1 Ultrasound evaluation of vagus nerve cross-sectional area in a community-dwelling elderly

- 2 Japanese cohort
- 3
- 4 Kazumasa Oura*, Hiroshi Akasaka, Naoki Ishizuka, Yuriko Sato, Masahiro Kudo, Takashi
- 5 Yamaguchi, Mao Yamaguchi Oura, Ryo Itabashi, and Tetsuya Maeda
- 6
- 7 Division of Neurology and Gerontology, Department of Internal Medicine, School of Medicine,
- 8 Iwate Medical University, 2-1-1 Idaidori, Yahaba-Cho, Shiwa-Gun, Iwate 028-3695, Japan
- 9
- 10 *Corresponding author
- 11 E-mail: koura@iwate-med.ac.jp (KO)

12

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

13 Author Contributions

- 14 Conceptualization: K.O., T.M. Data curation: H.A, N.I. Formal analysis, H.A. Funding
- 15 acquisition, T.M. Investigation, H.A., N.I., Y.S., M.K., T.Y., M.Y.O. Methodology, K.O., H.A.
- 16 Project administration: K.O., H.A., T.M. Resources: H.A., N.I., T.M. Software: H.A.
- 17 Supervision: R.I., T.M. Validation, M.Y.O., R.I. Writing of the original draft: K.O. Writing,
- 18 review, and editing: M.O., R.I., T.M.

20 Abstract

21	Objectives : Although the vagus nerve (VN) is easily observed by ultrasonography, few studies
22	have evaluated the cross-sectional area (CSA) of the VN in healthy older individuals from East
23	Asia. In this study, we aimed to report reference values for the CSA of the VN in community-
24	dwelling elderly Japanese individuals and to identify any associated medical history and/or
25	lifestyle factors.
26	Methods : The present study included 336 participants aged \geq 65 years from a prospective
27	cohort study conducted in Yahaba, Japan from October 2021 to February 2022. The CSA of the
28	VN was measured bilaterally at the level of the thyroid gland by ultrasonography. Univariate
29	and multivariable linear regression analyses were conducted to identify the associations between
30	clinical and background factors and the CSA of the VN on each side.
31	Results : In our cohort, the median CSA of the VN was 1.3 mm ² (interquartile range [IQR] 1.1–
32	1.6) on the right side and 1.2 mm ² (IQR 1.0–1.4) on the left side. Multivariable linear regression
33	analysis showed that history of head injury ($\beta = -0.15$, $p < .01$), history of convulsion ($\beta = 0.19$,
34	$p < .01$), and BMI ($\beta = 0.30, p < .01$) were independently associated with the CSA of the VN on
35	the left side. In contrast, there were no independent associations between any of the assessed
36	variables and the CSA on the right side.

- 37 Conclusion: We have reported reference VN CSA values for community-dwelling elderly
- 38 Japanese individuals. In addition, we showed that the CSA of the VN on the left side was
- 39 positively associated with a history of convulsive seizure and BMI and inversely associated with
- 40 a history of head injury.
- 41 Keywords: vagus nerve, nerve cross-sectional area, neuromuscular ultrasound, reference values,
- 42 elderly
- 43

44 Introduction

45	The utility of ultrasonography for imaging the vagus nerve (VN) was first reported in 1998 [1].
46	Since then, ultrasonography has been used to assess the cross-sectional area (CSA) of the VN in
47	patients with a variety of neurological conditions in order to investigate potential pathological
48	changes. Such conditions include neurodegenerative diseases such as Parkinson's Disease [2–7]
49	and amyotrophic lateral sclerosis [8-10], neuropathies such as Charcot-Marie-Tooth [11, 12],
50	Guillain-Barré syndrome [13], and transthyretin familial amyloid polyneuropathy [14], as well
51	as fibromyalgia [15]. Significant reductions in the CSA of the VN have been observed on the
52	right side [5] or on both sides in Parkinson's disease [3, 4, 6] and on both sides in ALS [9, 10],
53	correlating variably with disease severity and duration and age [3, 4, 9, 10]. However, not all
54	studies have identified differences [2, 7, 8]. In addition, Liu et al. [13] showed enlargement of
55	the VN on both sides in a cohort of northern Chinese patients with Guillain-Barré syndrome
56	subtypes; the VN was larger in patients exhibiting autonomic dysfunction. Furthermore,
57	recently, we have shown the cross-sectional area (CSA) of the VN on the right side to be an
58	independent predictor of atrial fibrillation (AF) in a cohort of Japanese patients following acute
59	ischemic stroke or transient ischemic attack [16].
60	

