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Summary 31 
Background 32 
Since early in the COVID-19 pandemic, SARS-CoV-2 wastewater concentration has been 33 
measured as a surrogate for community prevalence. However, our knowledge remains limited 34 
regarding wastewater concentration and effects of the COVID-19 vaccination on overall disease 35 
burden as measured by hospitalization rates.  36 
 37 
Methods 38 
We used weekly SARS-CoV-2 wastewater concentration with a stratified random sampling of 39 
seroprevalence, and spatially linked vaccination and hospitalization data, from April to August 40 
2021. Our susceptible (S), vaccinated (V), variant-specific infected (I1 and I2), recovered (R), and 41 
seropositive (T) model (SVI2RT) tracked prevalence longitudinally. This was related to 42 
wastewater concentration for a spatial analysis of strain mutation, vaccination effect, and overall 43 
hospitalization burden. 44 
 45 
Findings 46 
We found strong linear association between wastewater concentration and estimated community 47 
prevalence (r=0·916). Based on the corresponding regression model, the 64% county vaccination 48 
rate translated into about 57% decrease in SARS-CoV-2 incidence. During the study period, the 49 
estimated effect of SARS-CoV-2 Delta variant emergence was seen as an over 7-fold increase of 50 
infection counts, which corresponded to over 12-fold increase in wastewater concentration. 51 
Hospitalization burden and wastewater concentration had the strongest correlation (r=0·963) at 1 52 
week lag time. We estimated the community vaccination campaign resulted in about 63% 53 
reduction in the number of daily admissions over the study period. This protective effect was 54 
counteracted by the emergence of SARS-CoV-2 Delta strain mutation. 55 
  56 
Interpretation 57 
Wastewater samples can be used to estimate the effects of vaccination and hospitalization 58 
burden. Our study underscores the importance of continued environmental surveillance post-59 
vaccine and provides a proof of concept for environmental epidemiology monitoring. 60 
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Research in context 70 
Evidence before this study: We searched Web of Science and PubMed for all available articles 71 
until August 24, 2022, using the search terms [“seroprevalence” or “antibody”] AND 72 
[“wastewater”] AND [“vaccination”]. We examined only English literature. We identified 59 73 
studies. None of these studies considered community level randomized antibody testing paired 74 
with vaccination and SARS-CoV-2 wastewater concentration data. Where wastewater and 75 
vaccination status have been historically linked is with Poliomyelitis, in the known spatial scale 76 
of vaccination rates and using wastewater surveillance to confirm presence/absence of 77 
community infection. Few studies considered hepatitis A antibodies in workers exposed to 78 
sewage to guide vaccination campaigns. We also found some non-human subject research. To 79 
our knowledge, there is no real-world setting SARS-CoV-2 study where quantified wastewater 80 
concentration is linked to a large longitudinal stratified randomized seroprevalence sampling at a 81 
sub-population scale and the population has voluntary access to a vaccination reducing 82 
hospitalization burden. 83 
 84 
Added value of this study: To our knowledge, this study provides the first analysis of SARS-85 
CoV-2 wastewater concentration as the basis for estimating subpopulation vaccination and virus 86 
mutation effects, and hospitalization burden in any country. We used actual seroprevalence data 87 
from a large US urban area that was rigorously collected through statistical sampling, to obtain a 88 
longitudinal estimate of disease prevalence. We then used a statistical model relating prevalence 89 
to wastewater concentration for a spatial analysis of vaccination, virus mutation effects, and for 90 
forecasting hospitalization burden. The methodology developed in the current paper has a 91 
potential to improve both the effectiveness of monitoring and the predictive accuracy of 92 
wastewater-based surveillance systems.  93 
 94 
Implications of all the available evidence: Our results show the potential of sustained 95 
environmental surveillance post-vaccine in urban areas and on removing bias in population-level 96 
estimates of prevalence of SARS-CoV-2 due to over-reliance on reported clinical testing data. 97 
The methodology presented here provides further proof wastewater monitoring can be 98 
successfully used as a tool for estimating both the community impact of changing disease 99 
patterns and various interventions over time. These findings have implications beyond current 100 
SARS-CoV-2 pandemic since our proposed approach is quite general and can be applied to other 101 
vaccine preventable diseases affecting human health in the absence of clinical testing data. 102 
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1. Introduction  103 
There is an increasing realization that the current methods of disease monitoring based on 104 
individual testing may be insufficient to effectively combat the new, possibly much more 105 
infectious, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants. This leaves 106 
public health researchers and policy makers in search for more reliable methods of measuring 107 
SARS-CoV-2 prevalence in communities and especially those not involving the (expensive) 108 
process of collecting individual level data. Wastewater concentration, when properly calibrated, 109 
can be a surrogate for the virus community prevalence analysis.1,2 Wastewater epidemiology 110 
promises an exciting opportunity to estimate community disease prevalence even with 111 
asymptomatic, vaccine preventable, disease.2,3 However, the handful of recent studies 112 
considering a relationship between SARS-CoV-2 wastewater concentration and the COVID�19 113 
vaccine have relied almost exclusively on statistical models calibrated with publicly available 114 
COVID�19 clinical case data.4–8 These data run the risk of biased underrepresentation of 115 
asymptomatic individuals who may not seek testing, or individuals testing in settings where 116 
reporting is low or not required.9 In this study we consider this question in the context of 117 
randomized seroprevalence surveillance, combining mechanistic and statistical frameworks to 118 
obtain a more robust and realistic answer. 119 
 120 
We used repeated cross-sectional community-wide stratified randomized sampling to measure 121 
SARS-CoV-2 nucleocapsid (N) specific IgG antibody-based seroprevalence in Jefferson County, 122 
Kentucky (USA), from April through August 2021 to determine post-vaccine community 123 
prevalence at a sub-population scale. We then related this to a statistical linear model and the 124 
available sub-population weekly wastewater surveillance data which thus yielded an explicit 125 
impact of vaccination and seroimmunity on SARS-CoV-2 wastewater concentration estimate, 126 
while controlling for prevalence in different epidemic phases. The latter may be easily translated 127 
into other important public health indicators such as the patterns of hospitalization. 128 
 129 
2. Methods 130 
2.1 Seroprevalence  131 
Community-wide stratified randomized seroprevalence sampling was conducted in four waves 132 
from April to August 2021 in Jefferson County, Kentucky (USA) which is also the consolidated 133 
government for the city of Louisville. Seroprevalence sampling was both before and during 134 
vaccination, but this analysis only considers the period after COVID-19 vaccines were made 135 
widely available to the public (N=3436). An address-based sampling frame was used to build 136 
four geographic zones. Invitations (~30,000 per wave) were mailed to sampled households and 137 
one random adult was selected to join the study. Participants completed an online consent form 138 
and survey and scheduled an in-person appointment for testing at a mobile site. In some cases, 139 
due to the timing of sampling waves, respondents may have had only the first of a two-dose 140 
vaccine series. Owing to elevated levels of vaccinated respondents in our study (~90%), 141 
seroprevalence was measured by response to IgG N antibodies.10 It was assumed over the study 142 
period vaccination induced antibodies do not decay below detection. The nucleocapsid (N) IgG 143 
test sensitivity was 65% and the specificity was 85%. The seroprevalence sampling by 144 
geographical zones are described in more detail in the Supplemental Material section S1. 145 
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2.2 Wastewater SARS-CoV-2 concentration 146 
Wastewater samples were collected twice per week from five wastewater treatment plants 147 
(N=520; Supplemental Material section S2) from April to August 2021. From an influent 24-148 
hour composite sampler, 125 ml of subsample was collected and analyzed for SARS-CoV-2. In a 149 
few cases due to an equipment malfunction, a grab sample was collected. The geographic area 150 
and population serviced by a wastewater treatment plant comprises a sewershed, the zone for 151 
which we consider in our model analysis across a range of population sizes, income levels and 152 
racial and ethnic diversity.2 Analysis used polyethylene glycol (PEG) precipitation with 153 
quantification in triplicate by reverse transcription polymerase chain reaction (RT-qPCR).11 Data 154 
for SARS-CoV-2 (N1) are reported as weekly average copies/ml of wastewater with a threshold 155 
