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Abstract 

 

Background: Accurately quantifying people’s out-of-home environmental exposure is 

important for identifying disease risk factors. Several activity space-based exposure 

assessments exist, possibly leading to different exposure estimates, and have neither 

considered individual travel modes nor exposure-related distance decay effects. 

 

Objective: We aimed 1) to develop an activity space-based exposure assessment approach 

that included travel modes and exposure-related distance decay effects and 2) to compare the 

size of such spaces and the exposure estimates derived from them across typically used 

activity space operationalizations. 

 

Methods: We used 7-day-long global positioning system (GPS)-enabled smartphone-based 

tracking data of 269 Dutch adults. People’s GPS trajectory points were classified into passive 

and active travel modes. Exposure-related distance decay effects were modeled through linear, 

exponential, and Gaussian decay functions. We performed cross-comparisons on these three 

functional decay models and an unweighted model in conjunction with four activity space 

models (i.e., home-based buffers, minimum convex polygons, two standard deviational 

ellipses, and time-weighted GPS-based buffers). We applied non-parametric Kruskal-Wallis 

tests, pair-wise Wilcoxon signed-rank tests, and Spearman correlations to assess mean 

differences in the extent of the activity spaces and correlations across exposures to particulate 

matter (PM2.5), noise, green space, and blue space. 
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Results: Participants spent, on average, 42% of their daily life out-of-home. We observed that 

including travel modes into activity space delineation resulted in significantly more compact 

activity spaces. Exposure estimates for PM2.5 and blue space were significantly (p<0.05) 

different between exposure estimates that did or did not account for travel modes, unlike 

noise and green space, for which differences did not reach significance. While the inclusion 

of distance decay effects significantly affected noise and green space exposure assessments, 

the decay functions applied appear not to have had any impact on the results. We found that 

residential exposure estimates appear appropriate for use as proxy values for the overall 

amount of PM2.5 exposure in people’s daily lives, while GPS-based assessments are suitable 

for noise, green space, and blue space. 

 

Significance: For some exposures, the tested activity space definitions, although significantly 

correlated, exhibited differing exposure estimate results based on inclusion or exclusion of 

travel modes or distance decay effect. Results only supported using home-based buffer values 

as proxies for individuals’ daily short-term PM2.5 exposure. 

 

Keywords: Environmental health; daily mobility; exposure assessment; individual exposure; 

GPS tracking; exposome 
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Impact statement 

 

Accurately quantifying people's out-of-home environmental exposure is vital for identifying 

disease risk and protective factors. Although many activity space-based exposure assessments 

exist, these approaches possibly lead to different exposure estimates. We methodologically 

and conceptually innovate by developing an activity space-based exposure assessment 

considering people's travel modes and exposure-related distance decay effect. Our 

comparison with other activity spaces provides novel insights into dynamic exposure 

assessment approaches. Despite most epidemiological studies still considering people’s 

homes as the sole exposure location, our study is fundamental because people are typically 

exposed to multiple out-of-home environmental contexts. 

 

 

List of abbreviations: 

HB = home-based buffers; MCP = minimum convex polygon; SDE = two standard 

deviational ellipse; TWB = time-weighted GPS-based buffer; LM = linear model; EM = 

exponential model; GM = Gaussian model; UM = unweighted model. 
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1 Introduction 

 

There is growing recognition of the importance of environmental exposure to human health 1. 

Many meta-analyses and reviews have reported suggestive associations between people’s 

physical and mental health and exposure to blue space 2, green space 3, air pollution 4, and 

noise 5. Yet, conflicting results were often reported across studies, possibly due to the 

inconsistent measurement and operationalization of environmental exposures. 

 

Most previous studies solely assessed exposures based on people’s home locations 6,7. 

Administrative units and circular or network buffers centered on people’s home addresses 

have been widely adopted for use in the estimation of people’s exposures to the environment. 

However, these approaches focus solely on home locations and disregard people’s day-to-day 

mobility, which frequently extends beyond the residential neighborhood 8,9.  