61	As ultrasound of the peripheral nerves is being increasingly used to conduct structural
62	assessments in various diseases, well-defined references values for the CSA of the VN are
63	essential. Recently, a meta-analysis of CSA reference values for the VN in healthy adults was
64	published [17]. In addition, some studies have shown the VN CSA to be relatively small in
65	Chinese patient cohorts; however, these studies were small-scale [14] or did not distinguish
66	between left and right VN [13, 14] and were not conducted in particularly aged populations.
67	Thus, overall, data regarding the VN in older East Asian—and specifically Japanese—
68	populations are lacking. This study aimed to determine reference values for the CSA of the VN
69	in community-dwelling elderly Japanese individuals and to identify any medical history and/or
70	lifestyle factors associated with these values.
70 71	lifestyle factors associated with these values.
70 71 72	lifestyle factors associated with these values. Materials and Methods
70 71 72 73	lifestyle factors associated with these values. Materials and Methods Study population
70 71 72 73 74	lifestyle factors associated with these values. Materials and Methods Study population The Japan Prospective Studies Collaboration for Aging and Dementia (JPSC-AD) is a
70 71 72 73 74 75	lifestyle factors associated with these values. Materials and Methods Study population The Japan Prospective Studies Collaboration for Aging and Dementia (JPSC-AD) is a multicenter prospective cohort study of dementia that surveyed more than 10,000 community-
 70 71 72 73 74 75 76 	lifestyle factors associated with these values. Materials and Methods Study population The Japan Prospective Studies Collaboration for Aging and Dementia (JPSC-AD) is a multicenter prospective cohort study of dementia that surveyed more than 10,000 community- dwelling elderly persons aged 65 years or older at eight study sites in Japan [18]. Among the
 70 71 72 73 74 75 76 77 	lifestyle factors associated with these values. Materials and Methods Study population The Japan Prospective Studies Collaboration for Aging and Dementia (JPSC-AD) is a multicenter prospective cohort study of dementia that surveyed more than 10,000 community- dwelling elderly persons aged 65 years or older at eight study sites in Japan [18]. Among the participants in the JPSC-AD, only those who enrolled in the Yahaba Active Aging and Healthy

79	included in the present study. The YAHABA study is a community-based prospective cohort
80	study that was established in 2016 to clarify the risk factors and etiology of dementia,
81	cerebrovascular diseases, and movement disorders in older adults [19]. The study protocol
82	complied with the ethical guidelines of the 2013 Declaration of Helsinki. The Iwate Medical
83	University School of Medicine Institutional Ethics Committee reviewed and approved the
84	protocol (no. HG2020-017), and written informed consent was obtained from all participants.
85	
86	This cross-sectional study of the VN was conducted from October 2021 to February 2022. All
87	participants underwent ultrasonography to evaluate the CSA of the VN. At the time of
88	examination, the following data were collected: history of stroke, cardiovascular disease,
89	congestive heart failure, AF, malignancy, respiratory disease, liver disease, convulsion,
90	depression, head or non-head traumatic injury (i.e., fractures or injuries requiring
91	hospitalization), Parkinson's disease, and other neurological diseases (including dementia); the
92	incidence of autonomic disorders in the subjects was not recorded. Moreover, clinical
93	backgrounds including the prevalence of hypertension, dyslipidemia, diabetes mellitus (DM),
94	and smoking and drinking habits were collected from all participants. Cardiovascular disease
95	was defined as coronary heart disease or coronary intervention. Participants' medical records
96	and documents used for regular health checks in the YAHABA study were obtained and their

97	medical history and biomarkers were compiled. All information on medical history was based
98	on the self-reports of the study participants. Convulsion was defined as the previous occurrence
99	of at least one convulsive seizure, with or without a diagnosis of epilepsy. Height, weight, body
100	mass index (BMI), and blood pressure were measured. Blood pressure was measured three
101	times using an automated sphygmomanometer with the study participants in a seated position
102	after at least 5 minutes of rest; the average of the three measurements was calculated [18].
103	Height and weight were measured while the participants were wearing light clothing without
104	shoes, and BMI was calculated. Casual blood samples were drawn from the antecubital vein of
105	all participants to test the fasting blood glucose and hemoglobin A1c concentrations.
106	Participants with a fasting blood glucose concentration \geq 126 mg/dL (7.0 mmol/L) or
107	hemoglobin A1c concentration $\ge 6.5\%$ or who reported a history of DM were considered to
108	have DM. Although the YAHABA study examined other parameters such as liver and kidney
109	function and lipid concentrations [19], only fasting blood glucose and hemoglobin A1c
110	concentrations were analyzed in the present study.
111	Ultrasound imaging
112	Ultrasound to evaluate the CSA of the VN was performed using an EPIQ CVx (Philips Japan,
113	Tokyo, Japan), Aplio 400 (Canon Medical Systems, Otawara, Japan), Logiq S8 (GE Healthcare

