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ABSTRACT 

Background: Predicting mortality and morbidity amongst hospitalized patients has long been a struggle 
for inpatient Internal Medicine physicians. To prevent physician burnout, hospital organizations are 
turning to shift work for the care of hospitalized patients. Such shift work frequently leads to a handoff 
of patients, with many physicians often being the sole provider in the hospital for close to one hundred 
patients. 

Objectives: We propose developing an artificial intelligence model that helps predict which patients will 
be most at risk of increased mortality.  This model would assist providers and frontline staff in focusing 
their efforts on improving patient outcomes. 

Materials and Methods: Records of patients who were transferred from non-intensive care units to 
intensive care units were queried from the Veteran Affairs Corporate Data Warehouse (CDW). Two 
thousand four hundred twenty-five records were identified. The patient outcome was designated a 
dependent variable, with bad outcome defined as the patient dying within 30 days of admission and 
good outcome as the patient being alive within 30 days of admission. Using twenty-two independent 
variables, we trained sixteen machine learning models, of which six best-performing ones were fine-
tuned and evaluated on the testing dataset. Finally, we repeated this process with twenty independent 
variables, omitting the Length of Stay and Days to Intensive Care Unit Transfer variables which are 
unknown at the time of admission. 

Results: The best results were obtained with the LightGBM model with both datasets, one that included 
Length of Stay and Days to Intensive Care Unit Transfer variables and the other without these two 
variables. The former achieved Receiver Operating Characteristics Curve - Area Under the Curve (ROC-
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AUC) of 0.89, an accuracy of 0.72, a sensitivity of 0.97, and a specificity of 0.68, while the latter achieved 
a ROC-AUC of 0.86, an accuracy of 0.71, sensitivity of 0.94 and specificity of 0.67 respectively. 

Conclusions: Our predictive mortality model may offer providers a means for optimizing the utilization 
of resources when managing a large caseload, especially with shift changes. 

 

 

Introduction 

Predicting mortality and morbidity amongst hospitalized patients has long been a struggle for inpatient 
Internal Medicine physicians. Sepsis, in particular, leads to over half the mortality in US Hospitals.1 There 
has been only a couple of recent models that offer some hope for an early warning system to predict 
worsening outcomes from sepsis.2,3 In order to prevent physicians from burnout, more hospital 
organizations are turning to shift work for the care of hospitalized patients, similar to the Internal 
Medicine training programs that follow the eighty-hour work limit for physicians set by the Accreditation 
Council for Graduate Medical Education (ACGME). Such shift work frequently leads to a handoff of 
patients, with many physicians often being the sole provider in the hospital for close to one hundred 
patients. The hand-off tools such as I-PASS and other tools can prove ineffective due to subjectivity, 
inconsistency of updates, and copying and pasting practices, which can negatively impact care. We 
propose developing an artificial intelligence model that helps predict which patients will be most at risk 
of increased mortality as a resource for physicians to prioritize which patients they should concentrate 
on, giving as much time as possible during their shift. Unfortunately, physicians tend to be reactive on 
shift work to calls of distress from the nursing or respiratory care or other support staff rather than 
proactive in addressing issues with patients before they require a transfer to an intensive care unit area. 
A measure called ward transfer mortality in the Veterans Healthcare System looks at the death rate of 
patients within 30 days of being transferred to an intensive care unit. This measure is particularly 
important in patients with aggressive infections such as sepsis, pneumonia, bacteremia, abscesses, and 
endocarditis, which require timely interventions for improved outcomes.  

 

In our model, we attempted to look at patients who were transferred to the intensive care unit at the 
James A. Haley Veterans' Hospital, a facility in the VA Health System with high complexity. This complex 
facility follows the usual academic center model of having trainees such as residents and fellows 
working with Attending staff. We examined patients with significant infectious states and those with 
pulmonary, neurological, and cardiology diagnoses. In addition, we looked at the following factors 
concerning their ward transfer mortality:  

(a) Drop in Leukocyte count of 50 percent or greater before they were deemed to require transfer 
to the intensive care unit (ICU); 

(b) Drop in Hemoglobin level of 25 percent or greater before they were deemed to need transfer to 
the ICU; 

(c) Presence of a C-Reactive Protein (CRP) being ordered on the patient during the hospitalization 
before they were deemed to require transfer to the ICU; 

(d) Age of the patient; 
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(e) Prior hospitalizations before the index hospitalization were there was a transfer to the ICU.  
 

The goal is to develop a "risk score" that would be updated at the time of any new laboratory data. 
Based on the risk score of those hospitalized patients, an automated patient list would be generated and 
prioritized from the highest risk to the lowest risk patients. This would help physicians working on these 
non-traditional hours shifts to prioritize those patients that possibly need further care during their shift. 
For example, this might lead to the following actions below depending on the clinical situation:  

1) Increase use of imaging in patients with infection with source not confirmed and worsening 
artificial intelligence (AI) risk score; 

2) Increase use of broad-spectrum antibiotics in patients with worsening AI risk score or 
consultation to Infectious Diseases for review of the case to ensure that proper antibiotic 
coverage is present and for expertise in other matters such as concomitant fungal infection in a 
patient with bacteremia;    

3) Increase the use of advanced care settings such as Progressive Care Units (PCU) or Step-down 
units to attempt to manage the patient better while still avoiding intensive care unit admission;  

4) Consider other advanced procedures such as bronchoscopy, transesophageal echocardiograms, 
or incision/debridement interventions.  