value for N1 assays of 7·5 copies/ml. 156 
 157 
2.3 Administrative COVID-19 data 158 
Administrative data on COVID-19 vaccination and infected individuals’ hospitalization was 159 
provided by the Jefferson County health authority, Louisville Metro Department of Public Health 160 
and Wellness (LMPHW), under a Data Transfer Agreement. Vaccination data were geocoded to 161 
the sewersheds using ArcGIS Pro version 2·8·0 (Redlands, CA). Daily hospitalization data was 162 
only available aggregated at a county level.  163 
 164 
2.4 Analytical model 165 
The hybrid model for estimating the effect of vaccination and strain mutation on longitudinal 166 
wastewater concentration was developed by combining a compartmental ecological model with a 167 
statistical linear model. The former was used to longitudinally estimate population prevalence 168 
from the observed cross-sectional rates of seropositivity. We assumed the overall vaccination 169 
pattern as reported by the county, with the overall adult vaccination rate reaching 64%12 by the 170 
end of the study period. The hybrid model was used to relate the ecological model prevalence to 171 
the wastewater data. The ecological model, SVI2RT, tracked longitudinally the proportions of 172 
individuals who were susceptible (S), vaccinated (V), infected with non-Delta (I1), and Delta 173 
variant (I2), recovered (R), or seropositive (T). The model is described in more detail in the 174 
Supplemental Material section S3. We note that a version of this model that did not account for 175 
vaccination or mutation was considered in our earlier work.2  176 
 177 
2.4.1 Regression model for wastewater concentration of SARS-CoV-2 178 
Upon estimating the parameters in the ������  model, we compared the model-calculated 179 
prevalence estimates for SARS-CoV-2 infections and vaccination levels with the wastewater 180 
concentration levels of SARS-CoV-2 (N1) normalized by pepper mild mottle virus (PMMoV).13 181 
Bayesian linear regression was performed both on the county aggregated data and stratified by 182 
sub-community wastewater treatment plant zones (sewersheds). To improve the regression 183 
model stability, we used weekly average prevalence counts from the SVI2RT model as the 184 
explanatory variable, and weekly aggregated average wastewater concentrations as the single 185 
outcome variable. We assigned non-informative priors to all regression parameters. Specifically, 186 
the non-informative Cauchy distribution was assigned to regression coefficients, and the non-187 
informative gamma prior was assigned to the dispersion parameter error term.  188 
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2.4.2 Estimating vaccination, strain mutation and hospitalization effects  189 
The strong statistical significance of the regression model relating prevalence and wastewater 190 
concentration allowed for indirect estimation of the effect of population vaccination and virus 191 
mutation. Under the assumption the relationship between the wastewater concentration and the 192 
prevalence is not confounded by the vaccination and mutation process, we used the original 193 
regression equation derived from the collected wastewater and seroprevalence data to estimate 194 
the wastewater concentrations over time. To estimate the vaccination effect, we compared these 195 
concentrations with hypothetical ones obtained when the vaccination term was zeroed out in the 196 
������ model. In a comparable manner, we estimated the effect of the introduction of the Delta-197 
variant. Finally, we performed the longitudinal, regression-based analysis relating the 198 
community hospitalization to observed wastewater concentrations. In all three analysis we 199 
quantified the effects by calculating the size of the effects relative to the factual (observed) 200 
states.  201 
 202 
2.4.3 Competing risk model with two different virus strains  203 
Wastewater samples were prepared for whole genome sequencing11, 14, and the proportion of 204 
observed SARS-CoV-2 variants was estimated for each sewershed based on the frequency of 205 
mutations specific to each variant. 206 
 207 
Two variants were present in the study area during the study period: Alpha was dominant April 208 
to July, while Delta was dominant July and August.11, 14 To reflect the infections before and after 209 
the emergence of the Delta variant, we incorporated into our SVI2RT model two different 210 
infection compartments (I1 and I2) reflecting the infection competition between two different 211 
strains of the virus.  212 
 213 
2.5 Ethics  214 
For the seroprevalence and data provided by the LMPHW under a Data Transfer Agreement, the 215 
University of Louisville Institutional Review Board approved this as Human Subjects Research 216 
(IRB number: 20·0393). For the wastewater data, the University of Louisville Institutional 217 
Review Board classified this as non-human subjects research (reference #: 717950).  218 
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3. Results 219 
3.1 Wastewater regression  220 
The results of Bayesian regression analysis relating the prevalence estimated from the ������ 221 
model, and the observed wastewater levels, both in aggregation and by sewershed area, show a 222 
significant trend that is well summarized by the corresponding posterior regression line. 223 
Normalized SARS-CoV-2 by PMMoV provided more reliable and stable longitudinal 224 
concentration readings than using SARS-CoV-2 N1 concentration alone. For the aggregate 225 
model, the estimated intercept is 5·563 x 10-4 (CI =(-9·903 x 10-4, -1·250 x 10-4)) and the slope is 226 
0·453 (CI=(0·374, 0·529)). Overall, we see the regression model fits well with R2=0·909. See 227 
Supplemental Material Figure S3.2 and S3.3.  228 
 229 
3.2 Effect of vaccination on disease incidence and wastewater concentration 230 
We first compared the estimated incidence of the ������ model under two different vaccination 231 
scenarios (observed 64% vaccination rate and counter-factual 0% vaccination rate) while 232 
adjusting for the Delta variant emergence (Figure 1). The peak and the overall temporal 233 
dynamics are different under the two scenarios across each location. To better quantify these 234 
differences, we calculated the location-specific vaccination effects as the ratios of the areas under 235 
two scenario curves (with-vaccination area over without-vaccination area). The value obtained 236 
for the aggregated data was 0·429 (CI= (0·405, 1)), with the remaining sewershed specific effects 237 
being even stronger at (Figure 1; panels B–D) 0·532 (CI= (0·515, 1)), 0·367 (CI= (0·366, 0·785)), 238 
and 0·555 (CI= 0·555, 1)), respectively. Based on converting these ratios to excess incidence, we 239 
conclude that without vaccination, we would expect to see the incidence increase of about 133% 240 
above the observed level in Jefferson County (panel A) and about 88%, 172%, and 80% in 241 
respective sewershed areas (Figure 1; panels B–D, see also S3).  242 
 243 
To obtain estimates of the vaccination effects on the wastewater concentrations, we developed a 244 
hybrid inferential model combining the wastewater regression (see Sec 3.1) equation with the 245 
SVI2RT estimated prevalence, under two different vaccination scenarios (factual 64% rate and 246 
counter-factual 0% rate) (Figure 2). Note that the usage of SVI2RT (which accounts for the effect 247 
of different virulence of the two different SARS-CoV-2 strains) automatically adjusted our 248 
analysis for the Delta variant emergence. As the estimated prevalence from the ������ model 249 
and the normalized wastewater concentration are highly correlated (see Sec 3.1), the hybrid 250 
model is seen to fit data well. As before, to quantify the location-specific vaccination effects, we 251 
calculated the location-specific ratios under two curves in an analogous way as when quantifying 252 
the vaccination effect on the disease incidence. The ratios of the areas under the two curves, 253 
under factual (vaccinated) and counterfactual (unvaccinated) scenarios, were computed. The 254 
Jefferson County (Figure 2; panel A) ratio was equal to 0·358 (CI= (0·333, 0·381)), and the 255 
remaining sewershed area ratios (Figure 2; panels B–D) were equal to, respectively, 0·457 (CI= 256 
(0·388, 0·537)), 0·276 (CI= (0·260, 0·296)), and 0·426 (CI= 0·407, 0·446)). The estimate of 257 
excess wastewater virus without vaccination is estimated as 179%, 119%, 262%, and 135%, 258 
respectively (Supplemental material section S3).   259 
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260 
Figure 1. The estimated effect of vaccination on incidence in sewersheds of Jefferson261 
County, KY (USA). The dark green line is the factual SVI2RT model estimated incidence (with262 
vaccination), and the light green line is the corresponding counter-factual estimated incidence263 
with vaccination effect zeroed out. The shaded areas represent 95% credible intervals. The264 
panels compare the vaccination effect in Jefferson County (Panel A) as well as stratified by265 
sewershed (Panels B–D).  266 
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267 
Figure 2. The estimated effect of vaccination on SARS-CoV-2 wastewater concentration268 
normalized by pepper mild mottle virus in sewersheds of Jefferson County, KY (USA). The269 
deep brown line is the regression-based fit to the wastewater concentration data and the light270 
brown line is the prediction of wastewater concentration using synthetic prevalence from271 

