comirnaty vaccine doses versus unvaccinated participants. We also present VE
198	estimates of the primary vaccination series stratified by vaccine product (Comirnaty, Spikevax,
199	Vaxzevria and Jcovden) and VE estimates of first booster vaccination stratified by vaccine product of
200	the booster (Comirnaty or Spikevax) and primary vaccination series (mRNA vaccine or Vaxzevria).
201	Vaccine effectiveness was calculated as 100% x (1 – hazard ratio). All statistical analyses were
202	performed in statistical package R version 4.1.3, using packages Epi and survival.
203	

204 Results

205 <u>Study population</u>

206 Of the 45,049 VASCO participants participating (partly) during the study period, 121 participants 207 were excluded because of having had a first and/or second booster vaccination before the start of 208 that particular booster campaign. Additionally, 40 participants were excluded because of missing 209 covariates and 255 participants did not add person-time to one of the studied vaccination status 210 strata, e.g. entered the study when already having received a first vaccination but never completed 211 primary vaccination series (not applicable to Jcovden). Of the 44,633 remaining participants, 6,826 212 participants (15.3%) reported to have had a positive SARS-CoV-2 test prior to start of follow-up in 213 the current analysis. Additionally, 991 (2.2%) tested positive for SARS-CoV-2 anti-N antibodies prior

214	to start of follow-up. Consequently, 36,816 participants were included in the analyses (Table 1). The
215	age of the participants at inclusion ranged between 18 and 85 years, with a median age of 61 years.
216	More women (62%) than men were included, and 57% of the participants was highly educated. At
217	the start of the study period, 12,152 participants were included in the study, of which 11,908
218	(98.0%) had completed their primary vaccination series, and 244 (2.0%) were unvaccinated
219	(Additional file 1, Figure S1). At the start of the Omicron period, the cohort consisted of 27,646
220	active participants. Of those, 3,802 (13.8%) participants had only completed their primary
221	vaccination series, 23,352 (84.5%) participants had additionally received a first booster vaccination,
222	and 492 (1.8%) participants were unvaccinated. Of all participants that contributed vaccinated
223	person-weeks during the study period (n=36,109), the first vaccine dose was most often Comirnaty
224	(41.5%). Other first vaccination products were Vaxzevria (33.7%), Spikevax (13.0%), Jcovden (9.9%),
225	other (0.01%) or unknown (0.1%).
226	Participants had a median follow-up time of 27.7 person weeks. This was relatively short as
227	participants were included over a period of 7 months and were censored after a reported SARS-CoV-
228	2 test. During a total of 1,032,976 person-weeks of follow-up, 13,756 first SARS-CoV-2 infections
229	were reported corresponding with an infection rate of 13.3 infections per 1,000 person-weeks.
230	Reported positive tests were often a PCR-test (72.7%) or antigen-test (can be self-administered)
231	(26.1%), with the share of antigen-tests increasing sharply during the Omicron period (Additional file
232	1, Figure S2). The largest proportion of reported infections (12,129, 88.2%) occurred during the
233	Omicron BA.1/BA.2 period (Figure 1). Infection rates were higher during person-weeks for
234	unvaccinated compared to person-weeks for vaccinated (Figure 1, Table 2).
235	

236 Vaccine effectiveness

Fully adjusted VE in the Delta period was estimated to be 80% (95%CI 69.3 – 87.0) <6 weeks after

238 completing the primary series, counting from the start of the vaccination status not vaccine

