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Abstract 
Despite wide scale assessments, it remains unclear how large-scale SARS-CoV-2 vaccination 
affected the wastewater concentration of the virus or the overall disease burden as measured by 
hospitalization rates. We used weekly SARS-CoV-2 wastewater concentration with a stratified 
random sampling of seroprevalence, and linked vaccination and hospitalization data, from April 
2021–August 2021 in Jefferson County, Kentucky (USA). Our susceptible (�), vaccinated (�), 
variant-specific infected (�� and ��), recovered (�), and seropositive (�) model (������) tracked 
prevalence longitudinally. This was related to wastewater concentration. The 64% county 
vaccination rate translated into about 61% decrease in SARS-CoV-2 incidence. The estimated 
effect of SARS-CoV-2 Delta variant emergence was a 24-fold increase of infection counts, 
which corresponded to an over 9-fold increase in wastewater concentration. Hospitalization 
burden and wastewater concentration had the strongest correlation (r = 0.95) at 1 week lag. Our 
study underscores the importance of continued environmental surveillance post-vaccine and 
provides a proof-of-concept for environmental epidemiology monitoring of infectious disease for 
future pandemic preparedness.  
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1. Introduction  
In the wake of the COVID-19 pandemic, more reliable methods of measuring disease prevalence 
in communities are urgently needed, particularly methods that do not involve the expensive and 
cumbersome process of collecting individual level data. Completed development and validation 
of such methods are likely to be a center piece of preparedness for future pandemics. Wastewater 
concentration, when properly calibrated, can be a surrogate for estimates based on community 
prevalence of infection.1–3 Moreover, wastewater-based epidemiology offers the opportunity of 
estimating community disease prevalence even with asymptomatic disease.2,3 A handful of 
previous evaluations of the relationship between SARS-CoV-2 wastewater concentration and the 
COVID�19 vaccine have relied almost exclusively on statistical models calibrated with case 
counts or other convenience sampling.4–8 These data run the risk of biased underrepresentation of 
asymptomatic individuals who may not seek testing, or individuals testing in settings where 
reporting is low or not required.9 Other mathematical models are based at a state or national 
spatiotemporal scale.10–13 Hence, in this study we consider this question in the context of 
randomized seroprevalence surveillance, combining mechanistic and statistical frameworks to 
obtain more robust and realistic estimates of changes in disease prevalence. 
 
We address the question of how changes in the concentrations during the Alpha and Delta 
variant waves of the pandemic affected wastewater concentrations by looking in detail at a small 
geographical area which other studies have not done previously. For our analysis, we used 
repeated cross-sectional community-wide stratified randomized sampling to measure SARS-
CoV-2 nucleocapsid (N1) specific IgG antibody-based seroprevalence in Jefferson County, 
Kentucky (USA), from April 2021 through August 2021 to determine post-vaccine community 
prevalence at a sub-county scale. We then related this to a statistical linear model and the 
available sub-county weekly wastewater surveillance data which yielded estimates of the explicit 
impact of vaccination and seroimmunity on a SARS-CoV-2 wastewater concentration estimate, 
while controlling for prevalence in different epidemic phases using a population level ecological 
model. The latter may be easily translated into other important public health indicators such as 
the patterns of hospitalization. The ecological model ������ was used to longitudinally monitor 
the proportions of individuals in various health stages. These included those who were 
susceptible (�), vaccinated (�), infected with non-Delta variant (��), infected with Delta variant 
(��), recovered (�), or seropositive (�).   
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2. Results 
2.1 Wastewater regression  
When examining the relationship between the prevalence estimated from the ������ model and 
the observed wastewater levels the results of the Bayesian regression analysis (Supplemental 
Material Appendix C) demonstrate a significant trend. This analysis considers both countywide 
aggregation and five localized sewershed locations allowing finer geographic resolution. The 
trend is effectively summarized by the corresponding posterior regression line. To obtain reliable 
and stable longitudinal concentration readings, the concentration of SARS-CoV-2 (N1) was 
normalized by pepper mild mottle virus (PMMoV) concentration to enhance accuracy and 
precision and minimize variance in assessing changes in the concentration of the virus over time.  
 
To assess the impact of prevalence on observed wastewater concentration for the Alpha and 
Delta variants, we employed a regression model known as the broken stick regression to account 
for variant-specific patterns of virus shedding and infection rates. This model incorporates two 
regressors: one for the Alpha variant with an estimated prevalence prior to 5 June 2021, and 
another for the Delta variant with an estimated prevalence after 5 June 2021. Consequently, the 
model encompasses two different regression coefficients corresponding to the respective 
prevalence. The transition date was determined by the prevailing dominance of the Alpha and 
Delta variants as inferred from wastewater samples. For the aggregate model, the estimated 
intercept is -4.222 x 10-4 (CI = (-9.458 x 10-4, 7.921 x 10-5)) and the two slopes are 0.815 (CI = (-
0.023, 1.717)) and 0.385 (CI = (0.318, 0.455)) (Table S5). Overall, the regression model fits the 
data well (R2 = 0.90).  
 
2.2 Effect of vaccination on disease incidence and wastewater concentration 
We first compared the estimated incidence of the ������ model under two different vaccination 
scenarios (factual 64% vaccination rate and counterfactual 0% vaccination rate) while adjusting 
for the Delta variant emergence (Figure 1). The peak and the overall temporal dynamics are 
different under the two scenarios across each location, credible intervals for the incidence with 
and without vaccination are overlapping and indicate that the scenario curves could have 
statistically close values during certain times. To quantify these differences more precisely, we 
computed the location-specific vaccination effects as the ratios of the areas under the two 
scenario incidence curves. Specifically, we compared the area under the curve (corresponding to 
a relative cumulative incidence) for the "with-vaccination" scenario to that of the "without-
vaccination" scenario. The value obtained for the aggregated data was 0.390, with the remaining 
sewershed specific effects being even stronger at 0.502, 0.393, and 0.479 for MSD1, MSD2, and 
MSD3 to 5, respectively. Based on converting these ratios to excess incidence, we estimate that 
without vaccination, the reported integrated incidence may have increased about 156.2% (CI = 
(95.2%, 175.7%)) above the observed level in Jefferson County (Figure 1; panel A) and about 
99.4% (CI = (94.2%, 108.5%)), 154.5% (CI = (3.2%, 154.7%)), and 108.8% (CI = (52.8%, 
109.2%)) in different sewershed areas (Figure 1 panels B–D; Table S7). 
 
To obtain estimates of the effects of vaccination on the wastewater concentration of the virus, we 
developed a hybrid inferential model combining the wastewater regression equation with the 
SVI2RT estimated prevalence, under two different vaccination scenarios (factual 64% rate and 
counterfactual 0% rate) (Figure 2). The use of ������ (which accounts for the effect of different 
virulence of the two different SARS-CoV-2 variants) automatically adjusted our analysis for the 
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Delta variant emergence. Because the estimated prevalence from the ������ model and the 
normalized wastewater concentration are highly correlated, the hybrid model is seen to fit the 
data well. As before, to quantify the location-specific vaccination effects, we calculated the 
location-specific ratios under two curves in an analogous way as when quantifying the 
vaccination effect on the disease incidence. The ratios of the areas under the two curves, under 
factual (vaccinated) and counterfactual (unvaccinated) scenarios, were computed. The Jefferson 
County (Figure 2; panel A) ratio was equal to 0.314, and the remaining sewershed location ratios 
(Figure 2; panels B–D) were equal to, respectively, 0.448, 0.330, and 0.375. The estimate of 
excess wastewater virus without vaccination is estimated as 218.9% (CI = (193.5%, 242.4%)), 
123.1% (CI = (105.0%, 144.0%)), 202.8% (CI = (192.8%, 203.4%)), and 166.9%, (CI = (146.6%, 
187.1%)) respectively (Table S7). 
 