114 Japan, Tokyo, Japan), or Voluson E8 (GE Healthcare Japan, Tokyo, Japan). Linear probes (7–

115	12 MHz) were used in all examinations. Ultrasonography and measurements of the CSA of the
116	VN were performed by one of the five medical laboratory technicians who specialized in
117	ultrasound examination and were blinded to each patient's clinical information; imaging was
118	conducted once per patient. Cross-sectional imaging of the VN was recorded bilaterally at the
119	level of the thyroid gland [2]. Measurements taken at this level have the advantages of easy
120	identification and good inter-rater agreement [20], while analysis at a single position was used
121	to minimize testing time and patient burden. Based on the Digital Imaging and Communications
122	in Medicine files stored in the ultrasound equipment, the CSA (reported in mm ² by the
123	ultrasound system) of the VN was measured after manual tracing of the periphery of the VN
124	section.
125	
126	Statistical analysis
127	The values were expressed as median and interquartile range (IQR), mean and standard
128	deviation, or number and frequency, as appropriate. Simple linear regression analysis was used
129	to evaluate the associations between the CSA of the VN and the individual background
130	characteristics of the participants. Factors that were significant in the simple linear regression
131	analysis were selected for evaluation as independent parameters by multivariate analysis. For
132	
	the multivariable linear regression analysis, the world Health Organization BMI classification

was used to categorize the participants as underweight (BMI < 18.5 kg/m²), normal (BMI 18.5-

134	24.9 kg/m ²), overweight (BMI 25.0–29.9 kg/m ²), or obese (BMI \ge 30 kg/m ²) [21]. All statistical
135	analyses were conducted using SPSS version 26 (IBM Japan, Tokyo, Japan), and $p < 0.05$ was
136	considered statistically significant.
137	
138	Results
139	After excluding 10 subjects who were incapable of providing informed consent, a total of 336
140	participants were included in this study. The characteristics of the participants are shown in
141	Table 1. Ultrasound imaging (Fig.1) showed that in our study population, the median CSA of
142	the VN was significantly smaller on the left side than on the right side (1.2 mm ² versus 1.3
143	mm ² , $p < .01$), in line with previous studies [17, 20, 22, 23].
144	

145 Table 1. Characteristics of the study participants

Variables

Age (years), median [IQR]	75.5 [73–80]
Male sex, no. (%)	150 (44.6)
Stroke, no. (%)	24 (7.1)

Cardiovascular disease, no. (%)	20 (6.0)
Atrial fibrillation, no. (%)	24 (7.1)
Congestive heart failure, no. (%)	7 (2.1)
Malignancy, no. (%)	51 (15.2)
Respiratory disease, no. (%)	51 (15.2)
Liver disease, no. (%)	43 (12.8)
Head injury, no. (%)	27 (8.0)
Non-head injury, no. (%)	124 (36.9)
Depression, no. (%)	4 (1.2)
Convulsion, no. (%)	3 (0.9)
Parkinson's disease, no. (%)	0 (0)
Other neurological disease, no. (%)	30 (8.9)
Hypertension, no. (%)	218 (64.9)
Dyslipidemia, no. (%)	136 (40.5)
Diabetes mellitus, no. (%)	59 (17.6)
Current smoker, no. (%)	108 (32.1)
Regular alcohol consumption, no. (%)	128 (38.1)
Height (cm), median [IQR]	154 [148–162]

Weight (kg), median [IQR]	57 [49–66]
BMI (kg/m ²), median [IQR]	23.8 [21.6–26.2]
BMI category, no. (%)	
<18.5 kg/m ²	14 (4.2)
18.5–24.9 kg/m ²	199 (59.6)
25.0–29.9 kg/m ²	102 (30.5)
$\geq 30 \text{ kg/m}^2$	19 (5.7)
Fasting blood glucose (mmol/L), median [IQR]	6.53 [5.60-7.90]
Hemoglobin A1c (NGSP %), median [IQR]	5.6 [5.4–5.9]
Systolic blood pressure (mmHg), median [IQR]	143.7 [131.1–159.3]
Diastolic blood pressure (mmHg), median [IQR]	75.0 [68.0-82.3]
Right VN CSA (mm ²), median [IQR]	1.3 [1.1–1.6]
Left VN CSA (mm ²), median [IQR]	1.2 [1.0–1.4]

146 VN, vagus nerve; CSA, cross-sectional area; IQR, interquartile range; no., number; BMI, body

147 mass index; NGSP, National Glycohemoglobin Standardization Program.

149 Fig. 1 Ultrasonographic image of the vagus nerve.

- 150 The vagus nerve is shown as a small, rounded, hypoechoic structure between the carotid artery
- 151 and jugular vein. The cross-sectional area of the vagus nerve was measured by manual tracing
- 152 (yellow circle). A, common carotid artery; V, jugular vein.
- 153
- 154 We conducted simple linear regression analysis to determine the relationship between the
- background of the participants and the CSA of the VN on the left and right sides (Table 2). Sex,
- 156 height, body weight, BMI, and smoking habit were significantly associated with the CSA of the
- 157 right VN. Furthermore, body weight, BMI, head injury, convulsion, hypertension, and smoking
- 158 habit were significantly associated with the CSA of the left VN.
- 159

160 Table 2. Simple linear regression analysis of the association between vagus nerve cross-

161 sectional area and background of the participants.