 model with vaccination effect zeroed out. The shaded areas represent 95% credible272 
intervals. The blue dots are observed weekly average wastewater concentrations The panels273 
compare the vaccination effect on wastewater concentration for Jefferson County (Panel A) as274 
well as stratified by sewershed (Panels B–D).  275 
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3.3 Effects of virus mutation on disease incidence and wastewater concentration  276 
The time periods during which the Alpha and Delta variants were dominant in each sewershed 277 
are are shown in Table S4.1. The onset of Alpha as the dominant variant simultaneously 278 
occurred at each site on 3/30/21 and lasted a variable number of weeks before dying out and 279 
eventually becoming replaced by Delta. However, Delta had a more gradual introduction into the 280 
sewersheds, beginning as the dominant variant on 7/12/21 in two of the sites and not showing up 281 
as the dominant variant in one of the sites until two weeks later. Our gradual linear switch from 282 
Alpha to Delta is similar to observations in other wastewater data, including a study of 94 sites 283 
within Austria.22 Interestingly, Delta’s dominance as the major variant ended simultaneously on 284 
8/30/21 in all five sites, prior to the later emergence of Omicron in the sewersheds in December 285 
2021. More recently, we have reported on the re-emergence of Delta in the MSD03 site 286 
specifically during the Omicron wave,14 which indicates the persistence of specific variants in 287 
wastewater can be variable in nature, and are likely influenced by a number of factors, including 288 
incidence and vaccination rates.  289 
 290 
In the analysis, we assumed a 20% higher infectivity of the SARS-CoV-2 Delta variant as 291 
compared to its Alpha predecessor.15 In the counterfactual model (light curve), where only the 292 
Alpha variant was present, the epidemic was seen to dissipate, indicating the basic reproduction 293 
number less than one. This was in stark contrast with the factual, full ������ model fit (with 294 
both Alpha- and Delta- variants present), where the incidence (dark curve) was seen to rise 295 
rapidly (Figure 3). As in the previous section, to quantify the difference between the two curves, 296 
which we interpret as measuring the effect of introducing the Delta mutation, we calculated the 297 
ratio of areas under the two curves in each panel, obtaining the values of 7·32 (CI = (7·05, 298 
20·13)), 4·40 (CI = (4·33, 7·64)), 8·58 (CI = (1, 8·60)), and 6·15 (CI = (1, 6·16)) for the aggregate, 299 
MSD1, MSD2, and MSD3–5 regions respectively (corresponding to panels A–D). The estimate 300 
of the decrease in total incidence without mutation is found as 86%, 77%, 88%, and 84%, 301 
respectively. 302 
 303 
To identify the effect of the Delta variant emergence on the observed wastewater concentration, 304 
we again applied the hybrid model discussed in the previous section. In the current analysis, the 305 
regression model was applied to predict the longitudinal wastewater concentrations from both 306 
factual (both variants present) and counterfactual prevalence data (no Delta variant). The results 307 
are depicted in the panels of Figure 4 both for the aggregated and sewershed-specific analysis. 308 
As with the analysis of the vaccination effects, here we also considered the ratios of areas under 309 
the corresponding curves as measures of Delta variant effects in specific locations. Based on the 310 
location-specific ratio values of 12·569 (CI = (11·487, 13·914)), 6·235 (CI = (5·290, 7·891)), 311 
14·932 (13·351, 16·898), and 8·413 (CI = (7·654, 9·351)), corresponding to aggregated and 312 
sewershed-specific curves, the estimate of excess wastewater virus due to Delta mutation is 313 
founded as 92%, 84%, 93%, and 88% respectively. Further analysis is provided in Supplemental 314 
Material Table S3.3.   315 
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316 
Figure 3. The model-based analysis of the Delta-variant effect on SARS-CoV-2 incidence317 
rate estimates in sewersheds of Jefferson County, KY (USA). The dark green line is the318 
estimated factual full model incidence (both Alpha and Delta variants present), and the light319 
green line is the counterfactual incidence estimated from the model with no Delta variant. The320 
shaded areas represent 95% credible intervals. The panels compare the vaccination effect in321 
Jefferson County (Panel A) as well as stratified by sewershed (Panels B–D). 322 
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323 
Figure 4. The estimated effect of Delta variant on SARS-CoV-2 wastewater concentration324 
normalized by pepper mild mottle virus in sewersheds of Jefferson County, KY (USA).  325 
The deep brown line is the regression-based fit to the wastewater concentration and the light326 
brown line is the prediction of wastewater concentration using synthetic prevalence from  the327 