2.3 Effects of virus variant on disease incidence and wastewater concentration  
Alpha was the dominant variant at the start of our study period on 30 March 2021. The Delta 
variant was first introduced into the two largest urban sewersheds as the dominant variant on 12 
July 2021 and appearing in the more rural sewersheds in the following two-week period. More 
recently, we have reported on the re-emergence of Delta in the MSD3 site during the Omicron 
wave,14 which indicates the persistence of specific variants in wastewater can be variable and are 
likely influenced by several factors, including the rates of incidence and vaccination.  
 
In our analysis, we assumed a 50% higher infectivity of the SARS-CoV-2 Delta variant in 
comparison with its Alpha predecessor.15 In the counterfactual model, where only the Alpha 
variant was present, the epidemic was seen to dissipate, indicating the effective reproduction 
number of less than one. This was in contrast with the factual, full ������ model fit (with both 
Alpha- and Delta- variants present), where the incidence was seen to rise rapidly. As in the 
previous section, to quantify the difference between the two curves, which we interpreted as 
measuring the effect of introducing the Delta variant, we calculated the ratio of areas under the 
two curves, obtaining the values of 23.524, 31.103, 23.986, and 33.336 for the aggregate, MSD1, 
MSD2, and MSD3–5 regions respectively (Figure 3; panels A–D). The estimate of the decrease 
in total incidence without the variant was found as 95.75% (CI = (95.74%, 95.91%)), 96.78% (CI 
= (95.54%, 96.84%)), 95.8% (CI = (2.7%, 96.0%)), and 97.0% (CI = (38.6%, 97.1%)), 
respectively. Note that the two lower bounds of the ratio for the MSD2 and MSD3–5 areas were 
relatively small. This is because the estimated incidence from both variants had lower CI areas 
that were close to zero. 
 
To identify the effect of the Delta variant emergence on the observed wastewater concentration, 
we again applied the hybrid model from the previous section. Genetic variants can have an 
impact on fecal shedding.16 In the current analysis, the regression model was applied to predict 
the longitudinal wastewater concentrations from both factual (both variants present) and 
counterfactual prevalence data (no Delta variant) (Figure 4). As with the analysis of the 
vaccination effects, here we also considered the ratios of areas under the corresponding curves as 
measures of Delta variant effects in specific locations. Based on the aggregated ratio values of 
8.655, and on the location-specific ratio values 5.695, 9.675, and 8.530, the estimate of excess 
wastewater concentration due to Delta was found as 88.4% (CI = (87.7%, 88.7%)), 82.4% (CI = 
(81.4%, 84.0%)), 89.7% (CI = (88.5%, 90.8%)), and 88.3% (CI = (87.3%, 89.1%)) respectively 
(Table S7). By utilizing the fitted regression coefficients (see Section S3.2), we can further 
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examine the impact of the Alpha and Delta variants on wastewater concentrations. To facilitate a 
comparison, we employed standardized regression coefficients instead of the original scale. 
Because the range of the Alpha variant prevalence and the number of data points of the Alpha 
variant are smaller than that of the Delta variant, the slope coefficient of the Alpha variant is 
larger than that of the Delta variant but is not significant. For the aggregated model (Figure 4; 
panel A), the standardized regression coefficient of the Alpha variant prevalence is 3.464 x 10-4 
(CI = (4.460 x 10-7, 6.946 x 10-4)) and the Delta variant prevalence is 1.992 x 10-3 (CI = (1.627 x 
10-3, 2.344 x 10-3)). Hence, the effect of the Delta variant was found to be 5.8 times greater than 
that of the Alpha variant. The fitted line of wastewater concentration exhibits a transition point, 
and the broken stick regression line aligns well with the data (R-square value 0.904). We can 
also see similar patterns in other sewershed locations (Figure 4; panels B–D). The standardized 
regression coefficients for each sewershed area are 5.053 x 10-4 (CI = (1.081 x 10-5, 9.796 x 10-

4)) and 1.880 x 10-3 (CI = (1.387 x 10-3, 2.339 x 10-3)) for MSD1, 3.586 x 10-4 (CI = (-1.148 x 10-

4, 8.337 x 10-4)) and 3.395 x 10-3 (CI = (2.921 x 10-3, 3.872 x 10-3)) for MSD2, and 2.518 x 10-4 
(CI = (-4.963 x 10-5, 5.616 x 10-4)) and 1.609 x 10-3 (CI = (1.291 x 10-3, 1.910 x 10-3)) for MSD3 
to 5 respectively.  
 
2.4 Forecasting hospitalization rates based on wastewater concentration  
Hospitalization estimates under both vaccinated (64% vaccination rate17) and unvaccinated (0% 
vaccination rate) scenarios were obtained by applying a hierarchical regression model where we 
first regressed wastewater concentration on the ������ model prevalence and then regressed 
hospitalization counts on the wastewater concentrations (Figure 5). As hospitalization is likely to 
occur sometime after symptom onset, we considered a range of no lag to 5-week lag period. A 1-
week lagged-regression model was the best fit where the length of the lag time was based on the 
overall model fit criteria. The fitted intercept and slope coefficients were 1.222 x 10-4 (std = 
3.345 x 10-5) and 0.181 (std = 0.0150) for vaccinated and unvaccinated scenarios respectively 
(R-square of 0.895) (Figure 5; panel A). The maximal number of the observed daily average 
hospitalizations under vaccination scenario was 110.4 per weekly average (actual 122.0 in daily) 
at the end of August. However, without vaccination, the maximum predicted number of weekly 
average hospitalizations increased to 192.1. The ratios between the areas under the prediction 
curves with and without vaccination were 0.318, indicating a 214% (CI = (192%, 250%)) 
increase in the number of hospitalizations when no vaccine would be present. In a comparable 
way, we obtained the hospitalization estimate without the Delta variant. The ratio of the areas 
under the two graphs (with and without the Delta variant) is 3.037, indicating a 67% (CI = 
(53.5%, 89.4%)) decrease in the hospitalization rate. We also tested the forecasting (forward 
prediction) performance of the regression model (Figure 5; Panel B). Using the data from the 
first two months under study, we fitted the same regression model. Then we forecasted the 
hospitalization rates for July and August 2021. The fitted intercept and slope coefficients (Figure 
5; panel B) were 2.003 x 10-4 (std = 1.241 x 10-5) and 1.263 (std = 0.0385). As the model only 
used the first half data, the R-square is smaller than the full model (0.550). The model we fitted 
is statistically significant, and its forecasting demonstrated commendable performance. 
Furthermore, we conducted a regression analysis linking the hospitalization rate to wastewater 
concentration. The resulting slope coefficient was 0.1762 (sd= 0.0119), and an R-square value 
was  0.9241. Notably, the predictions from this simple regression model outperformed those of 
the hierarchical regression model discussed earlier. This suggests that wastewater concentration 
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can serve as a robust predictor for forecasting hospitalization rates. Comprehensive estimation 
results are provided in Table S11.  
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3. Discussion  
The results of our large study (N = 3303) show the importance of post-vaccine environmental 
surveillance for the prevalence of the virus in an urban area. A major advantage of this approach 
is that it decreases bias implicit in publicly-available clinical case data by assessing community 
prevalence using antibody positivity with four waves of sequential stratified randomized 
sampling data. Although our work was localized to Jefferson County, where contemporaneous 
randomized sampling and wastewater concentration were available, it should be emphasized the 
model described here may be readily applicable to other locations worldwide. In addition to 
SARS-CoV-2, the model may be valid for other infectious diseases as well. Moreover, even 
though our model was run with both the SARS-CoV-2 (N1) and adjusted analysis, we noticed 
that the model provided reduced uncertainty with the PMMoV adjustment. Indeed, estimation of 
the effect of vaccination brings the related issue of refined localized model application such as 
high levels of tourism that may affect community vaccination levels and related observed 
wastewater concentrations.8 Here we have presented real world evidence that, in fact, small area 
wastewater surveillance could be used to estimate both - the effects of disease evolution as well 
as a community intervention, like a vaccination campaign.  
 