	Cross-sectional area of the vagus nerve			
	Right		Left	
	R ²	<i>p</i> -value	R ²	<i>p</i> -value
Sex	0.022	< .01	0.006	.15
Age	0.001	.55	0.001	.67
Height	0.036	< .01	0.007	.12

Body weight	0.040	< .01	0.064	< .01
Body mass index	0.015	.03	0.067	< .01
Stroke	< 0.001	.84	< 0.001	.95
Cardiovascular disease	0.004	.26	< 0.001	.73
Atrial fibrillation	0.001	.50	< 0.001	.94
Congestive heart failure	< 0.001	.78	< 0.001	.99
Malignancy	< 0.001	.84	< 0.001	.69
Respiratory disease	< 0.001	.87	0.001	.54
Liver disease	0.003	.35	0.001	.54
Head injury	0.005	.21	0.014	.03
Non-head injury	< 0.001	.82	0.002	.43
Depression	< 0.001	.92	0.002	.37
Convulsion	0.002	.42	0.025	<.01
Other neurological disease	0.002	.40	< 0.001	.97
Hypertension	0.002	.41	0.012	.04
Dyslipidemia	0.002	.43	< 0.001	.94
Diabetes mellitus	< 0.001	.98	0.001	.53
Fasting blood glucose	0.005	.21	< 0.001	.72

Hemoglobin A1c	0.001	.60	0.001	.61
Current smoker	0.013	.03	0.013	.04
Regular alcohol consumption	0.008	.11	.003	.30
Systolic blood pressure	< 0.001	.74	0.005	.18
Diastolic blood pressure	0.001	.52	0.005	.21

162

163 Multivariable linear regression analysis with adjustments for age, sex, BMI, AF, DM, head

164 injury, convulsion, hypertension, and smoking habit showed that history of head injury ($\beta = -$

165 0.15, p < .01), history of convulsion ($\beta = .19, p < .01$), and BMI ($\beta = .30, p < .01$) were

166 independently associated with the CSA of the VN on the left side, while none of the variables

167 were significantly associated with the CSA of the VN on the right side (Table 3).

168

169 Table 3. Multivariable linear regression analysis of variables associated with vagus nerve

170 cross-sectional area

	Right cro	oss-sectional area	Left cross-sectional area		
	β	<i>p</i> -value	β	<i>p</i> -value	
Male sex	-0.13	.10	0.05	.50	
Age	0.03	.61	0.04	.47	

Atrial fibrillation	-0.06	.31	0.01	.86
Head injury	-0.08	.15	-0.15	< .01
Convulsion	0.05	.32	0.19	< .01
Hypertension	0.02	.79	0.02	.74
Current smoking habit	0.02	.80	0.11	.13
Diabetes mellitus	-0.01	.83	-0.004	.94
Body mass index	0.06	.28	0.30	< .01

171

172

173 Discussion

174 The present study provides reference values for the CSA of the VN in Japanese community-

dwelling individuals aged 65 years and older. Moreover, multivariable linear regression analysis

176 revealed that the CSA of the VN on the left side was positively associated with a history of

177 convulsion and higher BMI and inversely associated with a history of head injury. In contrast,

178 there were no independent associations between any of the assessed variables and the CSA of

the VN on the right side.

181	The present study measured the CSA of the VN by ultrasound in a relatively large cohort,
182	compared with previous studies. CSA values for the VN measured by ultrasound in healthy
183	individuals vary widely among different studies, ranging from 1.3 to 6.0 mm ² on the right side
184	and from 1.1 to 5.9 mm ² on the left side [2–5, 7–12, 15, 20, 22–25] (see Table 4). Since the
185	methodology (ultrasound and resolution) for all these studies were the same, this discrepancy
186	between studies may be explained by differences in the study cohorts. Most previous studies
187	have been conducted in non-Asian countries; however, the CSA values obtained in our study
188	appeared comparable to those found in a small number of Chinese studies [12–14]. For
189	example, the median CSA of the left VN in a pilot study conducted by Du et al. [14] was 1.0
190	mm ² (range 1.0–2.0). Moreover, the participants in our study were older than previously studied
191	cohorts, as only participants aged 65 years or older were included. Pelz et al. reported that the
192	CSA of the VN was inversely correlated with age [20], although another study, conducted by
193	Laucius et al., failed to find any differences in VN CSA between younger and older age cohorts
194	[26]; however, the maximum age of the subjects in the latter study was 55 years. Thus, the
195	relatively small CSA of the VN observed in the present study may have been related to the
196	advanced age of the participants. In addition, the somewhat unexpected lack of association
197	between VN CSA and age in our study may have been because in individuals who are already
198	relatively old (\geq 65 years), the CSA of the VN may be unaffected by further aging.