 

Individuals’ daily lives typically comprise multiple activity places (e.g., work), typically 

situated beyond the home location 10. These places a person routinely visits are 

conceptualized as ‘activity spaces’ 11. As elucidated by the uncertain geographic context 

problem 9, the residential location possibly only accounts for a (small) proportion of human 

activity spaces 12. Consequently, using only individuals’ residential neighborhoods to measure 

their environmental exposure, as typically done in epidemiological studies 13-15, may yield 

inaccurate measurements of actual exposures, affecting estimates of health-environment 

associations 8,16. 
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Activity space-based exposure assessments, grounding on time geography 17, have been 

proposed as a possible solution to the uncertain geographic context problem 18-20. This 

solution has been supported by the development and application of portable devices equipped 

with global positioning systems (GPS), allowing people's daily mobility to be captured with 

finer space-time granularity than traditional data collection approaches based on 

questionnaires and travel and activity diaries 21,22.  

 

A growing number of studies have assessed exposures along individuals' mobility paths using 

GPS-based locational data 23-28. Typically, these studies have implemented buffers centered 

on each GPS point or along people’s moving trajectories as exposure receptor areas 20,23. Due 

to a lack of any standard widely accepted by scholars for buffer size selection, the selection of 

buffer sizes and shapes was typically determined ad hoc 29. Furthermore, fewer studies have 

also included exposure time-weightings to capture dwell-time 26,30-32. Despite the progress 

made in previous exposure assessment studies using locational data, two limitations based on 

previous approaches remain. 

 

First, neglecting individuals’ unique combinations of activity-travel characteristics could lead 

to inaccurate exposure assessments 31. Individuals’ exposure levels are associated with 

different modes of transportation and the settings of the traversed environment 29,33,34. For 

instance, people are more isolated from their surroundings and immersed in the 

transport-related micro-environment when traveling in a vehicle rather than walking or 
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cycling 35,36. However, previous studies primarily explored how active travel mode affects 

exposure assessment 29,37, with passive travel mode receiving less attention. 

 

Second, exposure-related distance decay effects have been neglected in the past. Assessments 

in current studies assume that environmental exposures within pre-defined buffers (typically 

intra-buffer mean exposure values) have similar health effects 24. However, it is reasonable to 

assume that health effects may vary with distance; i.e., environmental risks closer to 

individuals may substantially impact their health more than those more distant 38-40. If 

distance decay effects are omitted, more distant exposures with potentially less influence on 

health could be overestimated, particularly as buffer sizes increase. Previously, although 

conceptually sound 19,41, distance decay functions were rarely adopted in environmental 

exposure studies. 

 

To address the identified knowledge gaps, this study 1) developed an activity space-based 

exposure assessment approach that includes individuals’ travel modes and exposure-related 

distance decay effects and 2) compared multiple environmental exposures across different 

activity space definitions. Our first hypothesis was that including travel modes would reduce 

the contextual unit’s extent and also increase the level of exposure captured. Furthermore, our 

second hypothesis expected that incorporating distance decay into the exposure assessments 

would lead to lower observed exposure levels. 

 

2 Materials and methods 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 9, 2023. ; https://doi.org/10.1101/2023.01.06.23284161doi: medRxiv preprint 

https://doi.org/10.1101/2023.01.06.23284161
http://creativecommons.org/licenses/by/4.0/


 

8 

 

 

2.1 Data collection 

 

We gathered cross-sectional tracking data from the Netherlands 42. People’s locational data 

were collected through GPS-enabled smartphones between September and November 2018. 

Data collection followed a two-step procedure. First, 45,000 people recruited using stratified 

random sampling from the Dutch population aged 18-65 were invited to conduct an online 

survey. Second, those respondents who agreed to be re-contacted were asked to consent to be 

locationally tracked via a smartphone-based application. The application was developed for 

Android operating system versions ≥4.4. From an initial 8,869 invitations, 820 invitees 

downloaded the app, and of those, 753 became participants by agreeing to allow the research 

team to collect smartphone sensor data. The need for user interaction was kept to a minimum 

to reduce the risk of behavioral changes on the part of participants as a result of being 

GPS-tracked.  

 

Given the smartphone brands participants possessed and their concomitant battery life, the 

application was designed to use an adaptive sampling strategy for collecting locational data. 

The default time interval to record a participant’s location was every 20 seconds. However, 

after 30 minutes of lack of movement (<20 m), the interval was adjusted to once per minute 

and after 60 minutes, to once every two minutes. After the app recorded a cumulative total of 

7 days of data, it terminated data acquisition. Daily data uploads were stored on a secure 

server at Utrecht University. The study protocol was approved by the Ethics Review Board of 
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Utrecht University (FETC17-060).  