It is widely recognized that even though vaccine distribution was more proportional to wealth 
than need, COVID-19 vaccination rates were highly effective.18–21 Therefore, where accessible, 
the impact of vaccination on community-wide prevalence of infection was readily apparent. 
However, for other vaccine-preventable disease, there is an urgent need for increased reliance on 
wastewater as a proxy for community disease impact being built from actual community level 
data over time, as the estimates by different methods can vary. For instance, when 90% of the 
student population of a college campus was vaccinated, SARS-CoV-2 in wastewater decreased4; 
but that university campus population generalization was not replicated in our community-wide 
survey over a longer period. In contrast to our findings, Nourbakhsh et al.22 found dissimilar 
trajectories from community clinical and wastewater ratios once vaccination was introduced. We 
suspect this difference is explained by the bias of relying on clinical data and home testing kits 
which became more widely available during our studied period than earlier in the pandemic and 
with no requirement, or in some cases option, for reporting. Whereas the Nourbakhsh et al.22 
study included only publicly reported case data, the randomized selection of community 
participants in our study population23 was a comparatively less biased data source for this post-
vaccine period. Our recent work has shown that even though we cannot rule out bias due to self-
selection for testing, the randomized sampling approach provides better estimates of disease 
prevalence than administratively reported data.23  
 
Our model is comparable to that used by Jiang et al.24 in that our analysis also provided estimates 
of prevalence; however, our estimates are based on a statistical random sample (not a clinical 
sample) and our regression model has a simple and explicit formula relating prevalence to 
observed wastewater levels of the virus. Our model further confirms the findings of Hegazy and 
coworkers6 implying the Delta variant emergence strengthened the relationship between 
wastewater and disease burden. Hence, our analysis provides a further proof-of-concept that our 
wastewater regression model could be used (after proper calibration) with other similar data to 
provide surrogate measures of SARS-CoV-2 prevalence in the community without the necessity 
for individual testing. The regression prediction correlates well with the estimated prevalence 
with a correlation coefficient of 0.858 (CI = (0.502, 0.975). The hospital burden findings of 
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Wang et al.25 also compares well to our work; our results showed access to a voluntary 
community vaccine that reached a coverage level of 64% of the adult population decreased 
community hospitalizations by approximately 214%.  
 
Yaniv et al.5 described the introduction of a new variant signal in wastewater and noted how 
vaccination rates and a second booster helped to control the Alpha variant, while an increase in a 
third booster was found to lead to a decline in Delta. When vaccination levels increase to higher 
coverage, hospitalizations may decline, even though the levels in wastewater remain high.7 
Pandemic preparedness and associated public health response would benefit from new methods 
less dependent on continuous individual clinical testing.  
 
Our study used five sub-county locations based on the existing wastewater infrastructure 
allowing observation of a small geographical area but also the aggregation of data for a 
countywide picture. We found that the antibody positivity varied by the sewershed. The 
antibody-positive individuals were lowest in sewershed MSD1 and highest in sewershed MSD3–
5 (9% for aggregate, 8% for MSD1, 9% for MSD2, and 10% for MSD3–5), indicating that 
previous infection may have been higher in the less dense portions of the county as compared 
with the urban core. Nonetheless, there are many other factors differentiating these sewershed 
areas that could have produced these differences. These include population sizes and 
demographics, or presence of stormwater or industrial discharge being combined with household 
sewer water. Regardless, the differences between MSD1 to 5 provide evidence of the benefit of 
observing results at both an aggregated and a smaller sub-county level. 
 
For replication of our current hybrid SARS-CoV-2 model, wastewater sampling, stratified 
random sampling of seroprevalence, and linked vaccination data are required; the model is 
flexible enough to allow additional variant-specific variables. The promise of this model is that 
with known wastewater levels of the virus, we can predict the effect of vaccination to enable 
fine-tuned, and milestone-driven, public health response. The results obtained from our model, 
show unequivocally that the COVID-19 pandemic would have been larger and spread earlier 
without vaccine access. These findings provide further positive evidence for the significant role 
of vaccines in public health, a valuable lesson for the pandemic preparedness. 
 
Despite its many strengths, our study has some limitations. The proportion of vaccinated 
respondents in the seroprevalence study was larger than the greater community (~90% vs. 64%). 
Vaccine information was self-reported, and we made a simplifying assumption that the 
magnitude of the vaccine leakage effect is negligeable26 when comparing to other effects. 
Natural infection of a combined vaccinated and unvaccinated population (and in the absence of 
another way to verify vaccination) was based on antibody titers of IgG N1, an assay that has 65% 
sensitivity and 85% specificity23 a priori, with inevitable under-estimation of infection 
prevalence. While our serosurvey only captured adults, wastewater testing included minors. 
COVID-19 infected individuals can, in rare instances, shed fecal SARS-CoV-2 up to 7 months 
post diagnosis;27 viral shedding of SARS-CoV-2 can vary in relation to vaccination status and 
variant28,29 and thus was not included in our model. One of the major advances of this paper is 
the presentation of a relatively simple and flexible analytical model capable of using wastewater 
concentration to predict the effect of vaccination and new variants on prevalence and 
hospitalization rates. Our simulations suggest we could use as little as 50% of data to retain the 
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statistically significant calibration conclusions (Table S12). This issue is worth further study 
outside the present work. Finally, the model we utilized assumed perfect protection for 
individuals infected with the Alpha variant against the Delta variant, as well as the insignificant 
seropositivity waning. While these assumptions may not be entirely valid, they appear 
reasonable30 and are unlikely to have a significant impact on our conclusions.  
 
Overall, our work suggests that under certain conditions, it is possible to use wastewater-based 
epidemiology to assess both immunity acquisition in the community due to natural recovery and 
vaccination as well as the effect of new variants emergence and associated immune evasion to 
the available vaccines. The effect of vaccination on wastewater concentration as well as on 
community incidence of SARS-CoV-2 was substantial in Jefferson County. According to our 
analysis, without vaccination, one would expect about 156% of excess infections over the period 
of study, which corresponds to a 219% of excess wastewater concentration. The effect of the 
Delta variant was similarly substantial. We estimated, over the study period in Jefferson County, 
without Delta the amount of overall infection would decrease on average by 96% which 
corresponds to 88% decrease in wastewater SARS-CoV-2 (N1) normalized by PMMoV ratio. 
The correspondence between wastewater concentration and the number of hospitalizations was 
found to be strongest with the time lag for about 7 days and correlation = 0.95. Based on the 
regression model we estimated the effects of vaccination and variants on hospitalization rate. 
According to the model, without vaccination one would expect about 214% increase and without 
variants about 67% decrease in hospitalization rate. Using the fitted regression model for 
hospitalization, the predictions of hospitalization rates are at 50, 100, and 150 per 100K when 
SARS-CoV-2 (N1) normalized by PMMoV ratios are 0.0021, 0.0050, and 0.0077, respectively.  
 
