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13 Abstract
14 The COVID-19 pandemic has created a need to rapidly scale-up testing services. In Kenya, services for 

15 SARS-CoV-2 nucleic acid amplifying test (NAAT) have often been unavailable or delayed, precluding the 

16 clinical utility of the results. The introduction of antigen-detecting rapid diagnostic tests (Ag-RDT) has had 

17 the potential to fill at least a portion of the ‘testing gap’. We, therefore, evaluated the cost-effectiveness 

18 of implementing SD Biosensor Antigen Detecting SARs-CoV-2 Rapid Diagnostic Tests in Kenya.

19 We conducted a cost and cost-effectiveness of implementing SD biosensor antigen-detecting SARS-CoV-

20 2 rapid diagnostic test using a decision tree model following the Consolidated Health Economic Evaluation 

21 Standards (CHEERS) guidelines under two scenarios. In the first scenario, we compared the use of Ag-RDT 

22 as a first-line diagnostic followed by using NAAT assay, to the use of NAAT only. In the second scenario, 

23 we compared the use of Ag-RDT to clinical judgement. We used a societal perspective and a time horizon 

24 of patient care episodes. Cost and outcomes data were obtained from primary and secondary data. We 

25 used one-way and probabilistic sensitivity analysis to assess the robustness of the results.

26 At the point of care, Ag-RDT use for case management in settings with access to delayed confirmatory 

27 NAAT testing, the use of Ag-RDT was cost-effective (ICER = US$ 964.63 per DALY averted) when compared 

28 to Kenya’s cost-effectiveness threshold (US$ 1003.4). In a scenario with no access to NAAT, comparing the 

29 Ag-RDT diagnostic strategy with the no-test approach, the results showed that Ag-RDT was a cost-saving 

30 and optimal strategy (ICER = US$ 1490.33 per DALY averted).

31 At a higher prevalence level and resource-limited setting such as Kenya, implementing Ag-RDT to 

32 complement NAAT testing will be a cost-effective strategy in a scenario with delayed access to NAAT and 

33 a cost-saving strategy in a scenario with no access to NAAT assay.

34

35 Keywords: Cost-effectiveness, SARS-CoV-2, Ag-RDT, NAAT assay, ICER
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36 Introduction
37 The COVID-19 pandemic has created a need to rapidly scale-up testing services and provide diagnoses to 

38 implement test-trace-isolate strategies, essential to treat and care for patients and to control the spread 

39 of the virus. Hundreds of diagnostic products are now available on the market, targeting the detection of 

40 viral RNA, viral antigens, and host antibodies against SARS-CoV-2.

41 Services for SARS-CoV-2 Nucleic acid amplification testing (NAAT) assays have often been unavailable or 

42 backlogged for several days to weeks, precluding the clinical utility of the results. NAAT, a reverse 

43 transcription polymerase chain reaction (PCR) molecular testing of respiratory tract samples, is the 

44 recommended method for confirmation of COVID-19. In low and middle-income countries, however, the 

45 availability and health impact of PCR testing can be jeopardized by lack of testing capacity, insufficient 

46 trained personnel, shortages of reagents, long turnaround times (TAT), and high costs [1]. Lateral flow 

47 antigen-detecting rapid diagnostic tests (Ag-RDTs), which are easy to perform and provide results within 

48 15-30 minutes, have recently been commercialized and have the potential to fill at least a portion of the 

49 ‘testing gap’. Under certain conditions, Ag-RDTs that meet minimum performance requirements are 

50 recommended, and some have WHO Emergency Use Listing authorization [2]. These simple-to-use tests 

51 offer the possibility of rapid case detection, especially of the most infectious patients in the first week of 

52 illness, at or near the point of care. 

53 WHO released an interim guidance on the use of Ag-RDTs for SARS-CoV-2, and the use of Ag-RDTs is 

54 recommended when PCR is either unavailable or long TAT of PCR which delays its clinical utility. This is 

55 particularly the case in less privileged countries in Africa, especially in Sub-Saharan Africa [3].

56 National norms and policies are being adopted in Kenya and many countries to allow and encourage 

57 targeted use of these Ag-RDTs. The decision to fully implement rapid diagnostic kits for detecting SARS-

58 CoV-2 in Kenya relies on the field performance, feasibility, acceptability, and cost-effectiveness of the RDT 

59 compared to other diagnostic methods in the different settings which involve point-of-care diagnosis of 

60 COVID-19. 

61 A published study of Ricks et al. analyzed the health system cost and health impact of using RDTs among 

62 hospitalized and symptomatic patients with SARS-COV2, and confirmed that despite the low sensitivity of 

63 RDTs compared with RT-PCR, the Ag-RDTs have the potential to be more impactful with less cost per death 

64 and more infections averted [4]. Studies have focused on effectiveness of testing kits and leaving behind 

65 cost effectiveness research however, a specific approach to assess cost-effectiveness of health 
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66 interventions suggested by the commission on macroeconomics and Health (WHO,2001) is that 

67 interventions costing less than the per capita gross domestic product (GDP) in Low and Middle-Income 

