Abstract
Understanding the contribution of different diarrhoeagenic Escherichia coli pathotypes to disease burden is critical to mapping risk and informing vaccine development. Targeting select virulence genes by PCR is the diagnostic approach of choice in high-burden, least-resourced African settings. We compared the performance of a commonly-used multiplex protocol to whole genome sequencing (WGS).
PCR was applied to 3,815 E. coli isolates from 120 children with diarrhoea and 357 healthy controls. Three or more isolates per specimen were also Illumina-sequenced. Following quality assurance, ARIBA and Virulencefinder database were used to identify virulence targets. Root cause analysis of deviant PCR results was performed by examining target sensitivity using BLAST, Sanger sequencing false-positive amplicons, and identifying lineages prone to false-positivity using in-silico multilocus sequence typing and a Single Nucleotide Polymorphism phylogeny constructed using IQTree.
The sensitivity and positive predictive value of PCR compared to WGS ranged from 0-77.8% while specificity ranged from 74.5-94.7% for different pathotypes. WGS identified more enteroaggregative E. coli (EAEC), fewer enterotoxigenic E. coli (ETEC) and none of the Shiga toxin-producing E. coli detected by PCR, painting a considerably different epidemiological picture. Use of the CVD432 target resulted in EAEC under-detection, and enteropathogenic E. coli eae primers mismatched more recently described intimin alleles common in our setting. False positive ETEC were over-represented among West Africa-predominant ST8746 complex strains. PCR precision varies with pathogen genome so primers optimized for use in one part of the world may have noticeably lower sensitivity and specificity in settings where different pathogen lineages predominate.
Competing Interest Statement
The authors have declared no competing interest.
Funding Statement
This work was supported by an African Research Leader’s Award to INO, GD and NRT jointly funded by the UK Medical Research Council (MRC) and the UK Department for International Development (DFID) under the MRC/DFID Concordat agreement and is also part of the EDCTP2 programme supported by the European Union.
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
The details of the IRB/oversight body that provided approval or exemption for the research described are given below:
This study was part of a larger investigation of the epidemiology of diarrhoeagenic E. coli among children with diarrhoea presenting to primary health clinics in southwestern Nigeria with ethical approval from the University of Ibadan/University College Hosptial ethics committee (UI/EC/15/0093). Patient parents or guardians provided written informed consent to participate.
I confirm that all necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived, and that any patient/participant/sample identifiers included were not known to anyone (e.g., hospital staff, patients or participants themselves) outside the research group so cannot be used to identify individuals.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.
Yes
Data Availability
Whole genome sequence data were submitted to ENA and are available Genbank https://www.ncbi.nlm.nih.gov/genbank/ as Bioproject PRJEB8667