Our large, randomized, serosurvey suggests using the mechanistic, population level, vaccination 
model (������) coupled with longitudinal wastewater sampling reliably estimated the effect of 
vaccination on the prevalence rate in the community over the period of several months during the 
second and third wave of COVID-19 pandemic, in the absence of clinical data. Ours is the first 
study to look at a specific small area. The model can also be used to estimate the effects of 
vaccination and new variants emergence on the hospitalization rate and on peak hospital beds 
utilization, estimates critical for adequate preparedness for the next pandemic, should it arise.  
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4. Methods 
4.1 Seroprevalence  
Community-wide stratified randomized seroprevalence sampling (Table S1) was conducted in 
four waves from April to August 2021 in Jefferson County, Kentucky (USA) which is also the 
consolidated government for the city of Louisville.23 Seroprevalence sampling was conducted 
both before and during vaccination, but this analysis only considers the period after COVID-19 
vaccines were made widely available to the public (N = 3,303). In some cases, due to the timing 
of sampling waves, respondents may have had only the first of a two-dose vaccine series. 
Serological positivity for nucleocapsid immunoglobulin G was used to identify participants with 
previous SARS-CoV-2 natural infection; vaccines used in the studied areas rely on SARS-CoV-2 
viral spike protein and thus spike protein presence could be attributable to either natural infection 
or vaccination. Owing to elevated levels of vaccinated respondents in our study (~90%), we only 
included seroprevalence measured by response to IgG N1 antibodies.23,31 The nucleocapsid (N1) 
IgG test sensitivity was 65% and the specificity was 85%.23 It was assumed over the study period 
vaccination induced antibodies do not decay below detection. 
 
4.2 Levels of SARS-CoV-2 and PMMoV in the wastewater 
Wastewater samples were collected twice per week from five wastewater treatment plants (N = 
168; Figure S1 and Table S2) from April to August 2021. From an influent 24-hour composite 
sampler, 125 ml of subsample was collected and analyzed for SARS-CoV-2 (N1) and PMMoV. 
In a few cases due to an equipment malfunction, a grab sample was collected. The geographic 
area and population serviced by a wastewater treatment plant comprises a sewershed, the zone 
for which we consider in our model analysis across a range of population sizes, income levels 
and racial and ethnic diversity. Analysis used polyethylene glycol (PEG) precipitation with 
quantification in triplicate by reverse transcription polymerase chain reaction (RT-qPCR).2 Data 
for SARS-CoV-2 (N1) and PMMoV are reported as weekly average copies/ml of wastewater 
with a threshold value for SARS-CoV-2 (N1) assays of 7.5 copies/ml and for PMMoV 143 
copies/ml. 
 
4.3 Administrative COVID-19 data 
Administrative data on COVID-19 vaccination and infected individuals’ hospitalization was 
provided by the Jefferson County health authority, Louisville Metro Department of Public Health 
and Wellness (LMPHW), under a Data Transfer Agreement. Vaccination data were geocoded to 
the urban sewersheds using ArcGIS Pro version 2.8.0 (Redlands, CA). Daily hospitalization data 
was only available aggregated at a county level.  
 
4.4 Analytical model 
The hybrid model for estimating the effect of vaccination and variants on longitudinal 
wastewater concentration was developed by combining a compartmental ecological model with a 
statistical linear model (Supplemental Material Appendix C). The former was used to 
longitudinally estimate population prevalence from the observed cross-sectional rates of 
seropositivity. We assumed the overall vaccination pattern as reported by the county, with the 
overall adult vaccination rate reaching 64%17 by the end of the study period. The hybrid model 
was used to relate the ecological model prevalence to the wastewater concentration. The 
ecological model, ������ , tracked longitudinally the proportions of individuals who were 
susceptible (S), vaccinated (V), infected with non-Delta variant (��), infected with Delta variant 
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(��),  recovered (R), or seropositive (T). We note that a version of this model that did not account 
for vaccination or variant was considered in our earlier work.2  
 
4.4.1 Regression model for wastewater concentration of SARS-CoV-2 and PMMoV ratio 
Upon estimating the parameters in the ������  model, we compared the model-calculated 
prevalence estimates for SARS-CoV-2 infections and vaccination levels with the wastewater 
concentration levels of SARS-CoV-2 (N1) and for that normalized by PMMoV.32 We also 
separately calculated two prevalence estimates according to the Alpha and Delta variants. 
Bayesian linear regression was performed both on the county aggregated data and stratified by 
sub-county wastewater treatment plant zones (sewersheds). We used the broken stick regression 
model to separately compare the Alpha and Delta variation effects on the wastewater 
concentration with regression coefficients directly. To improve the regression model stability, we 
used weekly average prevalence rates from the ������ model as the explanatory variable, and 
weekly aggregated average wastewater concentrations as the single outcome variable. This 
temporal aggregation also allowed us to use a simple posterior-profile likelihood to estimate the 
average change point in the broken stick regression model (see, e.g., Schwartz et al.33 for a 
similar approach for initial conditions imputation). We assigned non-informative priors to all 
regression parameters. Specifically, the non-informative Cauchy distribution was assigned to 
regression coefficients, and the non-informative gamma prior was assigned to the dispersion 
parameter error term. The regression model with intercept is used where the intercept may be 
interpreted as background and calibration noise related to wastewater sampling. We could see 
temporal differences between the Alpha and Delta variant dominant dates (Table S13), but this 
variability in time also considers that samples are weekly aggregated average wastewater 
concentrations. We did not include these variabilities of intervals in the model as the magnitudes 
of the observed wastewater concentration and estimated prevalence in this interval are relatively 
small, and model changes do not significantly alter the overall model fit.   
 
4.4.2 Estimating vaccination, variant and hospitalization effects  
The strong statistical significance of the regression model relating prevalence and wastewater 
concentration allowed for indirect estimation of the effect of population vaccination and variants. 
Under the assumption the relationship between the wastewater concentration and the prevalence 
is not confounded by the vaccination and variants, we used the original regression equation 
derived from the collected wastewater and seroprevalence data to estimate the wastewater 
concentration over time. To estimate the vaccination effect, we compared these concentrations 
with hypothetical ones obtained when the vaccination term was zeroed out in the ������ model. 
In a comparable manner, we estimated the effect of the introduction of the Delta variant. Finally, 
we performed the longitudinal, regression-based analysis relating the community hospitalization 
to observed wastewater concentrations. In the three analyses we quantified the effects by 
calculating the size of the effects relative to the factual (observed) states.  
 
4.4.3 Competing risk model with two different virus variants  
Wastewater samples were prepared for whole genome sequencing,14,34 and the proportion of 
observed SARS-CoV-2 variants was estimated for each sewershed based on variant dominance 
(Table S13). Two variants were present in the study area during the study period: Alpha was 
dominant from April until July, while Delta was dominant from July until August.14,34 To reflect 
the infections before and after the emergence of the Delta variant, we incorporated into our 
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SVI2RT model the two different infection compartments (�� and ��) reflecting both the infection 
competition and temporal heterogeneity caused by two different variants of the virus.  
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4.5 Ethics  
For the seroprevalence and data provided by the LMPHW under a Data Transfer Agreement, the 
University of Louisville Institutional Review Board approved this as Human Subjects Research 
(IRB number: 20.0393). For the wastewater data, the University of Louisville Institutional 
Review Board classified this as non-human subjects research (reference #: 717950).  
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Data availability 
The seroprevalence, wastewater levels, and hospitalization information data used in the study can 
be accessed from the website https://github.com/cbskust/DSA_Seroprevalence. The computer 
code that implemented our model-based analysis will be made available immediately after 
publication.  
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List of Figures 
Figure 1. The estimated effect of vaccination on incidence in sewersheds of Jefferson 
County, KY (USA). The dark green line is the factual SVI2RT model estimated incidence (with 
vaccination), and the light green line is the corresponding counterfactual estimated incidence 
with vaccination effect zeroed out. The shaded areas represent 95% credible intervals. The 
panels compare the vaccination effect in Jefferson County (Panel A) as well as stratified by 
sewershed (Panels B–D). 
 
Figure 2. The estimated effect of vaccination on SARS-CoV-2 (N1) wastewater 
concentration normalized by pepper mild mottle virus in sewersheds of Jefferson County, 
KY (USA). The dark brown line is the regression-based fit to the wastewater concentration data 
and the light brown line is the prediction of wastewater concentration using synthetic prevalence 
from ������ model with vaccination effect zeroed out. The shaded areas represent 95% credible 
intervals. The blue dots are observed weekly average wastewater concentrations. The panels 
compare the vaccination effect on wastewater concentration for Jefferson County (Panel A) as 
well as stratified by sewershed (Panels B–D). 
 