199

200 Table 4. Results of current and previous ultrasound studies describing the cross-sectional

201 area of the vagus nerve in healthy individuals

First author's name	Number of subjects	Age (years), mean (SD)	Height (cm), mean (SD)	Weight (kg), mean (SD)	BMI (kg/m ²), mean (SD)	Right CSA (mm ²), mean (SD)	Left CSA (mm ²), mean (SD)	
Present study	336	76.9	155.0	58.3	24.1	14(04)	12(04)	
		(5.5)	(9.2)	(11.9)	(3.8)	()	()	
Sijben LCJ [7]ª	51	72 (8)	NA	NA	NA	2.2 (0.7)	1.9 (0.6)	
Papadopoulou	28	57 (8.9)	NA	NA	27.3	2.9 (0.8)	2.3 (0.8)	
M [9] ^a					(4.6)			
	28	50 (NA)	NA	NA	25.4	3.2 (0.8)	2.7 (1.1)	
WI [13]"		50.8	167.6	65 /	(\mathbf{NA})			
Liu L [13] ^b	40	(12.8)	(7.8)	(10.6)	NA	1.3 (0.5)	NA	
Horsager J [5] ^a	56	69.1 (8.9)	NA	NA	24.9 (3.7)	2.4 (0.6)	2.0 (0.5)	
Sartucci F		65.2	169.9	71.0	24.5			
[25] ^a	20	(10.3)	(7.1)	(16.9)	(5.0)	6.0 (1.3)	5.6 (1.3)	
Holzapfel K [10]ª	19	63.1 (11.1)	NA	NA	NA	2.2 (0.6)	2.0 (0.3)	
Curcean AD			174.0	72.0	23.6			
[22] ^a	21	25 (2)	(10.0)	(17.0)	(4.4)	2.9 (1.3)	2.1 (0.8)	
		M 43.7				M 1.8		
Walter U [23] ^a	70	(20.3)	173.6	74.6	NA	(0.6)	M 1.4	
		F 45.5	(7.9)	(15.7)		F 2.0	(0.3)	
		(19.9)				(0.7)	r 1.0 (0.7)	
	35	67.9	167.7	74.9	NT A	25(0.5)	18(04)	
Pelz JO $[3]^a$	Pelz JO [3] ^a	35	(6.2)	(9.1)	(14.4)	1 N / A	2.5 (0.5)	1.0 (0.4)

Pelz JO [20] ^a	60	49.7	170.0	71.0	NIA	26(0.6)	1.9 (0.4)
	00	(19.7)	(9.0)	(13.0)	INA	2.0 (0.0)	
Walter II [4]a	61	45.1	173.8	75.1	NA	1 2 (0 5)	11(05)
walter 0 [4]"	01	(20.7)	(8.1)	(16.8)		1.5 (0.5)	1.1 (0.3)
Fedtke N [2] ^a	15	NA	NA	NA	NA	2.7 (0.7)	2.4 (0.7)
Cartwright MS	24	38.6	NI A	NT A	NIA		5 0 (NIA)
[11] ^c	24	(NA)	NA	NA NA NA N	NA	5.9 (NA)	
Cartwright MS	60	45.9	168.0	74.5	26.5	5 0 (2 0)	NIA
[24]°	00	(NA)	(NA)	(NA)	(NA)	5.0 (2.0)	INA
Waisa D [8]a	40	65.7	171.0	75.3	25.8	16(05)	14(05)
weise D [8]"	40	(11.8)	(9.0)	(12.1)	(3.8)	1.0 (0.3)	1.4 (0.3)
		47.6	170	66 5	22.0	2.0^{+}	1.0†
Du K [14] ^b	17	(12.9)	(7.0)	(6.5)	(1, 1)	(1.0-	(10.20)#
		(12.8)	(7.0)	(0.3)	(1.1)	3.0)#	(1.0-2.0)"
		40	167 2	65	<u></u>	1.0†‡	
Niu J [12] ^b	105	42	107.2	0.0	25.2 (1.0-		
		(16.1)	(8.3)	(10.8)	(2.8)	2.0)#	

202 VN, vagus nerve; CSA, cross-sectional area; SD, standard deviation; NA, not available; M,

203 Male; F, Female. Studies were conducted in Europe^a, China^b, and the US^c. [†] median value; [#]

204 range; [‡] a single value for the vagus nerve was given.

205

206 Our findings indicated that the CSA of the VN on the left side was associated with BMI.

207 Although an association between BMI and VN CSA is to be expected, some previous reports

208 have indicated a lack of correlation between weight and VN CSA on either side [20, 22, 23].

209 The lower BMI of our study cohort, compared with previous study cohorts, may also have

210 contributed to the smaller VN CSA in our study. Furthermore, our study found no association

between the CSA of the VN and DM, despite a previous study showing that the functional statusof the VN was reduced in DM patients [27].