68 Countries (LMICs) are “very cost-effective”, and those costing less than triple the per capita GDP are “cost-

69 effective [5]. This, therefore, raises one question, under which scenario in the point-of-care diagnosis is 

70 RDT cost-effective? The objective of this study was to evaluate the cost effectiveness of SD Biosensor 

71 Antigen Detecting SARs-CoV-2 Rapid Diagnostic Tests in Kenya. 

72 Methods
73 Study Design
74 We developed a decision tree model in TreeAge Pro Healthcare 2021 to evaluate the cost-effectiveness 

75 of implementing SD biosensor antigen detecting SARS-CoV-2 rapid diagnostic tests in Kenya from a 

76 societal perspective. We modeled the costs and outcomes for diagnosing and treating COVID-19 patients 

77 in line with WHO interim guidance on antigen detection for COVID-19 using rapid immunoassays [6] and 

78 the Kenya ministry of health COVID-19 case management guidelines [7]. 

79 The diagnostic and treatment pathway followed the cases where symptomatic patients with suspected 

80 COVID-19 and asymptomatic contacts of COVID-19 cases attend health facilities with i) no access to NAAT 

81 for diagnosis or ii) limited access with prolonged turnaround times precluding clinical utility of results. 

82 Evaluation Scenarios

83 We assessed two scenarios:

84 Point of care Ag-RDT use for case management in settings with access to delayed confirmatory NAAT 

85 testing scenario.

86 The scenario represented a health facility that sends samples to an external lab for NAAT, often with 

87 delayed result reporting. In this situation, Ag-RDT would be the first-line test to allow for case detection 

88 and rapid implementation of isolation procedures amongst positives and prioritization of negatives for 

89 confirmatory testing by NAAT at a designated laboratory facility. We compare the scenario with patients 

90 subjected to NAAT test, which is associated with a long turn-around time but obviates the need for 

91 confirmatory testing of negatives or a case whereby there is no testing. The diagnosis only relies on the 

92 clinical presentation of COVID-19 symptoms as per WHO case definitions [8].

93
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94 Point of care Ag-RDT use for case management in settings with no access to confirmatory NAAT testing 

95 scenario.

96 The scenario differs from the first one since the target location involves a health facility with no access to 

97 NAAT and no secure means for the safe and timely transport of samples to centralized facilities. The 

98 scenario presents a case whereby Ag-RDT is the only feasible tool to aid in the diagnosis or a choice of not 

99 conducting a COVID-19 test.

100 Sampling and sample size
101 We selected two counties in Kenya, Kiambu, and Nairobi counties, to assess the field performance, 

102 feasibility, acceptability, and impact of SD biosensor antigen detecting SARS-CoV-2 rapid diagnostic tests. 

103 The two counties were chosen since they had the highest prevalence of COVID-19 in Kenya (average at 

104 >3% over the past three months), they also had different levels of government-owned facilities, and they 

105 had communities that were at high risk of outbreaks. We sampled four facilities that captured the diversity 

106 of access for COVID-19 testing and drew a sample size of 18 patients to capture the patient cost 

107 perspective. The patients’ sample size was selected to achieve balance in the facilities chosen and we 

108 settled on the 18 patients after reaching saturation.

109 Using the previously proposed method by Buderer 1996, the initial sample size needed for the COVID-19 

110 RDT assumed the following expected values: test sensitivity of 80%, confidence interval of 5%, and COVID-

111 19 prevalence of 10% to yield an estimated sample size of 2459 participants. Due to low turnout in daily 

112 tests conducted, a sample size of 506 participants was included in the study, which was still a 

113 representation of the targeted population assuming a test sensitivity of 85%, confidence interval of 5%, a 

114 width of 10%, and COVID-19 prevalence of 5% to 10%. To achieve the necessary accuracy on performance 

115 estimates, we determine data for negative cases (by NAAT) using a value of 50% for each estimate.

116 Data Collection
117 We used primary and secondary data to determine the cost components of diagnosis and case 

118 management of suspected Covid-19 cases. Questionnaires were administered at the facility level and to 

119 individuals seeking COVID-19 testing services for cost data. For effectiveness measure, we relied on 

120 endpoint data on project-specific reporting forms that included COVID-19 testing registries, laboratory 

121 report forms, patient history, case management forms, contact history forms, competency assessments, 

122 and Ag-RDT ease of use assessments.

123
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124 Model Structure
125 Figure 1. and 2. depicts the intervention strategies applied. We applied three strategies for the study 

126 scenarios. The first strategy involving the use of Ag-RDT followed by a different diagnosis pathway. Under 

127 the first scenario Ag-RDT was used as the first-line diagnosis method, followed by the prioritization of 

128 negatives for confirmatory testing by NAAT.