 

2.2 Approaches for context delineation 

 

We cross-compared a static exposure assessment approach (i.e., home-based buffers), three 

typical activity space-based approaches, and our refined GPS-based approach for contextual 

unit1 delineation. 

 

2.2.1 Home-based buffers 

 

The home-based buffers (HB) were operationalized through circular exposure windows with 

1 km radii centered at the home location (see supplementary Fig. S1) 20. We inferred people's 

home locations by dwell time length, with the locations having the most extended dwell times 

(across the tracking duration) used as proxies for their home addresses 20. Exposures were 

calculated by averaging raster cell values of the exposure surfaces within the buffer. 

 

2.2.2 Typical activity space-based approaches 

 

As used elsewhere 20,28, we implemented three activity-based approaches (Fig. S1). First, the 

minimum convex polygon (MCP) refers to the smallest convex polygon, including all 

mobility paths an individual uses daily. We aggregated these daily MCPs per participant over 

                             

1
 The contextual unit represents the geographical area (in km2) used as an analytical unit when examining the 

effects of area-based exposures on individual-level outcomes. 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 9, 2023. ; https://doi.org/10.1101/2023.01.06.23284161doi: medRxiv preprint 

https://doi.org/10.1101/2023.01.06.23284161
http://creativecommons.org/licenses/by/4.0/


 

10 

 

their 7-day tracking periods. Second, the standard deviational ellipse (SDE) describes the 

directional distribution and dispersion of a set of GPS locations. We used an SDE based on 

two standard deviations covering approximately 95% of a participant's GPS points 43. SDEs 

were generated and merged for each participant on a day-to-day basis. Exposures were 

determined as the mean exposure values per daily MCP or SDE. Third, time-weighted 

GPS-based buffers (TWB) with 100 m radii were created and superimposed on participants’ 

GPS points. This measure embodied all locations that any given participant visited during the 

tracking period. We selected 100 m buffers to capture an area that is immediately visible, or 

with which the respondent has direct contact 24. Time-weight per GPS point was calculated as 

the percentage of the time a participant spent at each GPS point of the total tracking duration. 

We determined the mean exposure estimates for each type of exposure measurement by 

obtaining time-weighted exposures by multiplying and summing exposure and time weight 

per GPS point. 

 

2.2.3 Refined GPS-based approach for context delineation 

 

Figure 1 summarizes the four analytical steps to enable our geographic context delineation 

based on GPS data.  
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Figure 1. Workflow of the GPS-based refined context delineation approach. 

 

Phase 1: GPS data pre-processing 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 9, 2023. ; https://doi.org/10.1101/2023.01.06.23284161doi: medRxiv preprint 

https://doi.org/10.1101/2023.01.06.23284161
http://creativecommons.org/licenses/by/4.0/


 

12 

 

 

The GPS data were cleaned in a three-step process to minimize the influence of anomalous 

records and increase data reliability. First, participants (N=188) with GPS records outside the 

Netherlands during the tracking period were excluded due to a lack of environmental data. 

Second, implausible data points were removed, including those with similar timestamps, 

records with a speed of >200 km/h, and a spatial displacement of >50 m away from the road 

network 44. These thresholds were selected based on Dutch traffic regulations and were 

aligned with previous GPS-based exposure assessments 44,45. Third, we removed respondents 

(N=296) possessing insufficient GPS data points, defined as any number of data points less 

than two times the median absolute deviation of the number of GPS records 46. In total, 269 

participants were retained after data pre-processing. 

 

Phase 2: Travel modes detection 

 

Before deriving travel modes, GPS data were segmented into individual trips as GPS points 

lack semantic information on mobility 47. Dwell time beyond a threshold, usually selected ad 

hoc, between consecutive GPS points is an established criterion for trip segmentation 48 but 

depends on the GPS sampling frequency, sensors, and urban setting 49-51. Based on previous 

studies 45, we set the dwell time threshold value at 3 minutes. 