213

214	We showed that the CSA of the VN on the left side was significantly smaller in participants
215	with a history of head injury than in those without such a history. Interestingly, history of non-
216	head injury was not associated with the CSA of the VN. The smaller CSA of the left VN in
217	those with prior head injury may be related to autonomic failure. However, this is necessarily
218	somewhat speculative as the exact nature of the head injuries and resulting brain damage was
219	not ascertained in the study participants; further studies are required to verify this association.
220	Traumatic head injury can be caused by orthostatic hypotension, which is a typical symptom of
221	autonomic failure [28]. Head injury due to orthostatic hypotension is especially frequent in the
222	elderly population [29], and orthostatic hypotension is significantly positively associated with
223	falls in older adults [30].
224	
225	Heart rate variability can be used to assess autonomic nervous system function and is reportedly
226	inversely associated with the CSA of the left VN [31]. Furthermore, atrophy of the VN has been
227	reported in patients with Parkinson's disease [32] and has been observed to correlate with

228 parasympathetic dysfunction [6]. However, other studies have contradicted these findings [2, 7].

229	Although none of the present study participants had neurological disorders featuring autonomic
230	neuropathy, we are currently conducting a study in patients with Parkinson's disease to
231	investigate the usefulness of CSA of the VN with regard to diagnosis.
232	
233	In our cohort, a small percentage of participants had suffered at least one convulsive seizure. As
234	these were older individuals, some of these patients may have been epileptic without having
235	been formally diagnosed. Interestingly, although the relationship between convulsions and CSA
236	of the VN is currently unknown, we showed that the CSA of the VN on the left side was
237	significantly larger in individuals with a history of convulsive seizure. VN stimulation is known
238	to be an effective treatment for epilepsy, reducing the frequency and intensity of seizures [33].
239	The suggested mechanisms include afferent vagal projections to seizure-generating regions in
240	the basal forebrain and insular cortex [34], effects on the locus ceruleus [35,36],
241	desynchronization of hypersynchronized cortical activity [37, 38], and cortical inhibition
242	secondary to the release of inhibitory neurotransmitters [39, 40]. Nonetheless, the precise
243	mechanisms by which VN stimulation therapy achieves seizure reduction have not been fully
244	elucidated. Assuming that the CSA of the VN on the left side might be spontaneously enlarged
245	to control seizures, greater CSA might be a consequence rather than a cause of epilepsy. As this

possibility requires further investigation, in future studies we aim to measure the CSA of theVN in patients admitted with convulsive seizures.

249	The present study had some limitations. First, the accuracy of the CSA measurements was not
250	examined. Five medical laboratory technicians measured the CSA of the VN in our study
251	cohort, but intra- and inter-observer reliabilities could not be determined as each CSA was
252	measured only once by a single technician. Second, as this was a cross-sectional study, we
253	could not address causal relationships between the variables and the CSA of the VN. Third, the
254	resolution of the ultrasound probes was relatively low for the measurement of nerves; future
255	studies should use probes with resolutions of 15 MHz or more. Fourth, as medical history
256	(including previous injuries) was self-reported by the study participants, there was potential for
257	inaccuracies in the information recorded. Finally, in the future, it will be important to evaluate
258	the CSAs of nerves other than the VN in a Japanese cohort, to see if they are also smaller than
259	the values reported for other populations.
260	
261	In conclusion, we determined reference values for the CSA of the VN in a large cohort of

- community-dwelling elderly Japanese individuals. The CSA of the VN on the left side was
- 263 positively associated with history of convulsive seizure and BMI and inversely associated with

264	history of head injury. In contrast, there were no independent associations between any of the
265	assessed variables and the CSA on the right side. A longitudinal prospective cohort study is
266	warranted to evaluate the causal relationships between the clinical/background factors identified
267	in this study and the CSA of the VN.
268	
269	Acknowledgments
270	We thank Kelly Zammit, BVSc, from Edanz (<u>https://jp.edanz.com/ac</u>) for editing a draft of this
271	manuscript and Sarah Ivins from Edanz (https://jp.edanz.com/ac) for editing and medical
272	writing support.
273	
274	
275	References
276	1. Knappertz VA, Tegeler CH, Hardin SJ, McKinney WM. Vagus nerve imaging with
277	ultrasound: anatomic and in vivo validation. Otolaryngol Head Neck Surg. 1998;118(1):82-85.
278	2. Fedtke N, Witte OW, Prell T. Ultrasonography of the Vagus Nerve in Parkinson's
279	Disease. Front Neurol. 2018;9:525.
280	3. Pelz JO, Belau E, Fricke C, Classen J, Weise D. Axonal Degeneration of the Vagus
281	Nerve in Parkinson's Disease-A High-Resolution Ultrasound Study. Front Neurol. 2018;9:951.
282	4. Walter U, Tsiberidou P, Kersten M, Storch A, Löhle M. Atrophy of the Vagus Nerve in
283	Parkinson's Disease Revealed by High-Resolution Ultrasonography. Front Neurol. 2018;9:805.
284	5. Horsager J, Walter U, Fedorova TD, Andersen KB, Skjærbæk C, Knudsen K, et al.
285	Vagus Nerve Cross-Sectional Area in Patients With Parkinson's Disease-An Ultrasound Case-
286	Control Study. Front Neurol. 2021;12:681413.
287	6. Huckemann S, Müller K, Averdunk P, Kühn E, Hilker L, Kools S, et al. Cross-
288	sectional area of the vagus nerve correlates with parasympathetic dysfunction in Parkinson's
	23