 

A dynamic AI "risk score" model would also help prevent certain heuristic errors that can occur in clinical 
decision-making, such as anchoring bias.4  

Materials and Methods 

Dataset 

Records of patients who were transferred from non-intensive care units to intensive care units were 
queried from the Veteran Affairs Corporate Data Warehouse (CDW). Two thousand four hundred 
twenty-five records were identified. The dataset did not contain any patient-identifiable information. 
The patient outcome was designated a dependent variable, with bad outcome defined as the patient 
dying within 30 days of admission and good outcome as the patient being alive within 30 days of 
admission. For a complete list of variables, see Table 1.  

The veteran population is predominantly male, which can cause the ML models not to generalize well to 
female veterans.5 However, due to the limited dataset (less than twenty-five hundred data points), we 
did not address this potential problem in this pilot study. Instead, we plan to address it in a follow-up 
project with a vastly enlarged dataset. 

Data cleaning and preparation 

Columns with more than 20% missing values were deleted. Other missing values were replaced with 
"other" for categorical variables and with the mean value of the column for continuous variables. In 
addition, some numeric features were converted to categorical features with the final dataset of 8 
numeric features and 14 categorical features. Finally, the data was split into training/validation (90%) 
and testing (10%) using the Scikit-Learn Python library.  

Data visualization 
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The AutoViz Python library was used to graph the dependent variable (outcome) relationship to various 
independent variables. 

Model training and evaluation 

The PyCaret Python library was used to train, evaluate, and test various machine-learning models. Due 
to an imbalanced dataset (13% bad outcome, 87% good outcome), SMOTE (Synthetic Minority 
Oversampling Technique) was used to balance the training dataset. The six best-performing models 
were fine-tuned and evaluated on the unseen data from the testing dataset. The threshold was 
optimized for the best sensitivity to detect a bad outcome. The Light Gradient Boosting Machine 
(LightGBM) model showed the best results, see Figure 1 and Table 2.  

Since two independent variables, Length of Stay and Days to Intensive Care Unit Transfer were unknown 
at the time of admission, we removed them from the dataset and repeated the experiments. Again, the 
best performance was achieved with the LightGBM. See Figure 2 and Table 3. 

Results 

The best results were obtained with the LightGBM model with both datasets, one that included Length 
of Stay and Days to Intensive Care Unit Transfer variables and the other without these two variables. 
The former achieved Receiver Operating Characteristics Curve - Area Under the Curve (ROC-AUC) of 
0.89, an accuracy of 0.72, a sensitivity of 0.97, and a specificity of 0.68, while the latter achieved a ROC-
AUC of 0.86, an accuracy of 0.71, sensitivity of 0.94 and specificity of 0.67, on the unseen testing 
dataset, see Table 3 and Table 4. The top five features for the former model were Total Length of Stay, 
Days to Intensive Care Transfer, Lymphocytes Next Lab Value, Lymphocytes First Lab Value, and Platelet 
First Value, see Figure 3. For the latter model, the top five features were Lymphocytes First Lab Value, 
Hemoglobin First Lab Value, Hemoglobin Next Lab Value, Platelet First Lab Value, and Lymphocytes Next 
Lab Value, see Figure 4. 

Discussion 

Our artificial intelligence models clearly show that there are other relationships to explore in looking at 
outcomes of patients that are hospitalized in the general medical wards or progressive care units (also 
known as step-down units) who start to have a change in lymphocyte count values, hemoglobin values, 
and platelet count values. Previous models looking at poor outcomes were based on length of stay 
models and being transferred to the intensive care unit itself.6 Unfortunately, these models do not help 
physicians proactively manage patients and recognize significant deterioration of clinical conditions 
before a transfer is required to an intensive care unit. Our artificial intelligence project sets out to do 
just that.  

There are numerous future directions that we can explore as far as the expansion of this project. One 
direction would be to make sure that the hemoglobin drop and platelet count drop are not occurring in 
the setting of overt disseminated intravascular coagulation (DIC). Our project added the lymphocyte 
count drop, which is not part of the DIC process and related very consistently with the hemoglobin drop 
and the platelet count drop. The lymphocyte count, in particular, had become an essential acute phase 
reactant item in the face of the COVID-19 pandemic, where such dramatic lymphocyte count drops were 
noted when the patient started to become dramatically ill.7  
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The future direction of this project is to continue to build on additional factors that refine the 
predictability model of worsening of the patient's condition once admitted to a general medical or 
surgical floor. For example, future projects could look at the relationship between vital signs changes in 
heart rate and systolic blood pressure readings, especially if they remain in what would be considered 
normal range but still changed from the patient's baseline values during the initial parts of the 
hospitalization. In addition, future studies may also include variables like temperature, blood pressure, 
ventilation, ICD9/10 codes, and vasopressor data, among others. 