239	administration (Figure 2). This decreased to 71% (95%CI 64.7 – 76.8) 19 – 24 weeks after completion
240	of the primary vaccination series. VE increased again to 96% (95%Cl 86.1 – 98.6) <6 weeks after the
241	booster vaccination. VE estimates for the Omicron period were substantially lower compared to
242	those in the Delta period. VE in the first 6 weeks after completing the primary vaccination series was
243	estimated to be 46% (95%Cl 21.7 – 62.7) and decreased to 25% (95%Cl 7.7 – 39.1) 18-23 weeks after
244	completion of the primary vaccination series. VE increased to 57% (95%CI 51.9 – 62.3) <6 weeks
245	after booster vaccination and decreased to 31% (95%Cl 16.6 – 43.5) at 18-23 weeks. For participants
246	of 60 years and older, the VE against Omicron infection within 6 weeks after the second booster
247	vaccination was 50% (95% CI 34.0 – 62.1) (Figure 3; Additional file 1, Table S2). Delta VE estimates
248	of the models with and without having a medical risk condition (yes/no) as confounder were
249	comparable (Table 2). VE estimates for Omicron were slightly lower when additionally adjusting for
250	the presence of a medical risk condition.
251	VE estimates showed a similar pattern in the sensitivity analysis restricted to participants with a high
252	intention to test in case of symptoms (n=26,520, median age = 61) except that VE estimates for
253	Omicron infection were higher in this specific population (Additional file 1, Figure S3). The higher
254	estimates in this sensitivity analysis were in line with a higher intention to test in vaccinated
255	participants (Additional file 1, Figure S4).
256	In the sensitivity analysis restricted to participants who only received Comirnaty vaccine doses (as
257	primary series and as booster(s) if booster(s) were received) (n=14,652 (39.8% of full analysis
258	population), median age = 60), VE estimates for the Delta period were comparable to the VE
259	estimates of the complete study population (Additional file 1, Table S3). VE against Delta infection
260	decreased from 81% (95%Cl 69.3 – 88.6) within 6 weeks after completion of primary series to 72%
261	(95%Cl 64.9 – 78.3) 18-23 weeks after completion and increased to 96% (95%Cl 67.7 – 99.4) within 6
262	weeks after booster vaccination. For the Omicron period, VE estimates for the booster vaccination
263	were slightly but consistently lower in the Comirnaty subpopulation compared to the total study

264	population. VE decreased from 51% (95%Cl 43.6 – 57.8) within 6 weeks after booster vaccination to
265	11% (95%CI -27.0 – 36.9) 18-23 weeks after the booster. VE estimates stratified by vaccine product
266	of the primary series and first booster vaccination are given in Additional file 1, Table S5 and S6.
267	Generally, estimates were higher for Spikevax as primary series and lower for Vaxzevria and Jcovden
268	compared with Comirnaty. For booster vaccination, estimates for Spikevax as booster were generally
269	higher compared with Comirnaty as booster, irrespective of the vaccine product of the primary
270	series.
271	For the Delta period, models with and without an interaction term between vaccination status and
272	risk group did not differ significantly. For the Omicron period, the interaction term did significantly
273	improve the model (p<0.001). The interaction term was significant between at least two risk groups
274	for all periods after booster vaccination (Additional file 1, Table S4). When stratifying the model
275	according to risk group, VE of booster vaccination in the Omicron period was lower among
276	participants with a medical condition as compared to those without (Figure 4). Number of infections
277	and person-weeks in unvaccinated persons with medical risk condition were relatively small,
278	resulting in large confidence intervals around the VE.
279	

280 Discussion

281 We evaluated the effectiveness of COVID-19 vaccines against Delta and Omicron BA.1/BA.2 SARS-282 CoV-2 infection in a real-world setting, overall and in four risk groups based on age and presence of 283 medical risk condition. Compared to unvaccinated individuals, having completed the primary 284 vaccination series was associated with protection against Delta and Omicron BA.1/BA.2 SARS-CoV-2 285 infection. However, the protection against infection with the Omicron BA.1/BA.2 variants was 286 markedly lower compared to protection against infection with the Delta variant. VE decreased over 287 time after completing the primary vaccination series, but increased again after receiving a first 288 booster vaccination, also in risk groups. In those aged 60 years and older, VE increased again after