129 Figure 1: Schematic of decision tree mode under scenario 1. +ve, Positive; -ve, Negative; TP: True 
130 Positive; FN: False Negative; FP: False Positive; TN: True Negative

131 Figure 2: Schematic of decision tree mode under scenario 2. +ve: Positive; -ve: Negative; TP: True 
132 Positive; FP: False Positive; FN: False Negative; TN: True Negative

133 The second scenario involved clinical judgement as the comparator. The first strategy pathway of Ag-RDT 

134 diagnosis and case management did not include a confirmatory test of negatives making the diagnosis 

135 pathway shorter than in the first scenario where there is access to NAAT services.

136 Costing Methods
137 The costing followed the Global Health Cost Consortium’s (GHCC) reference guidelines [10] to evaluate 

138 the cost of implementing SD Biosensor antigen detecting SARS-Cov-2 diagnostic tests in Kenya. We applied 

139 an ingredient-based approach from a societal perspective to analyze costs for the diagnosing COVID-19 

140 cases using antigen RDT. Under the healthcare system, we costed both the direct and ancillary costs, 

141 which included physical costs and overheads, costs for personal protective equipment (PPE), staff time, 

142 and costs for non-pharmaceuticals. We also computed the direct and indirect costs from the patient 

143 perspective. For the direct cost, we included the cost of testing, the cost for treatment, the cost incurred 

144 for related healthcare services, and the cost of isolation/quarantine. As for the indirect costs, we 

145 considered the travel cost; we valued time spent away from normal activities to visit the healthcare 

146 facilities; we valued informal care, and using the human capital approach, we valued productivity loss due 

147 to absenteeism (figure 3).

148 Figure 3. Antigen rapid diagnostic test cost component

149 The costs for treatment, quarantine, and isolation, such as accommodation and overheads, 

150 pharmaceutical, non-pharmaceuticals, staff, PPE, ICU equipment, oxygen therapy, other laboratory tests 

151 associated with COVID-19 case management in hospitals, and cost for diagnostic of patients using PCR 

152 were derived from a previous study [11].
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153 Physical cost and overheads
154 We obtained outpatient cost overheads from the study on case management of COVID patients [11], 

155 which collected primary data from three public health facilities. We computed the physical cost incurred 

156 per test by collecting data on the estimated cost of the COVID test room, the size of the facility, and the 

157 size of the space the COVID test was being conducted. We later annuitized the estimated cost using the 

158 respective useful life years of the housing facility. To estimate the cost of the testing space after 

159 annuitizing the cost of the housing facility, we first computed the cost per square metre of the housing 

160 facility by dividing the annuitized cost by the size of the housing facility. Second, we multiplied the specific 

161 space size for COVID testing by the cost per square metre of the area housing the test. Finally, we divided 

162 the cost of the COVID space by the number of tests per day and the number of working days in a year, 

163 assuming the daily average test conducted within the last six months and the facility operating every day.

164 Non-pharmaceuticals and Personal Protective Equipment (PPE)
165 Data was collected on the non-pharmaceuticals and PPE items used during the testing of suspected Covid-

166 19 cases. We obtained cost data for NAAT testing from a recent study by Barasa et.al. (2021) on Examining 

167 unit costs for COVID-19 case management in Kenya.  The other cost of items for Ag-RDT and quantity 

168 required per test were obtained from the sampled health facilities.

169 Staff cost
170 Data was collected on the type of staff, gross salaries, and time spent on testing from three public health 

171 facilities. We computed the amount of time allocated on a test as follows. First, we estimated the total 

172 time allocated to testing in a day by obtaining the number of shifts in a day, the number of the specific 

173 cadre of staff conducting the test, and the length of each shift in minutes. Second, we estimated the 

174 amount of time allocated to a test per day by dividing the number of tests per day, assuming a daily 

175 average of tests conducted within the last six months and equal allocation of testing time. Finally, we 

176 computed the average staff cost per test by multiplying the staff time allocated to COVID-19 testing in a 

177 day in minutes by the gross salary of that cadre of staff per minute.

178 Valuing Time cost
179 The time patients lost from routine activities was estimated by adding the travel time and the time spent 

180 at the health facility as per the patient’s and companion’s response. Using data from Kenya’s minimum 

181 wages [12], the time lost was subsequently valued at the average hourly pay of the different categories 

182 of paid work the patient and companion would have engaged. While for the unpaid work, a proxy value 

183 of the cost of a close market substitute was used.
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184 Valuing Productivity Loss
185 The study considered productivity loss from both paid and replaced unpaid work. Using the human capital 

186 approach, the number of hours worked per working day was calculated based on the average number of 

187 hours a week the patient worked over the last four weeks, assuming the patient worked for five days in a 

188 week. Subsequently, the gross daily wage was estimated by multiplying working hours per day by 

189 estimated hourly salaries for different categories of work [12]. Next, the total number of lost productive 

190 days from paid work was multiplied by the gross daily wage.

191 The cost of replacing unpaid work was considered by analyzing the time spent by an informal giver to 

192 replace the patient missed unpaid work.

193 Pricing and Valuation
194 We identified the cost of building as the only capital good, and annuitized it, assuming a useful life of 5 

195 years. We obtained price data from a previous study [11] and presented the costs in Kenya shillings (KES) 

196 and US dollars. We used an exchange rate of US$1 = KES 112.52 derived from Xe.com and accessed on 

197 30th November 2021, to convert KES to US$. We obtained shadow prices for unpaid work and the 

198 opportunity cost of time from Kenya minimum wages reported by the africanpay.org database accessed 

199 on 30th December 2021.