289 Disease. Clin Neurophysiol. 2021;132(8): e31-e32.

290 7. Sijben LCJ, Mess WH, Walter U, Janssen AML, Kuijf ML, Oosterloo M, et al. The
291 cross-sectional area of the vagus nerve is not reduced in Parkinson's disease patients.
292 eNeurologicalSci. 2022;27:100400.

8. Weise D, Menze I, Metelmann MCF, Woost TB, Classen J, Otto Pelz J. Multimodal
assessment of autonomic dysfunction in amyotrophic lateral sclerosis. Eur J Neurol. 2022
Mar;29(3):715-723.

Papadopoulou M, Bakola E, Papapostolou A, Stefanou MI, Moschovos C, Salakou S,
et al. Autonomic dysfunction in amyotrophic lateral sclerosis: A neurophysiological and
neurosonology study. J Neuroimaging. 2022;32(4):710-719.

10. Holzapfel K, Naumann M. Ultrasound Detection of Vagus Nerve Atrophy in Bulbar
300 Amyotrophic Lateral Sclerosis. J Neuroimaging. 2020;30(6):762-765.

11. Cartwright MS, Brown ME, Eulitt P, Walker FO, Lawson VH, Caress JB. Diagnostic
 nerve ultrasound in Charcot-Marie-Tooth disease type 1B. Muscle Nerve. 2009;40(1):98-102.

Niu J, Zhang L, Ding Q, Liu J, Zhang Z, Cui L, et al. Vagus Nerve Ultrasound in Chronic
Inflammatory Demyelinating Polyradiculoneuropathy and Charcot-Marie-Tooth Disease Type
J Neuroimaging. 2020;30(6):910-916.

Liu L, Ye Y, Wang L, Song X, Cao J, Qi Y, et al. Nerve ultrasound evaluation of
Guillain-Barré syndrome subtypes in northern China. Muscle Nerve. 2021;64(5):560-566.

308 14. Du K, Xu K, Chu X, Tang Y, Lv H, Zhang W, et al. Vagus nerve ultrasound in
309 transthyretin familial amyloid polyneuropathy: A pilot study. J Neuroimaging. 2022;32(2):285310 291.

311 15. Papadopoulou M, Papapostolou A, Bakola E, Masdrakis VG, Moschovos C, Chroni E,
312 et al. Neurophysiological and ultrasonographic comparative study of autonomous nervous system
313 in patients suffering from fibromyalgia and generalized anxiety disorder. Neurol Sci.
314 2022;43(4):2813-2821.

315 16. Oura K, Itabashi R, Yamaguchi Oura M, Kiyokawa T, Hirai E, Maeda T. Cross316 sectional area of the vagus nerve on carotid duplex ultrasound and atrial fibrillation in acute
317 stroke: A retrospective analysis. eNeurologicalSci. 2021;25:100378.

318 17. Abdelnaby R, Elsayed M, Mohamed KA, Dardeer KT, Sonbol YT, ELgenidy A, et al.
319 Sonographic Reference Values of Vagus Nerve: A Systematic Review and Meta-analysis. J Clin
320 Neurophysiol. 2022;39(1):59-71.

18. Ninomiya T, Nakaji S, Maeda T, Yamada M, Mimura M, Nakashima K, et al. design
and baseline characteristics of a population-based prospective cohort study of dementia in Japan:
the Japan Prospective Studies Collaboration for Aging and Dementia (JPSC-AD). Environ Health
Preventive Med. 2020;25(1):64.

Taguchi K, Iwaoka K, Yamaguchi T, Nozaki R, Sato Y, Terauchi T, et al. A crosssectional study of Parkinson's disease and the prodromal phase in community-dwelling older
adults in eastern Japan. Clin Park Relat Disord. 2022;7:100147.

20. Pelz JO, Belau E, Henn P, Hammer N, Classen J, Weise D. Sonographic evaluation of
the vagus nerves: Protocol, reference values, and side-to-side differences. Muscle Nerve.
2018;57(5):766-771.