289	receiving a second booster. VE of booster vaccinations also decreased over time since vaccination.
290	Our data showed that unvaccinated participants had a lower intention to test if having symptoms
291	compared to vaccinated participants. Indeed, when restricting our analysis to participants with high
292	intention to test, VE against Omicron infection was higher. Despite large confidence intervals, VE
293	against Omicron BA.1/BA.2 SARS-CoV-2 infection appeared lower among participants with a medical
294	risk condition compared to participants without a medical risk condition, visible both in younger and
295	older individuals. Our estimates concern effects of vaccination only, as prior infections were
296	excluded.
297	Our study results are in line with national [7] and international surveillance data [12-15], showing a
298	higher VE against Delta infection as compared to Omicron infection, resulting from considerable
299	immune escape by the Omicron variant [16, 17]. Reported estimates for VE shortly after completion
300	of a primary series range between 78% and 91% against Delta infection and 40% and 66% against
301	Omicron infection are consistent with our findings of 80% and 46%, respectively. VE estimates of
302	booster vaccination against Delta (96%) and Omicron infection (57%) were consistent with those
303	found using surveillance data (86%-99% and 56%-72%, respectively) [7, 12-15]. Similar to our
304	findings, other studies have shown waning of the effectiveness of both primary and booster
305	vaccination [12-14]. Data on VE of second booster vaccination with unvaccinated as reference group
306	is scarce. One preprint reported a VE against BA.2 infection in adults of 64% (95%CI 50.7 – 74.2) 14-
307	30 days after fourth dose, which decreased to 51% (95%Cl 35.5 – 63.0) 31-90 days after the fourth
308	dose [18]. Our estimates were slightly lower (50% after 0-5 weeks and 16% after 6-11 weeks) but
309	were based on data of adults aged 60 years and older only.
310	Only two other prospective cohort studies have reported VEs against Delta infection [19, 20]. In both
311	studies, nose and/or throat swabs for PCR testing were regularly collected irrespective of having
312	symptoms, allowing detection of symptomatic as well as asymptomatic infections. VE of Comirnaty
313	(BioNTech/Pfizer) primary vaccination series in the Delta period reported in the ONS CIS study
314	decreased from 85% at 14 days after second dose to 75% at 90 days [20]. Results of our sensitivity

315	analysis in participants who had only received Comirnaty vaccine doses were consistent with the
316	ONS CIS Comirnaty estimates (81% at 0-5 weeks and 79% at 6-11 weeks after primary series). The VE
317	estimate in the HEROES-RECOVER study was lower (66%, 95%CI 26-84), but time since vaccination
318	was not taken into account and the study population consisted of health care workers only with
319	likely high exposure [19]. The ONS CIS study further showed that VE of Vaxzevria (AstraZeneca)
320	primary vaccination series was considerably lower than for Comirnaty (68% at 14 days and 61% at 90
321	days), which was consistent with our results. Our results showed that VE of Comirnaty booster
322	vaccination was lower as compared to VE of Spikevax booster vaccination. This is consistent with
323	literature showing higher antibody levels after a Spikevax booster [21].
324	There is limited data on VE against infection in medical risk populations. One test-negative case-
325	control study evaluated three-dose VE against infection in immunocompromised and
326	immunocompetent individuals [13]. They found a significant interaction between
327	immunocompromised status and vaccination status in both Delta and Omicron periods. In both
328	periods, stratified analysis showed a lower VE in immunocompromised individuals (Delta: 70.6%,
329	95%Cl 31.0 – 87.5 ; Omicron: 29.4%, 95%Cl 0.3 – 50.0) as compared to immunocompetent
330	individuals (Delta: 93.7%, 95%Cl 92.2 – 94.9; Omicron: 70.5%, 95% Cl 68.6 – 72.4). Differences
331	between the groups were larger than the differences we observed, yet our definition of medical risk
332	was broader than immunocompromised individuals only. An Israelian historic cohort study showed
333	lower VE of two doses against infection in both individuals with diabetes and cardiovascular disease
334	(82%, 95% Cl 62 – 92) and immunocompromised individuals (71%, 95% Cl 37 – 87) as compared to
335	overall (92%, 95%Cl 83 – 96) [22]. Taking into account increased risk for severe COVID-19 outcomes
336	[23], our results support the Dutch vaccination strategy to recommend booster vaccination for high
337	risk groups.
338	This study has several strengths. In this cohort study we were able to adjust for (time-varying)