 

For travel mode detection (i.e., active travel mode and passive travel mode), previous studies 

used fuzzy systems 52, machine learning 53, or rule-based classifiers 54. However, 
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model-based classifiers require pre-labeled training data for extracting feature characteristics 

of each travel mode, which were lacking in our case 55. As a result, we classified trips into 

active (e.g., walking, biking) and passive travel modes (e.g., car, bus) using traffic 

speed-based rules 45. To be classified as active, a trip was required to have an average trip 

speed of <25 km/h and a maximum speed of <45 km/h; otherwise, trips were labeled passive 

if they averaged less than 200 km/h. It is worth noting that some stationary GPS points 

around activity locations could also be labeled as active travel mode based on the 

implemented rules. Therefore, we referred to active travel mode and stationary locations as 

'activity locations and active travel mode'. 

 

Phase 3: Determining health-influencing contextual unit  

 

In the case of passive travel mode, individuals are mainly exposed to the micro-environment 

in their vehicles and are less affected by perceptions of their extended surroundings 35. 

Consequently, buffer sizes for passive travel mode can be smaller than those for activity 

locations and active travel mode. Circular buffer sizes used for trips were set to 50 m and 100 

m for passive travel mode and activity locations and active travel mode, respectively, as 

informed by previous studies 56. 

 

Phase 4: Exposure assessments 

 

Exposures were assessed in three steps. First, we extracted raster cells per environmental 
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exposure within each buffer. Second, distance decay functions were used to approximate 

distance-dependent exposure influences. As assumed elsewhere 19, the exposure impacts on 

an individual declines with increasing distance. Different mechanisms of the distance decay 

exist for visible and invisible exposures. For visible exposures, the concentrations decrease 

with the increasing distance, while for invisible ones, the importance of locations varies with 

distance. To assess the sensitivity of the exposure assessment in terms of different distance 

decay functions, we implemented linear, exponential, and Gaussian functions (Fig. S2). In the 

linear case (LM), exposure weights constantly decreased with increasing distance. The 

exponential function (EM) captures a more rapid drop-off in weights within small distance 

increments, while in the case of the Gaussian function (GM) weights initially declined slowly 

and then more steeply as distance increased.  

 

As a benchmark, we also implemented an unweighted model (UM) without any 

distance-based exposure weighting 57. The weighted exposure of each raster cell was 

calculated as the product of the distance-based weighting and the exposure values at the cell. 

Third, to consider the different dwell times people spent at different locations, we multiplied 

the time weight of each location by the corresponding weighted exposure and averaged the 

values across all GPS points. 

 

2.3 Environmental data 

 

2.3.1 Green space 
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Green space was measured using the Normalized Difference Vegetation Index (NDVI) 58 with 

a 30 m spatial resolution derived from Landsat-8 satellite imagery. We obtained remote 

sensing images from Google Earth Engine 59 covering the Netherlands from May to 

September 2018. Images with cloud scores >25 and more than 40 percent cloud coverage 

were discarded. NDVI values range from -1 to 1, with negative values associated with less or 

no vegetation and positive values representing greater amounts of vegetation and, hence, 

green space. We excluded NDVI values <0 to avoid distortions when calculating the mean 

NDVI value per circular buffer.  

 

2.3.2 Noise 

 

Estimated average noise data in day–evening–night noise levels (Lden) (in dB) for 24h 

periods emitted by roads (2017), rail, air traffic (2016), wind turbines (2020), and industrial 

areas were obtained from the Dutch National Institute for Public Health and Environment. 

Noise estimates with a spatial resolution of 10 m were derived from the Standard Model 

Instrumentation for Noise Assessments 60. 

 

2.3.3 Air pollution 

 

Using land-use regression, nationwide average particulate concentrations with a diameter of 

<2.5 μm (PM2.5) (µg/m3) for the year 2016 were obtained with a 25 m spatial resolution. The 
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land-use regression model was based on roads, land cover, and population data, among others, 

within concentric buffers of 50 to 10,000 m centered on the monitoring sites. Results of the 

model validation are provided elsewhere 61.  

 

2.3.4 Blue space 

 

Blue space data were obtained from the Dutch land-use database (Landelijk 

Grondgebruiksbestand Nederland) for the year 2018 62. With a spatial resolution of 5 m, the 

dataset classifies land use into forty-eight types. We extracted those raster cells classified as 

freshwater or saltwater to map blue space. Blue space exposure was measured as the 

proportion of blue space cells to the total number of cells in the buffer. 