 model with the Delta variant effect zeroed out. The shaded areas represent 95% credible328 
intervals. The blue dots are observed weekly average wastewater concentration. The panels329 
compare the mutation effect on wastewater concentration for Jefferson County (Panel A) as well330 
as stratified by sewershed (Panels B–D).  331 
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3.4 Forecasting hospitalization rates based on wastewater concentrations  332 
Hospitalization estimates under both vaccinated (64% vaccination rate) and unvaccinated (0% 333 
vaccination rate) scenarios were obtained by applying a hierarchical regression model where we 334 
first regressed wastewater concentration on the ������ model prevalence and then regressed 335 
hospitalization counts on the wastewater concentrations (Figure 5). As hospitalization is likely to 336 
occur sometime after symptom onset, we used the 1-week lagged-regression model where the 337 
length of the lag was based on the overall model fit criteria. The fitted intercept and slope 338 
coefficients were 1·284 x 10-4 (std=2·279 x 10-5) and 0·176 (std=0·0119) for vaccinated and 339 
unvaccinated scenarios respectively, with the R-square of 0·928. The maximal number of the 340 
observed daily average hospitalizations under vaccination scenario was 110·4 per weekly 341 
average (actual 122·0 in daily) at the end of August. However, without vaccination, the 342 
maximum predicted number of weekly average hospitalizations increased to 150·3. The ratios 343 
between the areas under the prediction curves with and without vaccination were 0·368 (CI = 344 
(0·413, 0·458)), indicating a 170% increase in the number of hospitalizations when no vaccine 345 
would be present. In a comparable way, we obtained the hospitalization estimate without the 346 
Delta variant mutation. The ratio of the areas under the two graphs (with and without the Delta 347 
variant mutation) is 2·632 (CI = (2·382, 5·573)), indicating a 62% decreasing in the 348 
hospitalization rate.   349 
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350 
Figure 5. Time lag-dependent analysis of the relationship between hospitalization rate and351 
wastewater concentration, Jefferson County, KY (USA).  Predictions and 95% confidence352 
intervals of hospitalization rate regressed on week-lagged variables of the weekly average of353 
wastewater concentration according to the changes of the vaccination proportion of the354 
community. The dark line represents the prediction using the observed wastewater355 
concentrations with 64% of community vaccination. The lighter line represents the prediction356 
using the wastewater concentrations obtained from the model under zero community vaccination.357 
The lightest line represents the prediction under the counterfactual modified  model with358 
the Delta-infected model compartment zeroed-out (no Delta variant present). The green dots359 
represent the weekly average of the observed hospitalization rate. The ratios of the areas between360 
the prediction from the fitted model and of no vaccination are 0·368, and in the absence of the361 
Delta variant is 2·63, respectively.   362 
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Discussion  363 
The results of our large study (N=3436) have shown the importance of environmental 364 
surveillance post-vaccine in urban and sub-urban areas; removing bias of publicly available 365 
clinical case data by using antibody positivity with four waves of sequential community-wide 366 
stratified randomized sampling data. Despite our focus on the Jefferson County example, it 367 
should be emphasized the model described here is readily applicable to other locations 368 
worldwide. Although our model was run with both the N1 analysis and adjusted N1 analysis, we 369 
learned the model provided reduced uncertainty with adjustment. Indeed, the vaccination effect 370 
estimates bring the related issue of refined localized model application such as high levels of 371 
tourism that may affect community vaccination levels and related observed wastewater 372 
concentrations.8 Here we have presented real world evidence that, in fact, wastewater 373 
surveillance may be also used to estimate both the effects of a community intervention, like the 374 
vaccination campaign and the effects of disease evolution, and emergence of a new viral strain 375 
mutation.  376 
 377 
The COVID-19 vaccine has been highly effective.16, 17 There is a need for increased reliance on 378 
wastewater as a proxy for community disease impact being built from actual community level 379 
data over time for other vaccine preventable diseases affecting human health. When 90% of the 380 
student population of a college campus was vaccinated, SARS-CoV-2 in wastewater decreased;4 381 
but that building level generalization was not replicated in our community-wide survey over a 382 
longer period. In contrast to our findings, Nourbakhsh et al.18 found dissimilar trajectories from 383 
clinical and wastewater data ratios once vaccination was introduced. We suspect this difference 384 
is explained by the bias of relying on clinical data and home testing kits which became more 385 
widely available for the studied period when compared to earlier in the pandemic and with no 386 
requirement, or in some cases option, for reporting. Whereas the Nourbakhsh et al.18 study 387 
included only publicly reported case data, the randomized selection of community participants in 388 
our study population were a comparatively less biased data source for this post-vaccine period.  389 
 390 
Our model compares to the work of Jiang et al.19 in that our analysis also provided estimates of 391 
prevalence, however our estimates are based on a statistical random sample (not a clinical 392 
sample) and our regression model has a simple and explicit formula relating prevalence to 393 
observed wastewater concentrations. Our model further confirms the findings in Hegazy et al.6 394 
implying the Delta variant emergence has strengthened the relationship between wastewater and 395 
hospitalization rates. Our analysis provides a further proof of concept that our wastewater 396 
regression model could be used (after proper calibration) with other similar data to provide 397 
surrogate measures of SARS-CoV-2 prevalence in the community without the necessity for 398 
individual testing. The regression prediction correlates well with the estimated prevalence with a 399 
correlation coefficient of 0·916 (CI = (0·764, 0·976). The hospital burden findings of Wang et 400 
al.20 also compared well to our work; our results showed access to a voluntary community 401 