339 confounders using extensive data from monthly questionnaires. Also, serological data enabled us to 340

exclude participants with prior unreported SARS-CoV-2 infections. A recent study by Kahn et al

341	emphasized the added value of serological testing to exclude participants with prior infection [24].
342	Also we were able to include self-administered antigen tests, freely available to participants, as
343	outcome so we were not dependent on the testing infrastructure and we facilitated the use of self-
344	tests by providing those to the participants. Further, the questionnaire on test behaviour allowed for
345	an analysis restricted to participants with a consistently high intention to test in case of symptoms.
346	Some limitations need to be discussed. Although the Cox proportional hazards models were adjusted
347	for potential confounders, differences in (time-varying) factors between vaccinated and
348	unvaccinated participants which may impact infection exposure can still confound the results. These
349	include differences in test frequency and differences in exposure through behaviour or adherence to
350	COVID-19 guidelines. Vaccinated individuals in our cohort had higher intention to test when
351	symptoms occurred than unvaccinated individuals, possibly they are more health-conscious. Still,
352	vaccination may have reduced testing if breakthrough infections are more often mild or
353	asymptomatic. In other contexts, vaccinated individuals may test less frequently, if vaccination
354	induces a sense of security and people are less worried, or if public health authorities request more
355	frequent testing of unvaccinated individuals. From the start of the study period until the end of
356	March 2022, when most COVID-19 interventions were lifted, use of the corona check app was in
357	place, which for unvaccinated individuals required a negative PCR test, for example to enter
358	restaurants and clubs. These behavioural factors might have resulted in either an underestimation or
359	overestimation of the VE. Furthermore, vaccinated individuals may become more heavily exposed to
360	the virus, if they feel more safe to attend (high-risk) exposure activities [25]. Even though it is
361	suggested that there is little change in behaviour early after vaccination [26] and a recent study
362	showed that differences in chance of SARS-CoV-2 exposure due to behaviour did not relevantly
363	confound VE estimates in a test-negative setting [27], this phenomenon might decrease the benefit
364	of vaccination [28].

- 365 Overall, our results show that VE was lower against Omicron infection than Delta infection, and both
- 366 first and second booster vaccination increased waned effectiveness again, although the additional
- 367 protection was rather short-lived. Importantly, this booster effect was also seen among risk groups
- 368 but protection of vaccination against Omicron infection was consistently lower among risk groups.
- 369 Thus, our data shows the benefit of booster vaccination in preventing SARS-CoV-2 infections, also in
- 370 risk groups.
- 371

```
372 Funding
```

- 373 This work was supported by the Dutch ministry of Health.
- 374

375 Conflicts of interests

- 376 The authors declare that they have no competing interests.
- 377

378 References

- 1. Hahné S, Bollaerts K, Farrington P. Vaccination Programmes: Epidemiology, Monitoring,
- 380 Evaluation. 1st ed: Routledge, **2021**.
- 381 2. Pluijmaekers A, de Melker H. The National Immunisation Programme in the Netherlands.
- 382 Surveillance and developments in 2021-2022. Het Rijksvaccinatieprogramma in Nederland
- 383 Surveillance en ontwikkelingen in 2021-2022: Rijksinstituut voor Volksgezondheid en Milieu
- 384 RIVM, **2022**.
- 385 3. Valk A, van Meijeren D, Smorenburg N, et al. Vaccinatiegraad COVID-19 vaccinatie
- 386 Nederland, 2021. COVID-19 vaccination coverage in the Netherlands in 2021: Rijksinstituut
- 387 voor Volksgezondheid en Milieu RIVM, **2022**.