 

2.4 Statistical analysis 

 

We used descriptive statistics (i.e., box plots) to compare the size of contextual units and the 

level of exposure across the activity space-based assessment methods. Because the exposures 

did not follow a normal distribution, we applied non-parametric statistical approaches to 

examine the statistical difference in size across different contextual units and environmental 

exposure levels. Kruskal-Wallis tests and additional post-hoc analysis using pair-wised 

Wilcoxon signed-rank tests were employed. We used pair-wise Spearman correlation analyses 

to assess the associations among exposures across each activity space-based exposure 

assessment. P-values were adjusted for multiple hypotheses testing 63. Analyses were 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 9, 2023. ; https://doi.org/10.1101/2023.01.06.23284161doi: medRxiv preprint 

https://doi.org/10.1101/2023.01.06.23284161
http://creativecommons.org/licenses/by/4.0/


 

17 

 

performed in R, version 4.0.3 64. 

 

3 Results 

 

3.1 Spatiotemporal characteristics of participants’ GPS points 

 

The average time a person spent within and outside their residential neighborhoods (i.e., a 1 

km buffer centered on the home location) per day was 13.2 hours (standard deviation 

(SD)±4.24) and 9.6 hours (SD±4.57), respectively (Table S1). Weekday versus weekend 

observations of the time spent within the residential neighborhood differed. People's average 

distances for activities within and outside the residential neighborhood were 0.22 km 

(SD±0.11) and 14.74 km (SD±13.44), with negligible differences between weekdays and 

weekends. The SD implies that distances outside the residential neighborhood have greater 

variations across participants than those within the residential neighborhood. Greater 

deviations were observed on weekend days than weekdays. 

 

Figure 2 shows the spatiotemporal density of participants’ GPS trajectory points over 24 

hours. Not distinguishing between activity locations and active travel mode and passive travel 

mode, a higher density of GPS trajectory points was found for 10 to 100 km away from home 

between 7h and 16h and closer to home in the range of 0.1 km between 15h and 20h. Activity 

locations and active travel mode and passive travel mode exhibited distinct patterns. GPS 

trajectory points in activity locations and active travel mode clustered around people's homes 
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(around 0.1 km) between 14h and 22h. We observed dense passive travel mode GPS points 

between 10 km and 100 km during the morning and evening peak hours (i.e., between 6h and 

8h, and around 16h). 

 

 

Figure 2. Spatiotemporal density of participants' GPS trajectory points over 24h for each 

tracing day. 

 

3.2 Comparison of the size of contextual units 

 

Figure 3 compares the activity space-based context delineations. MCP and SDE showed a 

greater mean size than TWB and UM. SDE had the largest variance among the participants, 

and TWB had the smallest. Compared with TWB, UM had smaller maximum and minimum 

sizes but a greater variation among participants. Significant Kruskal-Wallis test results 

(Figure 3) and Wilcoxon test results (Table S2) showed that the sizes of the four contextual 

units were significantly different from each other (p<0.001). Additionally, all contextual units 

were larger than the size of HB. 
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Figure 3. The size of different contextual units. The red dash line refers to the size of the 1 

km home-based buffer (π ≈ 3.14 km2). Note that the 1 km home-based buffer was excluded 

from statistical examination because its size was identical for each participant. Since distance 

decay functions did not influence the sizes of contextual units, we report the unweighted 

model (UM) as the contextual unit that only includes travel modes. 

 

3.3 Comparison of derived environmental exposures 

 

Figure 4 and Table 1 summarize the exposure distributions of the eight tested activity 

space-based geographic context definitions. Home-based buffers (HB) showed large 

variations across all exposures except in the case of blue spaces. Conversely, MCP and SDE 

had the smallest interquartile range in PM2.5, noise, and green space but the largest in blue 

space. The minimum convex polygon (MCP) and two standard deviational ellipses (SDE) 
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resulted in less pronounced PM2.5 and noise exposure levels; however, exposure to green and 

blue spaces was greater. The other contextual units exhibited similar exposure distributions 

and levels. EM and UM resulted in more compact noise distributions than LM and GM, while 

these models were similar in terms of the other exposures. 