vaccine that reached a coverage level of 64% of the adult population decreased community 402 
hospitalizations by approximately 170%.  403 
 404 
Yaniv et. al5 described the emergence of peaks of positivity rates, showing they corresponded to 405 
introduction of new variants. In addition, they noted how vaccination rates and a second booster 406 
helped to control Alpha, while an increase in a third booster was found to lead to a decline in 407 
Delta. When vaccination levels increase to higher coverage, overall reported incidence may 408 
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decline, even though the levels in wastewater remain high.7 This leads to the hypothesis that 409 
circulation among vaccinated individuals creates a level of selective pressure making variants 410 
with transmission and vaccine escape more advantageous. In our wastewater data, we find in 411 
periods of decline for a specific variant we see more diversity in the overall mutations, indicating 412 
both a selection against the variant in decline (typically due to vaccinations and boosters), and a 413 
similar advantageous selection for emerging variants.  414 
 415 
Our study used five sub-community scales based on the existing wastewater infrastructure 416 
allowing observation of regional trends but also the aggregation of data for a countywide picture. 417 
We found the antibody positivity varied by the sewershed. The antibody-positive individuals 418 
were lowest in sewershed MSD1 and highest in sewershed MSD3–5 (10·0% for aggregate, 8·6% 419 
for MSD1, 9·2% for MSD2, and 12·0% for MSD3–5), indicating previous infection may have 420 
been higher in the rural portions of the county compared to the urban core. There are many 421 
factors differentiating these sewershed areas that could have produced these differences. These 422 
include population sizes and demographics, or presence of stormwater or industrial discharge 423 
being combined with household sewer water. These differences between MSD1 to 5 provide 424 
evidence of the benefit of observing results at a sub-county level, rather than only considering 425 
MSD1 representing the urban core and the largest sewershed zone. 426 
 427 
The trajectory of the pandemic and public health response would benefit from new methods less 428 
dependent on continuous individual clinical testing. For replication of this SARS-CoV-2 model, 429 
wastewater sampling, stratified random sampling of seroprevalence, and spatially linked 430 
vaccination data are required; the model is flexible enough to allow additional variant-specific 431 
variables. The promise of this model is if we just have wastewater concentration, we can we 432 
predict the effect of vaccination and allow fine-tuned, and milestone driven, public health 433 
response. Our model also provides a further positive response for public health offices of the 434 
significant role of the vaccine, our competition model shows the epidemic would have been 435 
bigger and earlier without vaccine access.  436 
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4. Limitations 437 
Our study has several limitations. The proportion of vaccinated respondents was larger than the 438 
greater community (~90% vs. 64%) reflecting that even a probability-based sample relies on 439 
volunteer participants and vaccinated individuals may also have different health-research 440 
behaviors. Vaccine information was self-reported. Natural infection of a combined vaccinated 441 
and unvaccinated population (and in the absence of another way to verify vaccination) was based 442 
on antibody titers of IgG N, an assay that has 65% sensitivity and 85% specificity, with 443 
inevitable under-estimation of infection prevalence. While our serosurvey only captured adults, 444 
wastewater testing included minors. COVID-19 infected individuals can in rare instances shed 445 
fecal SARS-CoV-2 RNA up to 7 months post diagnosis;21 viral shedding of each SARS-CoV-2 446 
variant in relation to days after vaccination, or whether a primary or booster series had been 447 
taken, is not well defined as the vaccination series guidance extends during the pandemic and 448 
thus was not included in our model.  449 
 450 
5. Conclusion 451 
Our work indicates it is possible in certain conditions to use wastewater-based epidemiology to 452 
assess both the immunity acquisition in the community due to natural recovery and vaccination 453 
as well as the effect of new variants emergence and associated immune evasion to the currently 454 
available COVID-19 vaccines. The effects of vaccination on wastewater concentration as well as 455 
on community incidence of SARS-CoV-2 was substantial in Jefferson County. According to our 456 
analysis, without vaccination one would expect about 133% of excess infections over the period 457 
of study, which corresponds to a 179% of excess wastewater concentration. The effect of Delta 458 
mutation was similarly substantial. We estimated, over the study period in Jefferson County, 459 
without Delta mutation the amount of overall infection would decrease on average by 86% which 460 
corresponds to a 92% decrease in wastewater N1 normalized by PMMoV concentration. The 461 
correspondence between wastewater concentration and the number of hospitalizations was found 462 
to be strongest with the time lag for about 7 days and correlation = 0·963. Based on the 463 
regression model we estimated the effects of vaccination and mutation on hospitalization rate. 464 
According to the model, without vaccination one would expect about 171% increase and without 465 
mutation about 62% decrease in hospitalization rate. Using the fitted regression model for 466 
hospitalization, the predictions of hospitalization rates are at 50, 100, and 150 per 100K when the 467 
normalized wastewater concentrations are 0·0021, 0·0050, and 0·0078 N1 normalized by 468 
PMMoV, respectively. Our large, randomized, serosurvey suggests using the mechanistic, 469 
population level, vaccination model (SVI2RT) coupled with longitudinal wastewater sampling 470 
estimated the effect of vaccination on the prevalence rate in the community over the period of 471 
several months during the second and third wave of COVID-19 pandemic, in the absence of 472 
clinical data. The model can also be used to estimate the effects of vaccination and new variants 473 
emergence on the hospitalization rate and on peak hospital beds utilization.   474 
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S1. SARS-CoV-2 seroprevalence by wave and sewershed, Jefferson County, KY (USA). 575 
 576 
Table S1. SARS-CoV-2 seroprevalence by wave and sewershed, Jefferson County, KY 577 
(USA). 578 