- 388 4. Rijksoverheid. Coronadashboard: De actuele situatie in Nederland. Available at:
- 389 <u>https://coronadashboard.rijksoverheid.nl/</u>. Accessed 22 March 2022.
- 390 5. Rijksinstituut voor Volksgezondheid en Milieu. Archief wekelijkse update vaccinatiecijfers
- 391 2022. Available at: https://www.rivm.nl/covid-19-vaccinatie/archief-wekelijkse-update-
- 392 <u>vaccinatiecijfers-2022</u>. Accessed 24 June 2022.
- 393 6. RIVM COVID-19 epidemiologie en surveillance team. Effectiviteit van COVID-19-vaccinatie
- tegen SARS-CoV-2 infectie in de Delta periode, **2021** 16 December 2021.
- 395 7. Andeweg SP, de Gier B, Eggink D, et al. Protection of COVID-19 vaccination and previous
- 396 infection against Omicron BA.1, BA.2 and Delta SARS-CoV-2 infections. Nat Commun 2022;
- **397 13(1)**: **4738**.
- 398 8. de Gier B, Andeweg S, Joosten R, et al. Vaccine effectiveness against SARS-CoV-2
- 399 transmission and infections among household and other close contacts of confirmed cases,
- 400 the Netherlands, February to May 2021. Euro Surveill **2021**; 26(31).
- 401 9. de Gier B, Andeweg S, Backer JA, et al. Vaccine effectiveness against SARS-CoV-2
- 402 transmission to household contacts during dominance of Delta variant (B.1.617.2), the
- 403 Netherlands, August to September 2021. Euro Surveill **2021**; 26(44).
- 404 10. Huiberts A, Kooijman M, Melker H, et al. Design and baseline description of an observational
- 405 population-based cohort study on COVID-19 vaccine effectiveness in the Netherlands The
- 406 VAccine Study COvid-19 (VASCO). **2022**.
- 407 11. Rijksinstituut voor Volksgezondheid en Milieu. Varianten van het coronavirus SARS-CoV-2.
- 408 Available at: <u>https://www.rivm.nl/coronavirus-covid-19/virus/varianten</u>. Accessed 29 July
- 409 2022.
- 410 12. Suarez Castillo M, Khaoua H, Courtejoie N. Vaccine-induced and naturally-acquired
- 411 protection against Omicron and Delta symptomatic infection and severe COVID-19
- 412 outcomes, France, December 2021 to January 2022. Eurosurveillance **2022**; 27(16): 2200250.

- 413 13. Tseng HF, Ackerson BK, Luo Y, et al. Effectiveness of mRNA-1273 against SARS-CoV-2
- 414 Omicron and Delta variants. Nat Med **2022**; 28(5): 1063-71.
- 415 14. And rews N, Stowe J, Kirsebom F, et al. Covid-19 Vaccine Effectiveness against the Omicron
- 416 (B.1.1.529) Variant. N Engl J Med **2022**; 386(16): 1532-46.
- 417 15. Gram MA, Emborg H-D, Schelde AB, et al. Vaccine effectiveness against SARS-CoV-2 infection
- 418 and COVID-19-related hospitalization with the Alpha, Delta and Omicron SARS-CoV-2
- 419 variants: a nationwide Danish cohort study. medRxiv **2022**: 2022.04.20.22274061.
- 420 16. Yu J, Collier A-rY, Rowe M, et al. Neutralization of the SARS-CoV-2 Omicron BA.1 and BA.2
- 421 Variants. New England Journal of Medicine **2022**; 386(16): 1579-80.
- 422 17. Netzl A, Tureli S, LeGresley E, Mühlemann B, Wilks SH, Smith DJ. Analysis of SARS-CoV-2
- 423 Omicron Neutralization Data up to 2021-12-22. bioRxiv **2022**: 2021.12.31.474032.
- 424 18. Tseng HF, Ackerson BK, Bruxvoort KJ, et al. Effectiveness of mRNA-1273 against infection and
- 425 COVID-19 hospitalization with SARS-CoV-2 Omicron subvariants: BA.1, BA.2, BA.2.12.1, BA.4,
- 426 and BA.5. medRxiv **2022**: 2022.09.30.22280573.
- 427 19. Fowlkes A, Gaglani M, Groover K, Thiese MS, Tyner H, Ellingson K. Effectiveness of COVID-19
- 428 Vaccines in Preventing SARS-CoV-2 Infection Among Frontline Workers Before and During
- 429 B.1.617.2 (Delta) Variant Predominance Eight U.S. Locations, December 2020–August
- 430 2021. MMWR Morb Mortal Wkly Rep **2021**; 70: 1167-9.
- 431 20. Pouwels KB, Pritchard E, Matthews PC, et al. Effect of Delta variant on viral burden and
 432 vaccine effectiveness against new SARS-CoV-2 infections in the UK. Nat Med 2021; 27(12):
- 433 2127-35.
- Wei J, Matthews PC, Stoesser N, et al. Correlates of protection against SARS-CoV-2 Omicron
 variant and anti-spike antibody responses after a third/booster vaccination or breakthrough
 infection in the UK general population. medRxiv 2022: 2022.11.29.22282916.
- 437 22. Chodick G, Tene L, Rotem RS, et al. The Effectiveness of the Two-Dose BNT162b2 Vaccine:
 438 Analysis of Real-World Data. Clin Infect Dis **2022**; 74(3): 472-8.