 

Table 1. Median and interquartile range (IQR) of derived environmental exposures. 
 

Contextual 

unit 

PM2.5 Noise Green space Blue space 

(µg/m3) (dB) (NDVI) (%) 

Median IQR Median IQR Median IQR Median IQR 

HB 12.83 1.92 55.91 6.84 0.43 0.12 0.03 0.05 

MCP 12.58 1.52 54.81 6.07 0.45 0.09 0.06 0.06 

SDE 12.23 1.59 52.99 6.46 0.45 0.07 0.07 0.07 

TWB 12.89 1.63 56.75 6.24 0.38 0.11 0.02 0.04 

LM 12.89 1.63 56.87 6.49 0.38 0.10 0.03 0.05 

EM 12.89 1.63 56.83 6.28 0.38 0.10 0.03 0.05 

GM 12.89 1.63 56.86 6.45 0.38 0.11 0.03 0.04 

UM 12.89 1.63 56.87 6.29 0.38 0.10 0.03 0.05 
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Figure 4. Boxplots of environmental exposures across different contextual units. 

Abbreviations: HB (home-based buffers); MCP (minimum convex polygon); SDE (two 

standard deviational ellipse); TWB (time-weighted GPS-based buffers); LM (linear model); 

EM (exponential model); GM (Gaussian model); UM (unweighted model). 

 

The Kruskal-Wallis tests were significant for all exposure assessments (p<0.001). Wilcoxon 

tests showed that the linear model (LM) versus Gaussian model (GM) test pair was the only 

significant test pair across four distance decay models in PM2.5 assessments (see Table S3). 

Concerning noise, the linear model (LM) was not significantly different from the Gaussian 

model (GM), and no statistical differences were obtained between the time-weighted 

GPS-based buffer (TWB) and four distance decay models. For green space, the results 

indicated no statistical difference in the following test pairs: time-weighted GPS-based buffer 

(TWB) versus unweighted model (UM), linear model (LM) versus exponential model (EM), 

exponential model (EM) versus Gaussian model (GM), and linear model (LM) versus 

Gaussian model (GM). In the case of blue space, the linear model (LM), exponential model 

(EM), Gaussian model (GM), and unweighted model (UM) were all insignificantly different 

from the home-based buffer (HB). We also found no statistical differences across the linear 

model (LM), exponential model (EM), Gaussian model (GM), and unweighted model (UM). 

 

The Spearman correlations are depicted in Figure 5. The results show that exposure estimates 

across different contextual units were significantly correlated and all estimated PM2.5 

exposure levels were highly correlated (0.87 - 1). As for other exposures, the minimum 
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convex polygon, two standard deviational ellipse, and home-based buffers showed only 

moderate correlations with the time-weighted GPS-based buffer, unweighted model, linear 

model, exponential model, and Gaussian model. Correlations between the unweighted, linear, 

exponential, and Gaussian models in assessing all exposures were strong (0.94 - 1). 

 

 

Figure 5. Spearman correlation matrices of environmental exposures across different 

contextual units. Abbreviations: HB (home-based buffers); MCP (minimum convex polygon); 
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SDE (two standard deviational ellipse); TWB (time-weighted GPS-based buffers); LM (linear 

model); EM (exponential model); GM (Gaussian model); UM (unweighted model). 

 

4 Discussion 

 

This study extended activity space-based exposure assessments by accounting for travel 

modes and exposure-related distance decay effects to allow evaluation of the size of activity 

spaces and exposure levels against contextual units in typical use.  

 

4.1 Main findings 

 

In line with our expectations, our results showed that people’s daily mobility extends beyond 

their residential neighborhoods. Including travel modes in the exposure assessments 

significantly reduced contextual unit sizes confirming our first hypothesis. However, our first 

hypothesis about assessed exposure levels had to be rejected. Significant statistical 

differences were only found for PM2.5 and blue space for cases with or without considering 

travel modes in exposure assessments. We found that including travel modes in the 

assessment decreased measured exposure levels for most participants. Our second hypothesis 

was partially supported. We observed that incorporating distance decay functions was 

sensitive to the type of exposures. For PM2.5 and blue space, no statistical differences were 

found between the unweighted model (UM) and linear (LM), exponential (EM), and 

Gaussian (GM) models. By contrast, differences in distance decay models appeared to be 
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significant for noise and green space. Our results reported insignificant differences in derived 

exposure levels across multiple distance decay functions. 