  

Number of 
unvaccinated 
participants  

Number of 
vaccinated 
participants 

Number of 
participants 
positive for 
SARS-CoV-2 
nucleocapsid 
(N) specific 
IgG 
antibodies  

Estimated posterior 
average 
seroprevalence per 
10�  people (95% 
credible interval 

Estimated 
posterior average 
prevalence per 
10�people (95% 
credible interval) 

Overall   
MSD1 91 1450 132 9153 (3772, 14533) 533 (38, 1028) 
MSD2 132 794 81 5427 (1848, 9006) 336 (0, 672) 
MSD3-5 23 228 17 8410 (2016, 14804) 588 (0, 1177) 

Total 
315 2957 296 

22989 (13898, 
32081) 1457 (618, 2296) 

Wave A         
MSD1 26 363 24 2249 (1686, 2811) 62 (1, 122) 
MSD2 29 206 25 2277 (1751, 2803) 49 (0, 97) 
MSD3-5 4 39 5 2284 (1682, 2887) 53 (1, 106) 
Total 68 697 68 6810 (5832, 7788) 163 (70, 257) 
Wave B         
MSD1 20 369 17 2927 (2042, 3813) 197 (7, 386) 
MSD2 40 192 17 2611 (1832, 3391) 74 (0, 149) 
MSD3-5 7 53 2 2952 (1816, 4089) 271 (0, 542) 
Total 89 730 42 8491 (6853, 10129) 542(203, 881) 
Wave C         
MSD1 16 308 22 6261 (2537, 9984) 618 (43, 1193) 
MSD2 29 179 11 3696 (1860, 5531) 197 (0, 394) 
MSD3-5 3 60 2 7565 (2048, 13083) 456 (0, 911) 
Total 

60 657 46 
17521 (10617, 
24426) 1270 (511, 2030) 

Wave D         
MSD1 29 410 69 19572 (8999, 30145) 810 (4, 1617) 
MSD2 34 217 28 12408 (1872, 22943) 834(0, 1668) 
MSD3-5 9 76 8 14746 (2188, 27304) 1440 (0, 2880) 
Total 

98 873 140 
46726 (27220, 
66232) 

3084 (1235, 
4934) 

  579 
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S2. Studied wastewater treatment plant zones (sewersheds), Jefferson County, KY (USA).  580 
 581 
 582 

 583 
Figure S1. Studied wastewater treatment plant sewersheds, Jefferson County, Kentucky584 
(USA).  585 
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Table S2. Characteristics of studied wastewater treatment plant sewersheds of Jefferson 586 
County, KY (USA). 587 

Site name 
Income 
(USD$)a Populationa 

Area 
(km2) 

Combined  
sewer 

MSD01 
Morris Forman Water Quality Treatment Center 
(MFWQTC) 

54,138 349,850 280 Yes 

MSD02 
Derek R. Guthrie Water Quality Treatment Center 
(DRGWQTC) 

53,577 295,910 332 No 

MSD03 
Cedar Creek Water Quality Treatment Center 
(CCWQTC) 

76,606 55,928 80 No 

MSD04 
Floyds Fork Water Quality Treatment Center 
(FFWQTC) 

113,699 32,460 88 No 

MSD05 
Hite Creek Water Quality Treatment Center 
(HCWQTC) 

106,769 31,269 67 No 

a Based on 2018 U.S Census Bureau American Community Survey (ACS). Income is mean 
median household. 

588 
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S3. Population vaccination model (SVI2RT) 589 
 590 
The equation shown in (1) describes the time-evolution of the proportions of individuals who are 591 
susceptible (S), vaccinated (V), infected with Alpha variant(I1), infected with Delta variant (I2) 592 
removed (R), and seropositive (T). We assume the total initial population of susceptibles is large 593 
with a small initial fraction of infected. The model equations are 594 

�� � ��������� � ��������� � ����,
�� � ���� � ��������� � ����������

�
�
��� � �������� � ��������� � ������,

� 
�
��� � ��������� � ���������� � ������
��

 � ��� � ���,
�� � ���,

 (1) 595 

with the initial condition �� � 1 � � � � � � � 0 ,�� � 0 , ����� � � � 0 , ����� � �/100,  �� �596 
� � 0, and �� � � � 0. 597 
 598 
Here, � and �� are the rates of infection of respectively, unvaccinated and vaccinated, and �� and 599 
��� are the rates of infection according to Delta variant. As our compartment model has two 600 
infection compartments, it is called the variant competition model.1 The observed data in this 601 
analysis do not have any information about infection from the Delta variant, and an increase in 602 
the number of parameters makes model estimation difficult and may lead to identifiability 603 
problems. So, we set ��  and ���  at the values 20% higher than � and �� .2 The function of �� 604 
represents a changing rate of vaccination over time. However, the vaccination process can not 605 
follow a stochastic process but may be changed according to a policy or vaccine supply, so set 606 
the vaccination rate ���� to match the empirical percentage of the vaccinated population in 607 
Jefferson County at the end of August 2021. Additionally, � is the rate of recovery, and � is the 608 
rate at which antibodies build to a detectable level after recovery. The ������ model parameters 609 
to be estimated are given by the vector � � ��, ��, �, �, �, �, ��. 610 
 611 
To obtain the serial estimates of incidence and prevalence from the observed seropositivity levels 612 
in four waves of testing, we adapt the idea of an ODE-based survival model proposed recently.3, 4 613 

According to that model, the scaled quantities �� , ��, �����, �����, ��, ��  may be considered as 614 
respective probabilities of a randomly selected individual in a large population, being either 615 
susceptible, vaccinated, infected with different virus  variant, recovered, or seroprevalent at time 616 
�. Consequently, we consider the results  ��� of all individual antibody-based tests conducted at 617 
times � as independent Bernoulli variables: 618 
 ��� ! Ber�����, 619 
where ��� � $%&$�� � �1 � $'%��1 � ��� is the specificity adjusted probability of a positive test. 620 
For our analysis, both $%&$ and $'% are additional parameters to be estimated. We assigned the 621 
informative priors to $%&$ and $'% from available clinical data. 622 
 623 
Assuming at time �, &� individuals are tested with (� having positive results, the corresponding 624 
log-likelihood function is 625 
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ℓ��Θ� + (�log���� � �&� � (��log�1 � ���, (2) 626 
where Θ � ��, ��, �, �, �, �, �, $'%, $%&$) is the vector of parameters to be identified.  627 
Given the testing data at - . 1 time points ��, … , �	, we then aim to find parameter values � 628 
that maximizes the posterior log-likelihood function 629 
ℓ0 �Θ� + ∑ ℓ��	


�� �Θ� � log'�Θ�, (3) 630 
where '�Θ) is the prior distribution on Θ to be determined from our previous work.3 Hence, we 631 
seek the values of Θ that maximize our posterior log-likelihood function (3). Note the entire 632 
system (1) must be solved for each parameter combination.  633 
 634 
S3.1 Incidence, prevalence, and seroprevalence estimation 635 
Posterior serial estimates of the relative rates of incidence, prevalence, and seropositivity were 636 
obtained from the ������ model as the time-dependent vector 637 
Pred� � �� � � , ��, �����, �����, ���. (4) 638 

Here ���, ��, �����, �����, ��� is the family of trajectories of (1) evaluated at the posterior distribution 639 
of the vector Θ. In practice, the distribution of Pred� is approximated by taking a random sample 640 
of size - from the converged MCMC sampler. In our case - � 2000. To obtain daily incidence 641 
rates (Inc�) we have used the approximation � � 9 ��� � ��  and consequently took Inc� � �� �642 
��� where : corresponds to a specific day of interest. The estimated prediction counts were 643 
obtained by multiplying the rates in Pred� by the appropriate population numbers. 644 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 7, 2023. ; https://doi.org/10.1101/2023.01.06.23284260doi: medRxiv preprint 

https://doi.org/10.1101/2023.01.06.23284260
http://creativecommons.org/licenses/by/4.0/