Figure 3. The model-based analysis of the Delta variant effect on SARS-CoV-2 incidence 
rate estimates in sewersheds of Jefferson County, KY (USA). The dark green line is the 
estimated factual full model incidence (both Alpha and Delta variants present), and the light 
green line is the counterfactual incidence estimated from the model with no Delta variant. The 
shaded areas represent 95% credible intervals. The panels compare the incidence rate in 
Jefferson County (Panel A) as well as stratified by sewershed (Panels B–D). 
 
Figure 4. The estimated effect of Alpha and Delta variant on SARS-CoV-2 (N1) wastewater 
concentration normalized by pepper mild mottle virus in sewersheds of Jefferson County, 
KY (USA). The dark brown line is the regression-based fit to the wastewater concentration with 
the Alpha and Delta variant and the light brown line is the prediction of wastewater 
concentration using synthetic prevalence from the ������ model with the Alpha variant only. 
The shaded areas represent 95% credible intervals. The blue dots are observed weekly average 
wastewater concentration. The panels compare the variant effect on wastewater concentration for 
Jefferson County (Panel A) as well as stratified by sewershed (Panels B–D). 
 
Figure 5. Time lag-dependent analysis of the relationship between hospitalization rate and 
wastewater concentration, Jefferson County, KY (USA). Panel A. Predictions and 95% 
confidence intervals of hospitalization rate regressed on week-lagged variables of the weekly 
average of wastewater concentration according to the changes of the vaccination proportion of 
the community. The dark line represents the prediction using the observed wastewater 
concentrations with 64% of community vaccination. The lighter line represents the prediction 
using the wastewater concentrations obtained from the model under zero community vaccination. 
The lightest line represents the prediction under the counterfactual modified ������ model with 
the Delta-infected model compartment zeroed-out (no Delta variant present). The green dots 
represent the weekly average of the observed hospitalization rate. The ratios of the areas between 
the prediction from the fitted model and of no vaccination are 0.318, and in the absence of the 
Delta variant is 3.037, respectively. Panel B. Forecasting (forward predictions) of mean and 95% 
confidence interval of hospitalization rate for July and August 2021 using a regression model 
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fitted to data before 1 July 2021. Light blue colored dots represent the observed hospitalization 
rate using regression model fitting. The dark line represents the July and August 2021 
forecasting using the observed wastewater concentrations with 64% of community vaccination. 
The dots represent the observed hospitalization rate for July and August 2021.  
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Appendix A. SARS-CoV-2 seroprevalence by wave and sewershed, Jefferson County, KY 
(USA). 
 
Table S1. SARS-CoV-2 seroprevalence by wave and sewershed, Jefferson County, KY 
(USA). 

  

Number of 
unvaccinated 
participants  

Number of 
vaccinated 
participants 

Number of 
participants 
positive for 
SARS-CoV-2 
nucleocapsid 
(N1) specific 
IgG 
antibodies  

Estimated posterior 
average 
seroprevalence per 10�  people (95% 
credible interval) 

Estimated 
posterior 
average 
prevalence per 10�people (95
% credible 
interval)  

Overall   
MSD1 98 1464 132 9153 (3772, 14533) 533 (38, 1028) 
MSD2 134 800 81 5427 (1848, 9006) 336 (0, 672) 
MSD3–5 86 721 83 8410 (2016, 14804) 588 (0, 1177) 
Total 318 2985 296 7596 (2639, 12554)* 465 (7, 923)* 
Wave A         
MSD1 27 372 24 2249 (1686, 2811) 62 (1, 122) 
MSD2 31 208 25 2277 (1751, 2803) 49 (0, 97) 
MSD3–5 13 113 19 2284 (1682, 2887) 53 (1, 106) 
Total 71 713 68 2265 (1710, 2820)* 55 (0, 110)* 
Wave B         
MSD1 26 370 17 2927 (2042, 3813) 197 (7, 386) 
MSD2 40 192 17 2611 (1832, 3391) 74 (0, 149) 
MSD3–5 23 170 8 2952 (1816, 4089) 271 (0, 542) 
Total 89 733 42 2809 (1917, 3701)* 161 (0, 334)* 
Wave C         
MSD1 16 309 22 6261 (2537, 9984) 618 (43, 1193) 
MSD2 29 179 11 3696 (1860, 5531) 197 (0, 394) 
MSD3–5 15 171 13 7565 (2048, 13083) 456 (0, 911) 
Total 60 659 46 5473 (1952, 8994)* 430 (0, 875)* 
Wave D         
MSD1 29 413 69 19572 (8999, 30145) 810 (4, 1617) 
MSD2 34 220 28 12408 (1872, 22943) 834 (0, 1668) 
MSD3–5 35 247 43 14746 (2188, 27304) 1440 (0, 2880) 
Total 98 880 140 16048 (5155, 26941)* 918 (0, 1861)* 
*Weighed average according to the population sizes of each sewershed zone.  
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Appendix B. Studied wastewater treatment plant zones (sewersheds), Jefferson County, 
KY (USA).  
 
 

 
Figure S1. Studied wastewater treatment plant sewersheds, Jefferson County, Kentucky
(USA).  
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Table S2. Characteristics of studied wastewater treatment plant sewersheds of Jefferson 
County, KY (USA). 

Sewershed 
Income 
(USD$)a Populationa 

Area 
(km2) 

Combined  
sewerb 

MSD1 
Morris Forman Water Quality Treatment Center  

54,138 349,850 280 Yes 

MSD2 
Derek R. Guthrie Water Quality Treatment Center  

53,577 295,910 332 No 

MSD3 
Cedar Creek Water Quality Treatment Center  

76,606 55,928 80 No 

MSD4 
Floyds Fork Water Quality Treatment Center  

113,699 32,460 88 No 

MSD5 
Hite Creek Water Quality Treatment Center  

106,769 31,269 67 No 

aBased on 2018 U.S Census Bureau American Community Survey (ACS) block group data 
aggregated to the wastewater catchment areas with overlapping block group centroids. Income is 
mean median household. For more on wastewater site selection see Yeager et al., 2021.  
bCombined sewers include wastewater and stormwater and SARS-CoV-2 concentrations may be 
expected to fluctuate more as a result. 
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Appendix C. Population vaccination model (SVI2RT) 
 
The equation shown in (1) describes the time-evolution of the proportions of individuals who are 
susceptible (S), vaccinated (V), infected with Alpha variant (I1), infected with Delta variant (I2) 
removed (R), and seropositive (T). We assume the total initial population of susceptibles is large 
with a small initial fraction of infected. The model equations are: 

�� � ��������� � ��������� � ����,
�� � ���� � ��������� � ����������

�
�
��� � �������� � ��������� � ������,

� 
�
��� � ��������� � ���������� � ������
��

 � ������ � ������ � ���,�� � ���,

 (1) 

with the initial condition �� � 1 � ��1.001� � � � � � 0,�� � 0, ����� � � � 0, ����� � �/1000, �� � � � 0, and �� � � � 0. 
 
Here, � and �� are the rates of infection of respectively, unvaccinated and vaccinated, and �� and ��� are the rates of infection according to Delta variant. As our compartment model has two 
infection compartments, it is called the variant competition model.1 The observed data in this 
analysis do not have any information about infection from the Delta variant, and an increase in 
the number of parameters makes model estimation difficult and may lead to identifiability 
problems. So, we set ��  and ���  at the values 50% higher than � and �� .2 The function of �� 
represents a changing rate of vaccination over time. The vaccination process may be changed 
according to a policy or vaccine supply, so we set the vaccination rate �� to match the empirical 
percentage of the vaccinated population in Jefferson County at the end of August 2021. 
Additionally, � is the rate of recovery, and � is the rate at which antibodies build to a detectable 
level after recovery. The ������ model parameters to be estimated are given by the vector � � ��, ��, �, �, �, �, ��. 
 