200 Effectiveness and Cost-effectiveness measurement
201 The impact of case management of COVID-19 was dependent on the diagnostic performance of the 

202 different diagnostic tests used (Ag-RDT or NAAT), the timing of the test, and the adherence to COVID-19 

203 case management guidelines. 

204 The intermediate outcome was measured in terms of the diagnostic performance of the antigen RDT, 

205 which was measured by its sensitivity and specificity compared to the PCR test. Based on the results of 

206 506 test samples, the estimated sensitivity of Ag-RDT is 73%, and the estimated specificity is 93%. Using 

207 the diagnostic test confidence interval formula [13], we obtained a 95% confidence interval for the Ag-

208 RDT sensitivity as (59%,87%), and the confidence interval for the specificity as (91%,96%).

209 The primary health outcome was measured in terms of the cost per disability-adjusted life years (DALYs) 

210 averted. We factored in both the mortality and morbidity to obtain DALYs by summing up years of life lost 

211 (YLL) and years of life with disability (YLD) [14]. A discounting rate of 3% was used to calculate DALYs and 

212 applied Kenya’s life expectancy of 66.34 [15], disability weights as reported [16] and captured in Table.
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213 The incremental cost-effectiveness ratio (ICER) comparing the use of Ag-RDT and confirmatory testing of 

214 negatives by NAAT and the use of NAAT as the only diagnostic test conducted was calculated as the 

215 difference in costs and DALYs averted of diagnostic and case management in the compared groups.

216 𝐼𝐶𝐸𝑅 =  
(𝐶𝑆𝑇1 ― 𝐶𝑆𝑇2)

(𝐷𝐴𝐿𝑌𝑠𝑆𝑇1 ― 𝐷𝐴𝐿𝑌𝑠𝑆𝑇2)

217 Where ICER = Incremental cost effectiveness ratio; ST1 = RDT as first-line diagnosis followed by NAAT, ST2 

218 = NAAT diagnosis, CST1 = Cost of strategy 1; CST2 = Cost of strategy 2; DALYsST1 = DALYs averted in strategy 

219 1; and DALYsST2 = DALYs averted in strategy 2.

220 We compared the ICER with an opportunity cost of USD 20.07 to USD 1023.47 (1% to 51% GDP per capita) 

221 based on Kenya’s cost-effectiveness threshold as estimated by Woods et al. [17] and Ochalek et al. [18].

222 Assumptions and Parameters
223 Table 1. present the model parameters. The model also used some assumptions that are key to note. First, 

224 we assumed that patients who test positive and show no clinical symptoms of COVID-19 are given home-

225 based standard care, equivalent to isolation and routine care given to mild COVID-19 patients. Second, 

226 we assume that false-negative and late diagnosis leads to worsening of symptoms [19]. Third, we relied 

227 on a COVID-19 study on an outpatient setting [20] to analyze the outcomes of COVID-19 untreated 

228 patients. Lastly, we assumed that all patients who test positive and no further confirmatory diagnostic 

229 tests conducted are isolated and provided standard care even though the results could be false positive.

230
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231 Table 1:  Key model parameters

Description Value (Lb;Ub) Source
Population   
Study cohort population 4918 Author
COVID-19 Prevalence 10% Author
Cost   
Cost (USD) for asymptomatic care episode 16.39  [11]
Cost (USD) for conducting a PCR test 21.84 (21.60;22.87)  [11]
Cost (USD) for critical care episode 472.02  [11]
Cost (USD) for severe care episode 121.88  [11]
Cost (USD) for conducting a rapid diagnostic test 4.68 (4.83;7.25) Author
Cost (USD) for clinical diagnosis 5.22 (5.06;5.36) Author
DALYs   
Disability weight for mild COVID-19 0.006 [16]
Disability weight for critical COVID-19 0.655  [21]
Disability weight for severe COVID-19 0.133 [16]
Average age at death 55.5  [22]
Life expectancy 66.99   [15] 
Characteristics of Patients   
Proportion of critical patients hospitalized 0.14   [23] 
Proportion of critical COVID-19 who die 0.892    [24] 
Proportion of critical COVID-19 who recover 0.108  [24]
Proportion of infected patients with SARS-CoV-2 0.10 Author 
Proportion of patients not given asymptomatic care 0 Author 
Proportion not infected with SARS-CoV-2 0.90 Author 
Proportion of severe patients hospitalized 0.86 [23]
Proportion of severe COVID-19 who progress to critical 0.424 [25]
Proportion of severe COVID-19 who recovered 0.576 [25]
Proportion of patients given asymptomatic care 1 Author
Proportion of severe COVID-19 untreated patients who 
progresses to critical 1 Author
Proportion of untreated severe COVID-19 patients who recovered 0 Author
Proportion of untreated critical COVID-19 patients who dies 1 Author
Proportion of untreated critical COVID-19 patients who recovered 0 Author
Length of stay asymptomatic care 12 [26]
Length of stay critical 7 (4;10) [24]
Length of stay severe 6 (3;9) [14]
Diagnostic Accuracy   
PCR Specificity 0.998 (0.992;0.999) [27]
PCR Sensitivity 0.86 (0.547;0.994) [27]
RDT Specificity 0.93 (0.91;0.96) Author
RDT Sensitivity 0.73 (0.59;0.87) Author
Probability of correctly excluding SARS-CoV-2 0.683 (0.60;0.758) [28]
Clinical Judgement Sensitivity 0.806 (0.729;0.869)      [28]
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232 Dealing with uncertainty
233 We performed a sensitivity analysis on the following parameters: COVID-19 prevalence level; sensitivity 