- 439 23. Williamson EJ, Walker AJ, Bhaskaran K, et al. Factors associated with COVID-19-related death
- 440 using OpenSAFELY. Nature **2020**; 584(7821): 430-6.
- 441 24. Kahn R, Schrag SJ, Verani JR, Lipsitch M. Identifying and Alleviating Bias Due to Differential
- 442 Depletion of Susceptible People in Postmarketing Evaluations of COVID-19 Vaccines. Am J
- 443 Epidemiol **2022**; 191(5): 800-11.
- 444 25. Ioannidis JPA. Factors influencing estimated effectiveness of COVID-19 vaccines in non-
- randomised studies. BMJ Evidence-Based Medicine **2022**: bmjebm-2021-111901.
- 446 26. Goldszmidt R, Petherick A, Andrade EB, et al. Protective Behaviors Against COVID-19 by
- 447 Individual Vaccination Status in 12 Countries During the Pandemic. JAMA Network Open
- 448 **2021**; 4(10): e2131137-e.
- 449 27. van Ewijk CE, Kooijman MN, Fanoy E, et al. COVID-19 vaccine effectiveness against SARS-
- 450 CoV-2 infection during the Delta period, a nationwide study adjusting for chance of
- 451 exposure, the Netherlands, July to December 2021. Euro Surveill **2022**; 27(45).
- 452 28. Ioannidis JPA. Benefit of COVID-19 vaccination accounting for potential risk compensation.
- 453 npj Vaccines **2021**; 6(1): 99.

Tables 455

	Total 18-59 years		60-85 years	
	(n=36,816)	(n=16,575)	(n=20,241)	
Sex (%)				
Male	13,874 (37.7)	4,633 (28.0)	9,241 (45.7)	
Female	22,922 (62.3)	11,923 (71.9)	10,999 (54.3)	
Other	20 (0.1)	19 (0.1)	1 (0.0)	
Median age (years; IQR)	61 (15)	48 (17)	65 (7)	
Medical risk condition ^a at				
inclusion, yes (%)	11,078 (30.1)	3,307 (20.0)	7,771 (38.4)	
Cardiovascular disease	6,612 (18.0)	1,322 (8.0)	5,290 (26.1)	
Lung disease or asthma	2,852 (7.7)	1,289 (7.8)	1,563 (7.7)	
Diabetes mellitus	1,820 (4.9)	393 (2.4)	1,427 (7.1)	
Immune deficiency	697 (1.9)	336 (2.0)	361 (1.8)	
Educational level ^b (%)				
Low	5,151 (14.0)	1,105 (6.7)	4,046 (20.0)	
Intermediate	10,328 (28.1)	4,976 (30.0)	5,352 (26.4)	
High	21,119 (57.4)	10,441 (63.0)	10,678 (52.8)	
Other	218 (0.6)	53 (0.3)	165 (0.8)	

456 Table 1. Baseline characteristics of participants included in analysis

457

Medical risk condition: one or more of following conditions: diabetes mellitus, lung disease or asthma,

458 asplenia, cardiovascular disease, immune deficiency, cancer (currently untreated, currently treated,

459 untreated), liver disease, neurological disease, renal disease, organ or bone marrow transplantation. Four

460 most frequent conditions are presented here.