28 
 

Table S3.1. Posterior mean estimates of the ;<=�>? model parameters in sewersheds of 645 
Jefferson County, KY (USA). The area-specific Hamiltonian Markov chain Monte Carlo 646 
(MCMC) posterior estimates are based on seropositivity data aggregated across Jefferson County 647 
and stratified by sewersheds. The corresponding 95% credible bounds are provided in 648 
parenthesis. The results are based on MCMC implemented via Rstan library, with a 6000- and 649 
2000-step burn-in. 650 
 651 

 
Jefferson 
County 
Aggregated 

MSD1 MSD2 MSD3–5 

@ 
0·494 (0·389, 
0·572) 

0·493 (0·391, 
0·575) 

0·419 (0·309, 
0·503) 

0·459 (0·347, 
0·542) 

A 0·009 (64%) 0·010 (67%) 0·007 (55%) 0·013 (76%) 

@B 
0·420 (0·321, 
0·502) 

0·423 (0·3254, 
0·500) 

0·412 (0·384, 
0·587) 

0·445 (0·335, 
0·532) 

C 
0·463 (0·376, 
0·532) 

0·453 (0·371, 
0·520) 

0·494  
(0·384, 0·587) 

0·461 (0·371, 
0·533) 

D 
0·104 (0·067, 
0·136) 

0·104 (0·066, 
0·136) 

0·105 (0·069, 
0·138) 

0·104 (0·066, 
0·135) 

E 
3·750 x 10-4  
(6·385 x 10-5, 
7·426 x 10-4) 

4·781 x 10-4  
(9·191 x 10-5, 9·221 
x 10-4) 

4·382 x 10-4  
(6·034 x 10-5, 9·113 
x 10-3) 

4·494 x 10-4  
(7·366 x 10-5, 9·099 
x 10-4) 

F 
1·506 x 10-3  
(1·396 x 10-4, 
3·471 x 10-3) 

1·638 x 10-3  
(1·170 x 10-4, 3·618 
x 10-3) 

1·635 x 10-3  
(1·802 x 10-4, 3·739 
x 10-3) 

1·649 x 10-3  
(1·526 x 10-4, 3·619 
x 10-3) 

G 
0·0223 (0·0182, 
0·0253) 

0·0222 (0·0183, 
0·0253) 

0·0223 (0·0184, 
0·0254) 

0·0223 (0·0184, 
0·0254) 

Specificity 
0·946 (0·934, 
0·954) 

0·958 (0·941, 
0·969) 

0·926 (0·905, 
0·941) 

0·929 (0·898, 
0·948) 

Sensitivity 
0·637 (0·539, 
0·705) 

0·638 (0·540, 
0·703) 

0·648 (0·556, 
0·714) 

0·643 (0·551, 
0·711) 

  652 
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Table S3.2. The prior distribution specifications for the SIRT model. Parameters were given 653 
Gamma prior distributions, with hyper-parameters (a, b) listed in the table below. 654 
 655 
Gamma 
(a, b) β @B γ δ ρ ε ψ 

Specifi
city 

Sensiti
vity 

a 40·97 40·97 41·80 24·29 2·18 1·74 112·5 21·7 71 

b 92·32 92·32 90·32 232·00 4648 
1039·0
9 

5035·1
5 

3·83 38·3 

 656 
Table S3.3. Summary of the effects of the vaccination and Delta variant mutation in 657 
sewersheds of Jefferson County, KY (USA). Percentage reduction due to vaccination effect or 658 
excess due to Delta variant on estimates of wastewater concentration (WW) and incidence rate 659 
(Incidence). In parenthesis, we give lower and upper bounds of 95% credible (incidence) or 660 
confidence interval (wastewater). Some values were rounded down to 0 for simplicity.  661 
 662 

  663 

  
Jefferson 
County 
Aggregated 

MSD1 MSD2 MSD3–5 

Vaccination effect 
with 
Delta variant 

WW 179 (162, 200) 119 (86, 157) 262 (238, 284) 135 (124, 146) 

Incidence 133 (0, 147) 88 (0, 94) 173 (27, 173) 80 (0, 80) 

Vaccination effect 
without Delta 
variant 

WW 
1370 (1272, 
1493) 

603 (479, 818) 823 (801, 849) 
928 (848, 
1027) 

Incidence 564 (0, 573) 323 (0, 330) 363 (0, 364) 491 (13, 491) 

Delta variant effect 
without vaccination 
 

WW 
1157 (1049, 
1291) 

524 (429, 689) 
1393 (1235, 
1590) 

741 (665, 835) 

Incidence 
632 (1913, 
605) 

340 (664, 333) 758 (0, 760) 516 (18, 516) 

Delta variant effect 
without vaccination 
 

WW 159 (134, 185) 98 (73, 126) 478 (389, 581) 101 (89, 113) 

Incidence 143 (51, 144) 99 (25, 99) 308 (8, 308) 101 (0, 101) 
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Table S3.4. Summary of the Bayesian regression results in sewersheds of Jefferson County, 664 
KY (USA). Dispersion (H� is the standard deviation of the error term of the linear regression.  665 
 666 
Sewershed Parameters Linear regression model 

Posterior mean (95% credible interval) 

Jefferson 
County 
Aggregated 

Intercept -5·563 x 10-4 (-9·903 x 10-4 , -1·250 x 10-4) 
Slope 0·453 (0·374, 0·529) 
Dispersion �H� 6·434 x 10-4 (4·589 x 10-4 , 9·191 x 10-4) 
Correlation 0·916 (0·764, 0·976) 

MSD1 

Intercept -8·684 x 10-4 (-1·757 x 10-4 , 4·119 x 10-5) 
Slope 0·357 (0·230, 0·481) 
Dispersion �H� 1·143 x 10-4 (8·237 x 10-4 , 1·642 x 10-3) 
Correlation 0·754 (0·463, 0·913) 

MSD2  

Intercept -2·328 x 10-4 (-1·001 x 10-3, 5·280 x 10-4) 
Slope 0·932 (0·741, 1·114) 
Dispersion �H� 1·339 x 10-3 (9·603 x 10-4 , 1·948 x 10-3) 
Correlation 0·770 (0·376, 0·944) 

MSD3–5 

Intercept -3·978 x 10-4 (-7·405 x 10-4 , -3·951 x 10-5) 
Slope 0·284 (0·236, 0·331) 
Dispersion �H� 5·407 x 10-4 (3·843 x 10-4 , 7·697 x 10-4) 
Correlation 0·896 (0·542, 0·976) 