234 of RDT and PCR; the proportion of treated and untreated hospitalized cases; and cost of RDT, NAAT, and 

235 treatment of severe and critical cases. We implemented a 20% increase or decrease in the cost of RDT, 

236 NAAT, and cost of treatment. The sensitivity analysis of RDT was based on +/- 5% confidence bounds while 

237 the bounds of PCR and clinical judgement were provided [27], [28].

238 We conducted a probabilistic sensitivity analysis to check for the collective uncertainty on the probability 

239 of cost-effectiveness using second-order Monte Carlo simulation (n = 1000). We used beta distributions 

240 to calculate the probability range of the study parameters and gamma distribution on the cost parameters 

241 [29]. Finally, we presented the ICE scatterplot to illustrate the uncertainty in the cost-effectiveness results.

242 Results
243 Table 2. summarizes the key findings from the patient questionnaire administered. As per the results, the 

244 primary mode of transport was public transport, with 13 (72%) of the 18 sampled patients preferring 

245 public transport to get to the health facility, and the second most popular means was walking on foot, 3 

246 (17%). It was also noted that most (89%) of the patients went alone to the health facility, and only 11% 

247 were accompanied. The table also details the patient’s usual activities foregone by visiting a health facility. 

248 Most of the patient’s main activities would be, attending to paid work at 28% or attending to a business 

249 activity at 28%. Housework activities took 17%, whereas only 6% of patients forego childcare activity. 

250 It also shows the treatment cost, travel cost, time lost per hour, and time cost from the foregone activity 

251 the patient would have engaged in during the health facility visit, and the productivity loss. The median 

252 travel cost for a one-way visit for a patient was US$0.27. The study findings also report that out of the 

253 patients accompanied to the health facility, there was no cost incurred by the patient’s companion while 

254 visiting the health facility. Applying the values per hour of paid and unpaid work foregone, the median 

255 time cost per hour of both patient’s and companion’s usual activities lost was US$1.57. For the 

256 productivity loss, the median productivity cost of absenteeism from both paid and unpaid work was 

257 US$1.08.

258
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259 Table 2. Key findings from the patient’s questionnaire

Patient cost

Mode of transport (no. (%)) Number Percentage

Public transport 1 6%

Walk on foot 13 72%

Motorcycle and public transport 1 6%

Taxi 3 17%

Patients accompanied (no. (%)) 2 11%

Traveling cost (KES)

Mean (SD) 43.33 40.58

Median (IQR) 30 (20-70)

Cost of related healthcare services (KES)

Mean (SD) 163.89 387.22

Median (IQR) 0 (0-100)

Patient’s usual activities Number Percentage

Housework 3 17%

Childcare 1 6%

Attending school 2 11%

Seeking work 1 6%

Paid work 5 28%

Business activity 5 28%

Other 1 6%

Companion’s usual activities

Attending school 2 11%

Time cost (KES)

Mean (SD) 247.18 247.51

Median (IQR) 176.89 (50.26-433.42)

Productivity loss (KES)

Mean (SD) 1000.95 1469.42

Median (IQR) 121.79 (0-2336.4)

260 Table 3. details the unit cost for rapid diagnostic tests compared to NAAT for a COVID-19 suspected case. 

261 The results showed the unit cost per test for NAAT and Ag-RDT tests in the healthcare system was 

262 US$18.93 and US$3.12, respectively. There is a considerable cost difference between the two tests, mainly 

263 because of the laboratory cost incurred when conducting the NAAT test. The table also showed the patient 

264 cost incurred for a diagnostic test was US$ 2.92; the major cost driver was the patient time cost. 

265 Summarizing the results, we found that the societal cost for PCR was higher at US$21.84 than the Ag-RDT 

266 cost of US$4.68.