Akram DS, Astrup AV, Atinmo T, Boissin JL, Bray GA, Carroll KK, et al. Obesity:
preventing and managing the global epidemic. Report of a WHO consultation. World Health
Organization technical report series 2001;894:ixii, 1-ixii, 253.

Curcean AD, Rusu GM, Dudea SM. Ultrasound appearance of peripheral nerves in the
neck: vagus, hypoglossal and greater auricular. Med Pharm Rep. 2020;93(1):39-46.

Walter U, Tsiberidou P. Differential age-, gender-, and side-dependency of vagus, spinal
accessory, and phrenic nerve calibers detected with precise ultrasonography measures. Muscle
Nerve. 2019;59(4):486-491.

24. Cartwright MS, Passmore LV, Yoon JS, Brown ME, Caress JB, Walker FO. Crosssectional area reference values for nerve ultrasonography. Muscle Nerve. 2008;37(5):566-571.

341 25. Sartucci F, Bocci T, Santin M, Bongioanni P, Orlandi G. High-resolution ultrasound
342 changes of the vagus nerve in idiopathic Parkinson's disease (IPD): a possible additional index of
343 disease. Neurol Sci. 2021;42(12):5205-5211.

Laucius O, Gabrinovičienė R, Jucevičiūtė N, Vaitkus A, Balnytė R, Petrikonis K, et al.
Effect of aging on vagus somatosensory evoked potentials and ultrasonographic parameters of the
vagus nerve. J Clin Neurosci. 2021;90:359-362.

Yu Y, Hu L, Xu Y, Wu S, Chen Y, Zou W, et al. Impact of blood glucose control on
sympathetic and vagus nerve functional status in patients with type 2 diabetes mellitus. Acta
Diabetol. 2020;57(2):141-150.

350 28. Robertson D, Robertson RM. Causes of chronic orthostatic hypotension. Arch Intern
351 Med. 1994;154(14):1620-1624.

Timler D, Dworzyński MJ, Szarpak Ł, Gaszyńska E, Dudek K, Gałązkowski R. Head
Trauma in Elderly Patients: Mechanisms of Injuries and CT Findings. Adv Clin Exp Med.
2015;24(6):1045-1050.

30. Mol A, Bui Hoang PTS, Sharmin S, Reijnierse EM, van Wezel RJA, Meskers CGM, et
al. Orthostatic Hypotension and Falls in Older Adults: A Systematic Review and Meta-analysis.
J Am Med Dir Assoc. 2019;20(5):589-597.e585.

358 31. Pelz JO, Belau E, Menze I, Woost TB, Classen J, Weise D. Correlation between
359 sonographic morphology and function of the cervical vagus nerves. Auton Neurosci.
360 2019;220:102552.

361 32. Abdelnaby R, Elsayed M, Mohamed KA, Dardeer KT, Sonbol YT, ELgenidy A, et al.

362 Vagus nerve ultrasonography in Parkinson's disease: A systematic review and meta-analysis.
363 Auton Neurosci. 2021;234:102835.

- 364 33. González HFJ, Yengo-Kahn A, Englot DJ. Vagus Nerve Stimulation for the Treatment
 365 of Epilepsy. Neurosurg Clin N Am. 2019;30(2):219-230.
- 366 34. Cechetto DF, Saper CB. Evidence for a viscerotopic sensory representation in the cortex
 367 and thalamus in the rat. J Comp Neurol. 1987;262(1):27-45.
- 368 35. Naritoku DK, Terry WJ, Helfert RH. Regional induction of fos immunoreactivity in the
 369 brain by anticonvulsant stimulation of the vagus nerve. Epilepsy Res. 1995;22(1):53-62.
- 370 36. Krahl SE, Clark KB, Smith DC, Browning RA. Locus coeruleus lesions suppress the
 371 seizure-attenuating effects of vagus nerve stimulation. Epilepsia 1998;39(7):709-714.

372 37. Chase MH, Sterman MB, Clemente CD. Cortical and subcortical patterns of response
373 to afferent vagal stimulation. Exp Neurol. 1966;16(1):36-49.

- 374 38. Chase MH, Nakamura Y, Clemente CD, Sterman MB. Afferent vagal stimulation:
 375 neurographic correlates of induced EEG synchronization and desynchronization. Brain Res.
 376 1967;5(2):236-249.
- 377 39. Di Lazzaro V, Oliviero A, Pilato F, Saturno E, Dileone M, Meglio M, Colicchio G, Barba C,

Papacci F, Tonali PA. Effects of vagus nerve stimulation on cortical excitability in epileptic
patients. Neurology. 2004;62(12):2310-2312.

40. Marrosu F, Serra A, Maleci A, Puligheddu M, Biggio G, Piga M. Correlation between
GABA(A) receptor density and vagus nerve stimulation in individuals with drug-resistant partial
epilepsy. Epilepsy Res. 2003;55(1-2):59-70.

383

- 385
- 386
- 387
- 388

Figure