 

The high correlation of 0.94 between home-based buffers (HB) and time-weighted 

GPS-based buffers (TWB) suggested that the amount of PM2.5 measured around residential 

locations is an excellent proxy for the exposure experienced during daily life in the 

Netherlands. For other exposures (i.e., noise, green space, and blue space), HB can only 

moderately approximate daily exposure which implies that GPS point-based assessments are 

more suitable in such cases. Moreover, TWB provides a good estimate of noise and green 

space exposure, as evidenced by the highly correlated relationships between TWB and LM, 

EM, and GM, and UM (0.9 < correlation coefficients <1). TWB and UM were potentially 

excellent proxies for the overall blue space exposure along individuals’ daily mobility paths. 

 

4.2 Available evidence 

 

Our findings support prior studies suggesting that human spatiotemporal activity patterns 

should be incorporated in exposure assessment 32,65,66. Furthermore, the results comparing 

environmental exposure levels captured with different activity space-based approaches were 

congruent with past research 24,67,68. The results underscore that contextual uncertainty is 

critical in dynamic exposure assessment as different delineations of activity space exhibit 

significant discrepancies in observed levels of exposure 19,20,69. 
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We found that the minimum convex polygon (MCP) and two standard deviational ellipses 

(SDE) resulted in lower exposure concentrations for PM2.5, lower noise exposure, and higher 

exposure to green space and blue space than other contextual units. In this context, sparsely 

distributed GPS points versus clustered points 20 could lead to much larger contextual unit 

sizes. Such contextual units may include spaces (e.g., parks) an individual has never visited 

and thus lead to incorrect estimates of actual exposure. Consequently, as reported in past 

studies, MCP and SDE are not suitable contextual units for exposure estimates 19. 

 

Home-based buffers (HB) showed large variations across participants for PM2.5 and green 

space but fewer variations for noise and blue space. Significant PM2.5 and green space 

variations could be attributed to participants' socioeconomic disparities. Lower 

socioeconomic status has been observed to relate to living conditions associated with higher 

air pollution levels and a lower presence of green space 70,71. Exposures to noise and blue 

space are less likely to be affected by participants' socioeconomic status. However, the 

evidence about whether noise exposure differs across socioeconomic groups is mixed 72. In 

the case of noise, this may be because loud noise may lead to anxiety and sleep disturbance 73, 

causing people to avoid choosing a noisy living environment. In the case of blue space, the 

possible reason is that the percentage of blue space is somewhat limited within the 1 km 

radius of the living neighborhoods we examined. 

 

We also observed that including travel modes significantly influenced the exposure 

assessments. This observation may be due to selective daily mobility bias, potentially 
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affecting individuals' choices and attitudes toward travel 74. People tend to choose 

travel-friendly routes given choices in travel pattern creation 75 and ambient exposure levels 

76. In terms of exposure to PM2.5, traffic emissions have been recognized as one of the 

primary sources. Past research has observed high levels of exposure along transportation 

routes 34,77; thus, commuters can attenuate their exposure by minimizing the use of such 

routes, increasing their distance from emission sources 78. In the case of passive travel mode, 

individuals’ mobility paths are co-located with the emitting paths, increasing their exposure 

levels. By contrast, active travelers can often choose less-polluted routes improving their 

travel environments 79. Finally, in the case of blue space, a possible explanation is that blue 

space could promote walking and cycling activities 80,81 while also constituting a barrier to 

vehicular traffic.  

 

The significant impact of the distance decay effect on exposure assessment only held for 

noise and green space. Our inconclusive results concerning blue space may be attributed to its 

limited presence and measurement in our data. First, the presence of blue space only accounts 

for a small percentage of individuals' activity space, especially considering people's mobility 

paths. Second, we used the buffers’ average proportion of blue space as a proxy for blue 

space exposure. However, such a means of measurement may be insensitive to the distance 

decay effect. As for PM2.5, the nature of exposure might be a possible explanation for the 

insignificant role of the distance decay effect. Visible exposures might affect human health 

within limited geographical areas, and such effects decrease with distance 82,83. By contrast, 

invisible presence (i.e., PM2.5) might be less sensitive to distance. Compared with previous 
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studies 19, we cannot conclude which distance decay function performs better or worse. 