267

268
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269 Table 3: Unit costs for antigen RDT and PCR test for SARS-COV-2 detection

Ag-RDT Test median cost NAAT Test (PCR) cost [11]
Inputs

(KES) US$ KES US$

Healthcare perspective

Physical cost & overheads per test 0.23 0.00 6.66 0.06

Equipment per test  -  - 2.25 0.02

Personal protective equipment (PPE) cost 
per test 157.72 1.40 151.76 1.35

Consumables cost per test 31.96 0.28  -  -

Lab supplies  -  - 1959.5 17.41

Staff cost per test 7.57 0.07 8.98 0.09

Healthcare estimated cost 197.49 1.76 2129.15 18.93

Patient perspective

Patient direct cost 0.00 0.00 0.00 0.00

Patient travel cost 30.00 0.27 30.00 0.27

Patient time cost 176.89 1.57 176.89 1.57

Companion travel cost 0.00 0.00 0.00 0.00

Informal care cost 0.00 0.00 0.00 0.00

Patient productivity loss 121.79 1.08 121.79 1.08

Patient estimated cost 328.68 2.92 328.68 2.92

Societal cost 526.17 4.68       2,457.83           21.85 

270 Antigen-RDT and PCR test results
271 Out of 506 patients recruited, 72 (14.2%) patients tested positive with antigen RDT, 52 (10.3%) patients 

272 tested positive with PCR test, 38 (7.5%) were positive for both RDT and PCR test, 34 (6.7%) were positive 

273 for RDT and negative for PCR, 14 (2.8%) were positive to PCR and negative to RDT, and 468 (92.5%) were 

274 both negative for RDT and PCR test.

275 Base case results
276 The costs, DALYs, and the ICER at 10% COVID-19 prevalence level associated with the three strategies are 

277 presented in Table 4. Under the first scenario, where we apply Ag-RDT as the first-line test and 

278 prioritization of negatives for the confirmatory test by NAAT in comparison to delaying and conducting 

279 NAAT, the findings show no-test strategy is dominated. The results show that the RDT strategy is the 

280 costliest, followed by the no-test strategy, and NAAT test strategy was relatively less costly compared to 

281 the other two strategies. Although the RDT strategy was costly, it is most effective in averting DALYs to 

282 NAAT diagnostic strategy, while failure to conduct a test was less effective to Ag-RDT or NAAT. The results 

283 also showed the ICER of Ag-RDT strategy compared to NAAT diagnostic strategy was US$964.63 per DALYs 
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284 averted, hence a cost-effective strategy when we apply Kenya’s maximum cost-effectiveness threshold of 

285 US$1003.4. When we compare the three strategy, the results showed no-test strategy was absolutely 

286 dominated, and it would be more efficient to apply the Ag-RDT strategy to case scenarios where there 

287 were delay NAAT testing than switching to the no-testing strategy.

288 Table 4: Cost-effectiveness results for Ag-RDT implementation (USD 2021)

Scenario 1: Point of care with delayed access to NAAT

Strategy Cost (USD)
Incremental 
Cost (USD)

Effectiveness 
(DALYs)

Incremental 
Effectiveness 
(DALYs)

Incremental 
cost per 
DALY 
averted Dominance

Delayed 
test-NAAT

1 107 117.83 (1 102 586.64 to 
1 110 014.44)

 2236.49 
(2229.01 to 

2239.81)

  undominated

No test, 
Clinical 
Judgement

1 261 230.4 (1 258 276.99 to 
1 264 097.03)

154 112.57 2361.35 
(2360.40 to 

2362.44)

-124.86 -1234.26 abs. 
dominated

Ag-RDT 1 336 231.13 (1 332 224.48 to 
1 339 721.30)

229 113.3 1998.97 
(1996.95 to 

1999.87)

237.51 964.63 undominated

Scenario 2: Point of care with no access to NAAT

Strategy Cost (USD)
Incremental 
Cost (USD)

Effectiveness 
(DALYs)

Incremental 
Effectiveness 
(DALYs)

Incremental 
cost per 
DALY 
averted Dominance

Ag-RDT    998 260.67 (970 948.12 to 1 
011 265.58)

 2537.8 
(2330.70 to 

2638.70)

  undominated

No test, 
Clinical 
judgement

1 261 230.78 (1 258 276.99 to 
1 264 097.03)

2 62 970.12 2361.35 
(2330.70 to 

2638.70)

176.45 1490.34 undominated

289 Under the second scenario, where Ag-RDT is the only feasible tool to aid testing, the no-test strategy is 

290 costly compared to Ag-RDT diagnostic strategy. As for effectiveness, the results show no-test strategy is 

291 more effective in averting DALYs than the RDT strategy but with an ICER of US$1490.34 no-test strategy 

292 was not cost-effective in Kenya.

293 Sensitivity Analysis
294 Difference prevalence level from 5% to 20%
295 A one-way sensitivity analysis showed the ICER was sensitive to the covid-19 prevalence level. The results 

296 (S1 Table) showed that at less than 5% covid-19 prevalence level and under a case where there was access 

297 to delayed NAAT, the use of RDT and further confirmatory by NAAT strategy was not cost-effective 
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298 compared to the delayed NAAT strategy. At a prevalence rate of more than 5% to 20%, the results showed 

299 that the use of RDT and further confirmatory of negatives by NAAT was cost-effective compared to the 

300 delayed NAAT strategy. 