Developing an item for physicians to use to identify patients objectively from their laboratory values 
changes in hemoglobin, platelet count, and lymphocyte count would be a beneficial adjunct for medical 
and surgical house officers who take care of numerous patients on shift work and often do not have a 
direct evaluation of the patient at the beginning of their shifts or even during the duration of their shifts. 
In addition, such an "alert" system would help stratify patients at risk of highest mortality and morbidity 
in the next 24 hours and also could relay those patients that have changed the most since the last time 
an "at risk" report was run using the variables that we have implemented in our study.  

As hospitals develop teams of infectious diseases physicians and intensivists to help create high-
reliability organizational states, a model like the one we have brought forward in this paper could push 
required targeted reviews of patients by such infectious disease physicians and intensivists. This would 
include such interventions as (a) vital signs being run at a much higher frequency than every shift, (b) 
vital orthostatic signs being obtained on such at-risk patients, (c) employing therapeutic drug monitoring 
on patients receiving antibiotic therapy to ensure that drug levels are reaching expected levels, (d) 
consideration for expedited imaging orders depending on the patient clinical situation, and (e) 
consideration in academic hospital models of review of patients by attending physicians if the medical 
house officer is a resident in training.  

Conclusions  

Our pilot study created the AI predictive mortality model prototype that assists providers and frontline 
staff with managing large patient loads during shift change by helping them focus their efforts toward 
improving patient outcomes. However, further studies with more variables and a larger, more 
representative dataset are needed to make such a model more robust and to generalize better to 
various diverse populations. 
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Table 1. List of Variables 

 

Variable  Description 
Outcome 0 = Good, 1 = Bad (death within 30 days of admission 
Age Age of the patient at the time of admission 
ED Visit Flag Was the patient seen first in the Emergency Room 
Admit Specialty Admitting specialty name 
Transfer Ward Intensive Care Unit (ICU) Type 
Diagnosis MDC Diagnostic Category 
Infection MDC Presence of infection 
Platelet 25 Drop Flag 25% platelet drop 
Lymphocytes 50 Drop Flag 50% lymphocytes drop 
Platelet Labs Found Were platelet results present 
Platelet First Lab Value Platelet values at admission 
Platelet Next Lab Value Platelet values right after transfer to ICU 
CRP Labs Found Were CRP results present 
Albumin Labs Found Were Albumin results present 
Lymphocytes First Lab 
Value Lymphocytes values at admission 
Lymphocytes Next Lab 
Value Lymphocytes values right after transfer to ICU 
Hemoglobin Labs Found Were hemoglobin results present 
Hemoglobin First Lab 
Value Hemoglobin results at admission 
Hemoglobin Next Lab 
Value Hemoglobin results right after transfer to ICU 
Admissions within Prev 
Year 

Number of admissions in 12 months prior to the current 
admission 

Admit to ICU Transfer Days Days of stay from admission to ICU transfer 
Total LOS Total length of stay in the hospital 
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Table 2. Results for the dataset with 22 independent variables (lr – Logistic Regression, gbc – Gradient 
Boosting Classifier, lightgbm – Light Gradient Boosting Machine, qda – Quadratic Discriminant Analysis, 
rf – Random Forrest, xgboost – Extreme Gradient Boosting). 

 

ML Method lr GBC lightgbm qda rf xgboost 
Test Accuracy 0.41 0.88 0.72 0.76 0.58 0.78 
Test AUC 0.87 0.87 0.89 0.82 0.84 0.89 
Test Sensitivity 0.97 0.31 0.97 0.87 0.94 0.91 
Test Specificity 0.33 0.97 0.68 0.74 0.52 0.76 
Threshold 0.1 0.5 0.1 0.4 0.2 0.1 

 

Table 3. Results for the dataset with 20 independent variables (without Total Length of Stay and Days to 
Intensive Unit Transfer). 

 

ML Method lr GBC lightgbm qda rf xgboost 
Test Accuracy 0.37 0.86 0.71 0.68 0.62 0.81 
Test AUC 0.83 0.84 0.86 0.86 0.83 0.83 
Test Sensitivity 1 0.22 0.94 0.91 0.94 0.41 
Test Specificity 0.28 0.96 0.67 0.65 0.57 0.87 
Threshold 0.1 0.5 0.3 0.4 0.2 0.5 
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Figure 1. Confusion matrix for the dataset with 22 independent variables (0 – good outcome, 1 – bad 
outcome). 

 

 

 

Figure 2. Confusion matrix for the dataset with 20 independent variables (0 – good outcome, 1 – bad 
outcome). 
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Figure 3. Feature importance plot for the dataset with 20 independent variables. 
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