  667 
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668 
Figure S3.1. SARS-CoV-2 (N1) wastewater concentration in sewersheds of Jefferson669 
County, KY (USA). The wastewater concentrations during Alpha and Delta variants are670 
represented in bars (light green for Alpha, dark green for Delta). The panels compare aggregated671 
concentration for Jefferson County (Panel A) as well as stratified by sewershed (Panels B–D). 672 
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673 
Figure S3.2. Prevalence versus SARS-CoV-2 (N1) wastewater concentration in sewersheds674 
of Jefferson County, KY (USA). Bayesian regression between predicted weekly prevalence of675 
SARS-CoV-2 infections and wastewater in the entire Jefferson County (Panel A) as well as676 
stratified by sewershed (Panels B–D). Straight line is the fitted Bayesian regression line. The677 
darker shade marks the 95% credible interval and lighter shade marks the 95% prediction678 
interval.   679 
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680 
Figure S3.3. Prevalence versus wastewater SARS-CoV-2 (N1) normalized by pepper mild681 
mottle virus concentration in sewersheds of Jefferson County, KY (USA). Bayesian682 
regression between predicted weekly prevalence of SARS-CoV-2 infections and wastewater in683 
the entire Jefferson County (Panel A) as well as stratified by sewershed (Panels B–D). Straight684 
line is the fitted Bayesian regression line. The darker shade marks the 95% credible interval and685 
lighter shade marks the 95% prediction interval.   686 
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687 
Figure S3.4. The estimated effect of vaccination on SARS-CoV-2 wastewater concentration688 
in sewersheds of Jefferson County, KY (USA). The deep brown line is the regression-based fit689 
to the wastewater concentration and the light brown line is the prediction of wastewater690 
concentration using synthetic prevalence from  the  model with the Delta variant effect691 
zeroed out. The shaded areas represent 95% credible intervals. The blue dots are observed692 
weekly average wastewater concentration. The panels compare the mutation effect on693 
wastewater concentration for Jefferson County (Panel A) as well as stratified by sewershed694 
(Panels B–D). 695 
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696 
Figure S3.5. SARS-CoV-2 prevalence and hospitalizations versus SARS-CoV-2 wastewater697 
concentration normalized by pepper mild mottle virus, Jefferson County, KY (USA).698 
Relationship among observed wastewater concentration, the hospitalization rate, and estimated699 
prevalence. The dark brown line represents the estimated prevalence, and the shaded area is the700 
95% credible interval of MCMC simulation. The green line is the weekly average of daily701 
hospitalization rate of Jefferson County, and the blue dots represent the weekly average of702 
wastewater concentrations. The Pearson correlation coefficient of estimated prevalence and703 
wastewater concentration is 0·916 (95% CI=(0·764, 0·976)) and that of hospitalization rate and704 
wastewater concentration is 0·720 (95% CI =(0·224, 0·953)).   705 
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 706 
Figure S3.6. Clinical versus estimated incidence in sewersheds of Jefferson County, KY707 
(USA). Posterior density and credibility bounds (green curve) of the weekly aggregated708 
incidence rate as predicted by the  model compared to official weekly incidence for709 
Jefferson County (blue dots and trend line) as reported by the Jefferson County Health710 
Department. The panels compare aggregated incidence for Jefferson County (Panel A) as well as711 
stratified by sewershed (Panel B–D). The model plots are based on Hamiltonian MCMC712 
samples, with 6000 steps and 2000 steps burn-in period.  713 
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S3.2 Details on regression model for wastewater concentration 714 
To relate the ������ model predictions to the serial wastewater measurements of SARS-CoV-2 715 
concentrations, the Bayesian linear regressions were performed based on aggregated county data 716 
and data stratified by sewershed area.  717 
To obtain the linear regressions, the procedure was as follows: Let �I�� be the model estimated 718 
percentage prevalence corresponding to the same week and sewershed area. J�� was defined in 719 
Eq. (5). The linear and NB regression models are given by:  720 
     J�� � �� � ���I�� � %�� ,     (5) 721 
In the Bayesian linear regression models, non-informative priors were assigned. Specifically, the 722 
non-informative Cauchy distribution was assigned to the regression coefficients, and the non-723 
informative gamma prior was assigned to the dispersion parameter of the error term. The 724 
summary of the posterior estimates of all regression parameters is presented in Table S3.4, and 725 
fitting and prediction using the regression model are represented in Figure 2.  726 
 727 
S3.3 Time lag-dependency between wastewater concentration and hospitalization rate 728 
It takes a certain period for the patient to be admitted to the hospital to receive treatment. To 729 
identify the time lag-dependency between wastewater concentration and hospitalization rate, a 730 
simple linear regression analysis was performed using time-lagged variable as a predictor. Let 731 
J���  be the weekly aggregated average wastewater concentration at week �  the aggregated 732 
Jefferson County, and : represents a time lag. K� represents the hospitalization rate at time �. 733 
The regression model with time lag dependent variable is given by: 734 
K� � �� � ��J��� � %�. (6) 735 
 736 
In this model, we changed the time lag d from 1 to 4 so that the maximum period from a shred of 737 
evidence of the community spread of COVID-19 in wastewater to reach a burden to 738 
hospitalization is about a month. Of note, hospitalizations data is available daily while 739 
wastewater is weekly 740 
 741 
Additionally, we performed a simulation study using this regression model how to check how 742 
much the hospitalization rate changes according to the vaccination rate. We changed the 743 
vaccination rate so that the vaccination percentage of the community was 0% and predicted the 744 
serial estimates Pred� in Eq. (4). And then, we predicted the wastewater concentration using a 745 
linear regression model and used them as the predictor in the regression model (5).  746 
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S3.4 Calculation of effects based on factual and counter-factual scenarios 747 
All effects of the factual and counterfactual (zero vaccinated or no Delta variant). Data are 748 
calculated using the area under the curve using factual (empirical) data and counterfactual 749 
(synthetic) data. The equation to estimate the effect is given as:  750 

LArea under counterfacutual data
Area under factul data � 1L 

  751 
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S4. Variant detection 765 
 766 

Table S4.1. Periods of Alpha and Delta variant dominance in in sewersheds of Jefferson 767 
County, KY (USA).  768 
 769 
Catchment site Alpha Dominant Delta Dominant 

 Begin Date End Date Begin Date End Date 
MSD01 3/30/21 5/17/21 7/12/21 8/30/21 
MSD02 3/30/21 5/24/21 7/12/21 8/30/21 
MSD03 3/30/21 6/21/21 7/19/21 8/30/21 
MSD04 3/30/21 7/5/21 7/19/21 8/30/21 
MSD05 3/30/21 6/28/21 7/26/21 8/30/21 

  770 
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