Nonetheless, a novel contribution was made to the literature as the first study to consider the 

distance decay effect in measuring environmental exposures. 

 

Surprisingly, residential PM2.5 exposure (HB) correlated highly with other activity 

space-based exposure estimates. Even though a prior study in the Netherlands noted that 

residential exposure was sufficient to capture school children’s annual average PM2.5 

exposure 68, such a finding was at variance with other existing findings and still not expected. 

The finding might be accounted for by differences in the geographic context of the 

Netherlands compared to other contexts 84. Despite participants spending a great deal of time 

outside their homes, residential exposure would appear to be an excellent proxy for the 

overall exposure to PM2.5 in daily life in the Netherlands, likely caused by the spatial 

disparity of PM2.5 concentrations in the Netherlands not being significant. As a result, studies 

lacking GPS data availability could still adopt residential exposure as a reliable proxy value 

for assessing PM2.5 exposure in the Netherlands.  

 

In contrast with PM2.5 exposures, residential exposure values were not suitable as proxy 

values for other environmental exposures encountered over individuals’ daily mobility. Such 

exposures are best assessed using GPS-based buffers. The strong correlations between 

time-weighted GPS-based buffers (TWB) and other distance decay models for noise and 

green space assessments suggest that TWB is a less-costly and more straightforward GPS 

data-based approach. In the case of blue space, either including travel modes in exposure 
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assessment or using TWB are both potentially suitable approaches. We recommend that the 

selection of exposure assessment approaches be approached with care and informed by 

applying sensitivity tests and examining the actual data. 

 

4.3 Strengths and limitations 

 

Among the first, this study systematically compared people's exposure to air pollution, noise, 

green space, and blue space across different activity space-based contextual units advanced 

on previous studies, which primarily assessed home-centered exposures 13,14. Benefiting from 

GPS data, multiple dynamic activity space-based contextual units were delineated. As our 

participants' mobility trajectories were distributed across the Netherlands, this enabled our 

recommendations about the performance of contextual units in different exposure 

assessments to be adaptive to different environmental settings throughout the country. Finally, 

we extended current research practice by refining the GPS-based assessment of 

environmental exposures allowing for accounting of travel modes and exposure-based 

distance decay functions. However, selecting a specific distance decay function will require 

further investigation and considering actual needs. 

 

This study was subject to several limitations. First, the GPS data did not contain semantic 

information about people's travel modes. We cannot exclude that our rules-based 

classification has affected the classification accuracy to some extent. Second, the GPS data 

quality could be affected by the signal reception (e.g., high buildings, tree canopy) and data 
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pre-processing. Concerning the latter, we cannot rule out that a few meaningful GPS points 

were erroneously removed despite satisfying the elimination criteria. However, since only 3.7% 

of the GPS points were removed, the impact is likely neglectable. Similarly, the amount of 

problematic GPS points (e.g., points falling clearly off the potential path) was also negligible. 

Third, our data only focused on short-term environmental exposures. The statistical 

differences across different activity space-based approaches in short-term exposures could 

cumulatively contribute to substantial variations in long-term exposure levels 69. Furthermore, 

an investigation is needed to assess the differences between short- and long-term exposures 

based on different contextual units. Fourth, our study ignored short-term temporal variation in 

environmental exposures as typically done in GPS studies 27,28. Relatedly, there was also a 

temporal mismatch between the GPS data collection and the environmental exposure data. 

Such a mismatch could potentially affect the exposure levels. Fifth, we applied the same 

distance decay functions across exposures, which could potentially influence the results. 

Sixth, the smartphone app for collecting GPS data was unavailable for the iOS system; thus 

only Android system users could be approached and recorded. Even though the Android 

system accounted for 76.3% of the Dutch market at the time of data collection, specific 

groups of people could potentially be excluded. 

  

5 Conclusions 

 

Our results showed that for some exposures, the tested activity space definitions, although 

significantly correlated, exhibited differing exposure estimate results based on the inclusion 
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or exclusion of travel modes or distance decay effects. Furthermore, residential exposure 

appears to be an excellent proxy for the overall amount of PM2.5 exposure in daily life, with 

GPS point-based assessment suitable for other exposures. 
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