To obtain the serial estimates of incidence and prevalence from the observed seropositivity levels 
in four waves of testing, we adapt the idea of an ODE-based survival model proposed recently.3,4 

According to that model, the scaled quantities �� , ��, �����, �����, ��, ��  may be considered as 
respective probabilities of a randomly selected individual in a large population, being either 
susceptible, vaccinated, infected with different virus variant, recovered, or seroprevalent at time  . Consequently, we consider the results !� � of all individual antibody-based tests conducted at 
times   as independent Bernoulli variables: 
 !� � " Ber�����, 
where ��� � %&'%�� � �1 � %(&��1 � ��� is the specificity adjusted probability of a positive test. 
For our analysis, both %&'% and %(& are additional parameters to be estimated. We assigned the 
informative priors to %&'% and %(& from available clinical data. 
 
Assuming at time  , '� individuals are tested with )� having positive results, the corresponding 
log-likelihood function is: 
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 ℓ��Θ� , )�log���� � �'� � )��log�1 � ���, (2) 
 
where Θ � ��, ��, �, �, �, �, �, %(&, %&'%) is the vector of parameters to be identified.  
Given the testing data at . / 1 time points  �, … ,  	, we then aim to find parameter values � 
that maximizes the posterior log-likelihood function: 
 ℓ1 �Θ� , ∑ ℓ��	


�� �Θ� � log(�Θ�, (3) 
 
where (�Θ) is the prior distribution on Θ to be determined from our previous work3,4. Hence, we 
seek the values of Θ  that maximize our posterior log-likelihood function (3). The entire 
system (1) must be solved for each parameter combination.  
 
S3.1 Incidence, prevalence, and seroprevalence estimation 
Posterior serial estimates of the relative rates of incidence, prevalence, and seropositivity were 
obtained from the ������ model as the time-dependent vector: 
 

Pred� � �� � � , ��, �����, �����, ���. (4) 
 

Here ���, ��, �����, �����, ��� is the family of trajectories of (1) evaluated at the posterior distribution 
of the vector Θ. In practice, the distribution of Pred� is approximated by taking a random sample 
of size . from the converged MCMC sampler. In our case . � 2000. To obtain daily incidence 
rates (Inc�) we have used the approximation � � 9 ��� � ��  and consequently took Inc� � �� ���� where : corresponds to a specific day of interest. The estimated prediction counts were 
obtained by multiplying the rates in Pred� by the appropriate population numbers. 
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Table S3. Posterior mean estimates of the ;<=�>? model parameters in sewersheds of 
Jefferson County, KY (USA). The area-specific Hamiltonian Markov chain Monte Carlo 
(MCMC) posterior estimates are based on seropositivity data aggregated across Jefferson County 
and stratified by sewersheds. The corresponding 95% credible bounds are provided in 
parenthesis. The results are based on MCMC implemented via Rstan library, with a 6000- and 
2000-step burn-in. 
 Jefferson County 

Aggregated 
MSD1 MSD2 MSD3–5 

@ 0.384 (0.301, 
0.449) 

0.375 (0.282, 
0.443) 

0.314 (0.234, 
0.374) 

0.353 (0.259, 
0.427) A 8.813 x 10-3 (64%) 0.010 (67%) 6.600 x 10-3 (55%) 0.013 (76%) 

@B 0.317 (0.235, 
0.381) 

0.322 (0.238, 
0.389) 

0.303 (0.207, 
0.380) 

0.330 (0.249, 
0.400) C 0.432 (0.340, 

0.502) 
0.418 (0.325, 
0.486) 

0.388  
(0.294, 0.460) 

0.411 (0.324, 
0.481) D 0.103 (0.063, 

0.137) 
0.102 (0.067, 
0.133) 

0.104 (0.067, 
0.135) 

0.103 (0.066, 
0.133) E 1.106 x 10-3  

(3.903 x 10-4, 
1.820 x 10-3) 

1.199 x 10-3  
(5.904 x 10-4, 
1.744 x 10-3) 

1.097 x 10-3  
(3.941 x 10-4, 
1.851 x 10-3) 

1.160 x 10-3  
(5.757 x 10-4, 
1.688 x 10-4) F 1.545 x 10-3  

(1.493 x 10-4, 
3.441 x 10-3) 

1.659 x 10-3  
(1.465 x 10-4, 
3.732 x 10-3) 

1.630 x 10-3  
(1.586 x 10-4, 
3.562 x 10-3) 

1.648 x 10-3  
(1.324 x 10-4, 
3.587 x 10-3) G 0.0222 (0.0182, 

0.0253) 
0.0222 (0.0183, 
0.0253) 

0.0224 (0.0187, 
0.0254) 

0.0223 (0.0184, 
0.0254) 

Specificity 0.946 (0.934, 
0.954) 

0.957 (0.941, 
0.969) 

0.931 (0.909, 
0.945) 

0.931 (0.904, 
0.949) 

Sensitivity 0.632 (0.540, 
0.699) 

0.635 (0.543, 
0.704) 

0.644 (0.548, 
0.708) 

0.640 (0.549, 
0.704) 
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Table S4. The prior distribution specifications for the ;<=�>? model. Parameters were given 
Gamma prior distributions, with hyper-parameters (a, b) listed in the table below. 
Gamma 
(a, b) β @B γ δ ρ ε ψ 

Specifi
city 

Sensiti
vity 

a 40.97 40.97 21.80 24.29 5.57 1.74 112.5 21.7 71 

b 92.32 92.32 90.32 232.00 4648 
1039.0
9 

5035.1
5 

3.83 38.3 
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Table S5. Summary of the Bayesian broken stick regression results in sewersheds of 
Jefferson County, KY (USA). Dispersion (H� is the standard deviation of the error term of the 
linear regression.  
Sewershed Parameters Linear regression model 

Posterior mean (95% credible interval) 

Jefferson 
County 
Aggregated 

Intercept -4.222 x 10-4 (-9.458 x 10-4, 7.921 x 10-5) 
Alpha variant 0.815 (-0.023, 1.717) 
Delta variant 0.385 (0.318, 0.455) 
Dispersion �H� 6.483 x 10-4 (4.543 x 10-4, 9.490 x 10-4) 

MSD1 

Intercept -7.012 x 10-4 (-1.385 x 10-3, 1.493 x 10-5) 
Alpha variant 1.126 (0.096, 2.112) 
Delta variant 0.240 (0.181, 0.296) 
Dispersion �H� 8.153 x 10-4 (5.739 x 10-4, 1.186 x 10-3) 

MSD2  

Intercept -2.099 x 10-4 (-8.447 x 10-4, 4170 x 10-4) 
Alpha variant 0.881 (-0.325, 2.073) 
Delta variant 0.557 (0.482, 0.631) 
Dispersion �H� 8.939 x 10-4 (6.330 x 10-4, 1.300 x 10-3) 

MSD3–5 

Intercept -2.963 x 10-4 (-7.426 x 10-4, 1.508 x 10-4) 
Alpha variant 0.630 (-0.155, 1.434) 
Delta variant 0.201 (0.163, 0.240) 
Dispersion �H� 5.635 x 10-4 (3.961 x 10-4, 8.323 x 10-4) 

  

 . CC-BY 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 28, 2023. ; https://doi.org/10.1101/2023.01.06.23284260doi: medRxiv preprint 

https://doi.org/10.1101/2023.01.06.23284260
http://creativecommons.org/licenses/by/4.0/


37 
 

Table S6. Sensitivity analysis. The transmission rates of the Delta variant, denoted as β*, set to 
120%, 150%, 200%, 250%, and 300% of the transmission rate of the Alpha variant, denoted as β. 
The second column represents the corresponding increases in the basic reproduction numbers. 
Increasing amount of transmission rate 

of Delta variant >� 
1.2 1.06 
1.5 1.33 
2.0 1.78 
2.5 2.22 
3.0 2.67 
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Table S7. Summary of the effects of the vaccination and Delta variant in sewersheds of 
Jefferson County, KY (USA). Percentage reduction due to vaccination effect or excess due to 
Delta variant on estimates of wastewater concentration and incidence rate. In parenthesis, we 
give lower and upper bounds of 95% credible interval.  
 