301 In a scenario with no access to NAAT assay, at a lower prevalence rate of 5% to 16.25%, no-test strategy 

302 was still not cost-effective compared to the RDT strategy (S2 Table). The results showed at a higher 

303 prevalence rate of 20%, the no-test strategy was more costly and more effective than the Ag-RDT strategy, 

304 and the ICER was US$989.15 hence a cost-effective strategy.

305 RDT and PCR Sensitivity
306 When we varied the sensitivity of RDT (S3 Table) by increasing or reducing RDT sensitivity, we found 

307 applying RDT as the first-line tool to aid in testing, followed by prioritization of negatives for confirmatory 

308 testing by NAAT was still costly and more effective up to a sensitivity level ≥ 87% to delayed NAAT 

309 diagnostic strategy. 

310 In a scenario where there was no access to NAAT assay, RDT was still less costly and less effective than 

311 the no-test strategy (S4 Table) and in the two scenarios we found the ICER was sensitive to changes in 

312 RDT sensitivity.

313 When we varied the PCR sensitivity by increasing it, we found PCR was less costly and less effective than 

314 RDT. While reducing the PCR sensitivity also led to reduction in the costs of PCR diagnostic strategy and 

315 was attractively effective under the three strategies (S5 Table).

316 According to Figure 4. the key parameters that had the most significant effect on the ICER when we 

317 compared the RDT diagnostic strategy to the delayed NAAT diagnostic strategy are 1) Proportion of severe 

318 patients hospitalized 2) Proportion of critical patients hospitalized (both of which fewer cases improves 

319 cost-effectiveness); 3) Probability of critical patient dying (lower mortality for critical patients improves 

320 cost-effectiveness); 4) Length of stay for critical patients (shorter length of stay in the hospital improves 

321 cost-effectiveness).

322 Figure 4: Tornado diagram of one-way sensitivity analysis of the parameters affecting the ICER under 

323 scenario 1. YLL, years of life lost; YLD, years of life lived with disability; RDT, rapid diagnostic test; DALYs, 

324 disease life adjusted years

325 Comparing RDT diagnostic strategy and no-test strategy, Figure 5. summarizes the three parameters that 

326 had the most significant effect on the ICER. These are: 1) Clinical true positive; (reduction in true positive 
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327 cases improves cost-effectiveness); 2) Clinical false positive (reduction in false-positive diagnosed cases 

328 improves cost-effectiveness, and 3) Proportion of infected SARS-Cov-2 (reduction in SARS-CoV-2 infection 

329 improves cost-effectiveness).

330 Figure 5: Tornado diagram of one-way sensitivity analysis of the parameters affecting the ICER under 

331 scenario 2. YLL, years of life lost; YLD, years of life lived with disability; PCR, polymerase chain reaction; 

332 RDT, rapid diagnostic test; SARS-CoV-2, severe acute respiratory syndrome coronavirus 2

333 Probabilistic Sensitivity Analysis
334 The results of the Monte Carlo simulation of 1000 samples under the first scenario (Figure 6.) show that 

335 at a cost-effectiveness threshold of US$ 1003.4 per DALYs averted, the probability of antigen rapid 

336 diagnostic test being the more cost-effective strategy was 52.5%. Under the second scenario, the results 

337 for PSA (Figure 7.) show that at a cost-effectiveness threshold of US$ 1003.4 per DALYs averted, the 

338 probability of the no-test diagnostic strategy being more cost-effective was 28.7%.

339 Figure 6: Probabilistic sensitivity analysis of Ag-RDT diagnostic strategy versus delayed nucleic acid 

340 amplifying test diagnostic strategy under scenario 1. Green dots representing the points that are cost-

341 effective (below the willingness to pay (WTP)). While the red dots represent the points that are not 

342 cost-effective (above the WTP)

343 Figure 7: Probabilistic sensitivity analysis of Ag-RDT diagnostic strategy versus delayed nucleic acid 

344 amplifying test diagnostic strategy under scenario 1. Green dots representing the points that are cost-

345 effective (below the willingness to pay (WTP)). While the red dots represent the points that are not 

346 cost-effective (above the WTP)

347 Figures 8 and 9 present cost-effectiveness acceptability curves under scenario one and scenario, two 

348 respectively based on a range of cost-effectiveness thresholds. Under a scenario where there is delayed 

349 NAAT diagnosis and given a willingness to pay of US$ 900 per DALYs averted, there was a 40% probability 

350 of the Ag-RDT strategy being cost-effective. The cost-effectiveness acceptability curve shows the 

351 probability of the AG-RDT strategy being more cost-effective as the decision maker was willing to increase 

352 their willingness to pay (Figure 8). Under a scenario where there is no access to NAAT assay in a resource-

353 limited setting and a decision maker is not willing to pay for any DALYs averted, the probability of Ag-RDT 

354 being cost-effective compared to no-test strategy was 94%.
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355 Figure 8: Cost-effectiveness acceptability curve showing the probability of cost-effectiveness of Ag-RDT 

356 strategy compared to Delayed test NAAT strategy and No-test Strategy over a range of willingness-to-

357 pay values.