461 ^b Educational level was classified as low (no education or primary education), intermediate (secondary school

462 or vocational training), or high (bachelor's degree, university).

463 **Table 2.** Vaccine effectiveness per vaccination status stratified by Delta and Omicron BA.1/BA.2

464 period from 12 July 2021 to 6 June 2022

	Number of	Person-	Rate (per	Adjusted ^a VE	Adjusted ^b VE
	infections	weeks	1,000	(95% CI)	(95% CI)
			weeks)		
(All)	13,756	1,032,976	13.3		
Delta period					
Unvaccinated	126	10,500	12.0	Ref.	Ref.
Primary series (0-5 weeks)	48	74,553	0.6	80.0 (69.3-87)	80.0 (69.3-87)
Primary series (6-11 weeks)	79	105,993	0.7	80.5 (73.6-85.6)	80.5 (73.6-85.5)
Primary series (12-17 weeks)	338	110,942	3.0	71.5 (65.0-76.8)	71.4 (64.9-76.8)
Primary series (18-23 weeks)	416	92,285	4.5	71.5 (64.8-76.9)	71.4 (64.7-76.8)
Booster 1 vaccination (0-5 weeks)	3	4,328	0.7	95.6 (86.2-98.6)	95.6 (86.1-98.6)
Omicron BA.1/BA.2 period					
Unvaccinated	301	5,876	51.2	Ref.	Ref.
Primary series (0-5 weeks)	31	1,192	26.0	46.3 (22.2-62.9)	45.9 (21.7-62.7)
Primary series (6-11 weeks)	62	1,910	32.5	49.0 (33.0-61.2)	48.2 (31.9-60.6)
Primary series (12-17 weeks)	72	2,162	33.3	45.7 (29.8-58.1)	44.0 (27.5-56.7)
Primary series (18-23 weeks)	129	3,930	32.8	25.9 (8.8-39.8)	25.0 (7.7-39.1)
Booster 1 vaccination (0-5 weeks)	3,011	156,474	19.2	57.7 (52.3-62.6)	57.4 (51.9-62.3)
Booster 1 vaccination (6-11 weeks)	5,499	151,040	36.4	49.1 (42.7-54.8)	48.7 (42.3-54.4)
Booster 1 vaccination (12-17 weeks)	1,820	97,892	18.6	39.4 (31.1-46.8)	39.0 (30.5-46.4)
Booster 1 vaccination (18-23 weeks)	356	44,274	8.0	31.9 (17.3-44.0)	31.4 (16.6-43.5)

465 ^a Adjusted for age group, sex, educational level.

466 ^bAdjusted for age group, sex, educational level, medical condition.

468 Figures

- 469 Figure 1. 7-days moving average of number of infections reported per 100,000 VASCO participants
- 470 by vaccination status from 12 July 2021 to 6 June 2022

471

- 472 Figure 2. Vaccine effectiveness^a for primary vaccination series and first booster vaccination in Delta
- and Omicron BA.1/BA.2 period from 12 July 2021 to 6 June 2022

^a Adjusted for age group, sex, educational level, medical condition.

- 476 **Figure 3.** Vaccine effectiveness^a for primary vaccination series, first booster and second booster
- 477 vaccination in Delta and Omicron BA.1/BA.2 period in participants aged \geq 60 years from 12 July 2021

478 to 6 June 2022

479

480 ^a VE was not reported when number of person-weeks <500; Adjusted for age group, sex, educational level,

481 medical condition.

482 **Figure 4.** Vaccine effectiveness^a for primary vaccination series, booster and second booster

483 vaccination per risk group in the Omicron BA.1/BA.2 period from 10 January 2022 to 6 June 2022

Time since start vaccination status (weeks)

Delta 🔶 Omicron BA.1/BA.2

Time since start vaccination status (weeks)

Delta 🔶 Omicron BA.1/BA.2

Time since start vaccination status (weeks)

18-59y without medical risk condition
 18-59y with medical risk condition
 60-85y with medical risk condition