  

  
Jefferson County 
Aggregated 

MSD1 MSD2 MSD3–5 

Vaccination effect 
with Delta variant 

Wastewater 218.9 (193.5, 
242.4) 

123.1 (105.0, 
144.0) 

202.8 (192.8, 
203.4) 

166.9 (146.8, 
187.1) 

Incidence 156.2 (95.2, 
175.7) 

99.4 (94.2, 
108.5) 

154.5 (3.2, 
154.7) 

108.8 (52.8, 
109.2) 

Vaccination effect 
without Delta 
variant 

Wastewater 44.1 (36.0, 49.9) 81.5 (77.6, 
86.1) 

5.7 (2.7, 12.6) 102.0 (66.5, 
142.8) 

Incidence 60.3 (22.8, 62.8) 96.9 (25.2, 
107.4) 

36.3 (4.0, 37.7) 113.3 (14.0, 
117.5) 

Delta variant effect 
with vaccination 
 

Wastewater 88.4 (87.7, 88.7) 82.4 (81.4, 
84.0) 

89.7 (88.5, 
90.8) 

88.3 (87.3, 
89.1) 

Incidence 95.75 (95.74, 
95.91) 

96.78 (95.54, 
96.84) 

95.8 (2.7, 96.0) 97.0 (38.6, 
97.1) 

Delta variant effect 
without vaccination 
 

Wastewater 94.5 (93.3, 95.3) 85.7 (83.7, 
87.9) 

95.8 (94.9, 
96.7) 

91.0 (90.7, 
91.2) 

Incidence 97.6 (34.0, 97.7) 96.9 (8.2, 
97.0) 

98.0 (0.5, 98.0) 97.0 (1.1, 
97.1) 
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Table S8. Summary of the effects of the vaccination and Delta variant in sewersheds of 
Jefferson County, KY (USA). The absolute values of difference between estimated wastewater 
concentrations and incidences due to vaccination effect or Delta variant. In parenthesis, we give 
lower and upper bounds of the 95% credible interval.  

  

  
Jefferson 
County 
Aggregated 

MSD1 MSD2 MSD3–5 

Vaccination effect 
with Delta variant 

Wastewater 0.419 (0.377, 
0.463) 

0.266 (0.236, 
0.296) 

0.486 (0.456, 
0.518) 

0.250 (0.223, 
0.277) 

Incidence 0.410 (0.035, 
0.837) 

0.382 (0.033, 
0.797) 

0.301 (0.000, 
0.603) 

0.413 (0.001, 
0.826) 

Vaccination effect 
without Delta 
variant 

Wastewater 0.010 (0.008, 
0.013) 

0.033 (0.030, 
0.035) 

0.002 (0.001, 
0.004) 

0.019 (0.014, 
0.024) 

Incidence 0.006 (0.000, 
0.012) 

0.011 (0.000, 
0.023) 

0.003 (0.000, 
0.005) 

0.012 (0.000, 
0.025) 

Delta variant effect 
with vaccination 
 

Wastewater 0.182 (0.180, 
0.185) 

0.190 (0.183, 
0.197) 

0.233 (0.230, 
0.237) 

0.142 (0.140, 
0.143) 

Incidence 0.246 (0.035, 
0.456) 

0.372 (0.033, 
0.711) 

0.187 (0.000, 
0.374) 

0.362 (0.001, 
0.724) 

Delta variant effect 
without vaccination 
 

Wastewater 0.583 (0.541, 
0.628) 

0.440 (0.412, 
0.470) 

0.654 (0.625, 
0.684) 

0.384 (0.362, 
0.406) 

Incidence 0.642 (0.001, 
1.82) 

0.739 (0.000, 
1.478) 

0.486 (0.000, 
0.972) 

0.767 (0.000, 
1.534) 
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Table S9. Vaccination effect of the incidence estimation of Jefferson County, KY (USA). 
The absolute values of differences between cumulative number of the estimated incidences due 
to vaccination effect or Delta variant effect0. In parenthesis, we give lower and upper bounds of 
95% credible interval. For comparison between sewershed zone, we estimated the incidence per 10� population.  

  

  
Jefferson County 
Aggregated 

MSD1 MSD2 MSD3–5 

Incidence Vaccination 40,085 (3,507, 
83,678) 

38,205 (3,264, 
79,673) 

30,146 (1, 
60,293) 

40,663 (70, 
81,361) 

Delta variant 24,567 (3,534, 
45,601) 

37,210 (3,309, 
71,111) 

18,693 (1, 
37385) 

36,210 (70, 
72,351) 
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Table S10. Correlation coefficients and 95% credible intervals between wastewater 
concentration and the estimated prevalence from the Alpha variant mutation in sewersheds 
of Jefferson County, KY (USA).  

  

  
Jefferson County 
Aggregated 

MSD1 MSD2 MSD3–5 

Incidence Vaccination 0.51185 (-
0.3296, 0.9427) 

0.5773 (-0.2731, 
0.9431) 

0.9105 (0.6217, 
0.9914) 

0.1243 (-0.6859, 
0.8364) 
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Table S11. Simple linear regression model for the hospitalization rate on the observed 
weekly average of wastewater concentration. 

Response Parameters     
Estimate Std. t statistic P-value 

Hospitalization 
rate 

Intercept 
1.284K 10�� 

2.729K 10�� 
4.705 

0.0002 

Wastewater 
concentration 0.1762 0.0119 14.835 0.0000 
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Table S12. A simulation study summary for hierarchical regression Each regression model 
was fitted using random sample data. Sample portions considered are: 100%, 83% 67%, 50%, 
and 33%.  