358 Figure 9: Cost-effectiveness acceptability curve showing the probability of cost-effectiveness of Ag-RDT 

359 strategy compared to No-test Strategy over a range of willingness-to-pay values.

360 Discussion
361 The study presents the cost and cost-effectiveness of Ag-RDTs over PCR and clinical judgement for SARS-

362 CoV-2 detection. We compared the use of Ag-RDT under three scenarios using three diagnostic strategies. 

363 Our findings show that when we compare the first strategy of using Ag-RDT as the first-line tool and later 

364 conducting confirmatory tests of negatives to the second strategy of delaying the testing and using the 

365 services of NAAT assays. Ag-RDT diagnostic strategy is costly compared to delayed NAAT diagnostic 

366 strategy, the high cost being driven by increased detection of true positives on a confirmatory test of RDT 

367 negatives results using PCR test hence increase in the cost of case management of diagnosed positive 

368 cases. We also find that using RDT and subjecting the negative RDT results to confirmatory PCR test 

369 averted more DALYs on infected SARS-CoV-2 patients not detected by RDT. When we compare the two 

370 strategies at ≥8.75% Covid-19 prevalence level, we find that using Ag-RDT as a first-line tool and later 

371 conducting confirmatory tests of negatives was a cost-effective strategy. 

372 When we compared the use of Ag-RDT as the only feasible tool to aid in detecting SARS-CoV-2 to the use 

373 of clinical judgement, at ≤16.25% Covid-19 prevalence level, the results show no-test strategy was not 

374 cost-effective compared to the use of Ag-RDT strategy. The results of the two strategies show that Ag-

375 RDT is less costly and less effective than the clinical strategy, which is substantially more costly and more 

376 effective. We can explain the high-cost findings associated with clinical diagnostic strategy to treat 

377 presumptive cases with clinical symptoms similar to SARS-CoV-2 infected patients. The clinical diagnostic 

378 strategy averts more DALYs than the RDT strategy since most cases with SARS CoV-2 clinical symptoms 

379 are subjected to care/treatment. Still, in a resource-limited setting, in the case of Kenya, the strategy may 

380 not be cost-effective due to the high cost associated with the strategy. At a higher prevalence level, a 

381 presumptive diagnosis of SARS-CoV-2 has been found to have a higher sensitivity level and a relatively 

382 lower specificity level [30]. The results show at a higher Covid-19 prevalence level (20% prevalence), the 

383 use of a no-test, clinical judgement strategy was cost-effective in averting DALYs compared to the use of 

384 Ag-RDT strategy at a relatively high willingness to pay threshold.
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385 Our findings show the proportion of severe and critical cases hospitalized impacts more on the cost-

386 effectiveness of the Ag-RDT strategy. This could be explained by the fact that a low (high) proportion of 

387 severe and critical cases hospitalized implies a low (high) Covid-19 prevalence level, which in turn provides 

388 a reason for an accurate diagnosis to avert more DALYs and cost implications associated with 

389 misdiagnosis. When we consider delayed NAAT strategy previous studies have shown late diagnosis may 

390 not be associated with ICU admission or death [19] hence delay in obtaining results or access to NAAT 

391 cannot be linked to the patient disease progression and recovery. Although, it can be argued that late 

392 diagnosis of COVID-19 patients can increase the risk of infection, especially contact with individuals such 

393 as caregivers, as personal protective equipment may not be used. When considerations are made to 

394 implement RDT diagnostic strategy in settings with delayed access to NAAT, it will avert more DALYs than 

395 delay NAAT diagnostic strategy.

396 The major limitation of this study is the scarce data on the outcomes of COVID-19 patients with false-

397 negative diagnosis results. However, we made assumptions based on disease progression and outcome 

398 during the peak of the COVID-19 pandemic for the COVID-19 cases that were not given any care. One 

399 strength of this analysis is the fact that it considered the diagnostic cost and the treatment cost associated 

400 with false-positive cases. This paper is among the first papers on cost effectiveness of Ag RDTs in low- and 

401 middle-income countries.

402 Conclusion
403 The study findings should inform policymakers to support the implementation of the Ag-RDT diagnostic 

404 strategy in a scenario where there is delayed access to confirmatory NAAT testing. At a high prevalence 

405 level, the use of Ag-RDT diagnostic kits would be a cost-effective strategy compared to delaying and 

406 applying the NAAT testing strategy. Under a scenario where there is no access to NAAT assay, the optimal 

407 strategy would be to support the use of RDT rather than resorting to clinical judgement as a strategy for 

408 diagnosis. Since the use of Ag-RDT would be a cost-saving strategy and an optimal strategy in a resource-

409 limited setting like Kenya. There is an increased opportunity for cost-effectiveness and cost savings if Ag-

410 RDT is introduced to complement the use of NAAT assay where there are delays in confirmatory testing 

411 and scenarios where there is no access to NAAT assay. The implementation and roll-out of Ag-RDT will 

412 reduce the risk of misdiagnosis and case management of false positive cases, especially in a rural setting 

413 where due to lack of NAAT assay there may be an overreliance on clinical judgement to diagnose Covid-

414 19 suspected cases.
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