Percentage �� F statistics P-value 
100 0.9000 145.5 9.273 K 10��� 
83 0.8842 99.26 1.878 K 10�� 
67 0.8411 52.93 2.679 K 10�� 
50 0.7735 23.90 1.775 K 10�� 
33 0.2095 1.06 0.3614 
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Figure S2. SARS-CoV-2 (N1) wastewater concentration in sewersheds of Jefferson County,
KY (USA). The wastewater concentrations during Alpha and Delta variants are represented in
bars (light green for Alpha variant, dark green for Delta variant). The panels compare aggregated
concentration for Jefferson County (Panel A) as well as stratified by sewershed (Panels B–D). 
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Figure S3. Prevalence versus SARS-CoV-2 (N1) wastewater concentration in sewersheds of
Jefferson County, KY (USA). Bayesian regression between predicted weekly prevalence of
SARS-CoV-2 infections from the Alpha and Delta variants and wastewater in the entire
Jefferson County (Panel A) as well as stratified by sewershed (Panels B–D). The darker straight
line is the fitted Bayesian regression line for the Delta variant. The darker shade marks the 95%
credible interval: the lighter line and shade mark for the Alpha variant. The data points for the
Alpha variant are minor (6 for Panels A, B, and D, 8 for C).  
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Figure S4. Prevalence versus wastewater SARS-CoV-2 (N1) normalized by pepper mild
mottle virus concentration in sewersheds of Jefferson County, KY (USA). Bayesian
regression between predicted weekly prevalence of SARS-CoV-2 infections from the Alpha and
Delta variants and wastewater in the entire Jefferson County (Panel A) as well as stratified by
sewershed (Panels B–D). The darker straight line is the fitted Bayesian regression line for the
Delta variant. The darker shade marks the 95% credible interval: the lighter line and shade mark
for the Alpha variant. The data points for the Alpha variant are very few  (6 for Panels A, B, and
D, 8 for C).  
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Figure S5. The estimated effect of vaccination on SARS-CoV-2 (N1) wastewater
concentration in sewersheds of Jefferson County, KY (USA). The dark brown line is the
regression-based fit to the wastewater concentration and the light brown line is the prediction of
wastewater concentration using synthetic prevalence from the  model with the Delta
variant effect zeroed out. The shaded areas represent 95% credible intervals. The blue dots are
observed weekly average wastewater concentration. The panels compare the variant effect on
wastewater concentration for Jefferson County (Panel A) as well as stratified by sewershed
(Panels B–D).  
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Figure S6. SARS-CoV-2 prevalence and hospitalizations versus SARS-CoV-2 (N1)
wastewater concentration normalized by pepper mild mottle virus, Jefferson County, KY
(USA). Relationship among observed wastewater concentration, the hospitalization rate, and
estimated prevalence. The dark brown line represents the estimated prevalence, and the shaded
area is the 95% credible interval of MCMC simulation. The green line is the weekly average of
daily hospitalization rate of Jefferson County, and the blue dots represent the weekly average of
wastewater concentrations. The Pearson correlation coefficient of estimated prevalence and
wastewater concentration is 0.858 (95% CI = (0.502, 0.975)) and that of hospitalization rate and
wastewater concentration is 0.722 (95% CI = (0.216, 0.955)).   
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Figure S7. Clinical versus estimated incidence in sewersheds of Jefferson County, KY
(USA). Posterior density and credibility bounds (green curve) of the weekly aggregated
incidence rate as predicted by the  model compared to official weekly incidence for
Jefferson County (blue dots and trend line) as reported by the Jefferson County Health
Department. The model plots are based on Hamiltonian MCMC samples, with 6000 steps and
2000 steps burn-in period. The panels compare aggregated incidence for Jefferson County (Panel
A) as well as stratified by sewershed (Panels B–D).   
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Figure S8. Estimated prevalence for SARS-CoV-2 Alpha and Delta variants in sewersheds
of Jefferson County, KY (USA). Estimated prevalence of the Alpha and Delta variants by the

 model. Two estimated prevalence lines crosses at 5 June 2021 (for Panels A, B, and D)
and 15 June 2021 (for Panel C), corresponding to the middle of the period of the Alpha variant
being dominant. The panels compare prevalence for Jefferson County (Panel A), as well as
stratified by sewershed (Panels B–D).  
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Figure S9. Sensitivity analysis for change of prevalence according to the change of
transmission rate  for Delta variant. The amount of the transmission rate for Delta variant
are set from 120% to 300% which is as large as the Alpha variant transmission rate. The
corresponding basic reproduction numbers are seen to change from 1.3 for 120% to 3.2 for
300%.  
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S3.2 Details on regression model for wastewater concentration 
To relate the ������ model predictions to the serial wastewater measurements of SARS-CoV-2 
(N1) concentrations and normalized SARS-CoV-2 (N1) divided by pepper mild mottle virus 
(PMMoV) ratio, the Bayesian linear regressions were performed based on aggregated county 
data and data stratified by sewershed area.  
 
To obtain the broken stick linear regression models5, the procedure was as follows: Let �Q����� and 

�Q�����  be the model estimated percentage prevalence corresponding to the same week and 
sewershed area for the Alpha and Delta variants, respectively. We first define two basic 
functions R�� S� and R�� S�: 

R�� S� � T�Q
���� UV  W 06/05/2021
0 X Y&Z[U%& \, 

and  

R�� S� � T�Q
���� UV  � 06/05/2021
0 X Y&Z[U%& \. 

]�� represents the weekly aggregated average wastewater concentration. We can now fit the 
model of the form: 
 ]�� � ��� � ���R�� S� � ���R�� S� � &�� , &�� " ^�0, H���                       (5) 

 
In the Bayesian linear regression models, non-informative priors were assigned. Specifically, the 
non-informative Cauchy distribution was assigned to the regression coefficients, and the non-
informative gamma prior was assigned to the dispersion parameter of the error term.  
 
S3.3 Time lag-dependency between wastewater concentration and hospitalization rate 
It takes a certain period for the patient to be admitted to the hospital to receive treatment. To 
identify the time lag-dependency between wastewater concentration and hospitalization rate, a 
simple linear regression analysis was performed using a time-lagged variable as a predictor. Let ]��� be the weekly aggregated average wastewater concentration at week   in the aggregated 
Jefferson County, and : represents a time lag. _� represents the hospitalization rate at time  . 
The regression model with time lag dependent variable is given by: 
 _� � �� � ��]��� � &�, &� " ^�0, H��                                    (6) 
 
In this model, we changed the time lag d from 1 to 4 so that the maximum period from evidence 
of the community spread of COVID-19 in wastewater to reach a burden to hospitalization is 
about a month. Of note, hospitalizations data is available daily while wastewater is at a 
frequency of bi-weekly. 
 
Additionally, we performed a simulation study using this regression model to check how much 
the hospitalization rate changes according to the vaccination rate. We changed the vaccination 
rate so that the vaccination percentage of the community was 0% and predicted the serial 
estimates Pred� in Eq. (4). And then, we predicted the wastewater concentration using a linear 
regression model (5) and used that as the predictor in the regression model (6).  
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S3.4 Calculation of effects based on factual and counterfactual scenarios: 
Effects of the factual and counterfactual (zero vaccinated or no Delta variant) are calculated 
using the area under the respective curves based on the models using   factual (empirical) data 
and counterfactual (synthetic) data. The equation to estimate the effect is given as:  

`Area under counterfacutual model data
Area under factul model data � 1` 
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S3.5 Sensitivity analysis for changing the amount of Delta variant transmission rate 
In our analysis, we assumed the transmission rate of the Delta variant, denoted as β^, is 150% 
higher than the Alpha variant. Since this assumption is quite strong, to illustrate its effect, we 
conducted global sensitivity analysis under various alternative scenarios �� � g�, 
Where �� and � are disease transmission rates in Eq. (1). We set g to 1.2, 1.5, 2.0, 2.5 and 3.0. 
Then we simulated the ODE (1) and calculate the basic reproduction number ��.  
 
S3.6 The derivation of the basic reproduction number (��)6  

Using ������ model, let X be the vector of infected compartments, denoted by h � i����, ��j�. 
The system has a disease-free state h� � �S�, ��, �����, �����, ��, ���. We define the matrix of new 
infection l�h� and the matrix of all transitions except for the new infection �. The net transition 
rates are represented by ��h�. 

l�h� � m �������� � ��������� 
�� ������� � ���������� n , ��h� � m�����

�����n 

The next generation matrix is defined as FV-1 where F and V represent 2 K 2 matrices at h� as 
follows: 

F� o��� � ���� 0
0 ���� � �����p, and V� q� 00 �r 

The next generation matrix s is calculated as 

s � FV�� �
vw
ww
x��� � ����� 0

0 ���� � ������ yz
zz
{
 

Finally, the basic reproduction number �� is the maximum eigenvalue of the spectral 
decomposition of the next generation matrix s: 

�� � ������
���

�
. 

If we set �� � 1 and �� � 0, then �� � ��

�
.  
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Appendix D. Wastewater variant detection 
 

Table S13. Periods of Alpha and Delta variant wastewater dominance in sewersheds of 
Jefferson County, KY (USA). Dates determined by shift in major variant based on sampling 
schedule of wastewater collection. 

Sewershed Alpha dominant in wastewater Delta dominant in wastewater 
Start date End date Start date End date 

MSD1 3/30/21 5/17/21 7/12/21 8/30/21 
MSD2 3/30/21 5/24/21 7/12/21 8/30/21 
MSD3 3/30/21 6/21/21 7/19/21 8/30/21 
MSD4 3/30/21 7/5/21 7/19/21 8/30/21 
MSD5 3/30/21 6/28/21 7/26/21 8/30/21 
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