Reconstructing the phylodynamic history and geographic spread of the CRF01_AE-predominant HIV-1 epidemic in the Philippines from PR/RT sequences sampled from 2008-2018

4

Francisco Gerardo M. Polotan^{1*}, Carl Raymund P. Salazar², Hannah Leah E. Morito³, Miguel Francisco B.
 Abulencia¹, Roslind Anne R. Pantoni¹, Edelwisa S. Mercado¹, Stéphane Hué^{4,5&}, Rossana A. Ditangco^{1&}

7

8 ¹Research Institute for Tropical Medicine, Muntinlupa City, Philippines

9 ²Laboratory of Microbiology, Wageningen University and Research, Wageningen, The Netherlands

³Medizinische Hochschule Hannover, Hannover, Germany

⁴Centre for the Mathematical Modelling of Infectious Diseases (CMMID), London School of Hygiene &
 Tropical Medicine, London, UK

- ⁵Department of Infectious Disease Epidemiology, London School of Hygiene & Tropical Medicine, London,
 UK
- 15

16 [&]SH and RD contributed equally

17 *corresponding author

- 18 Email: fgmpolotan@gmail.com
- 19

20 Abstract

21 The Philippines has had a rapidly growing HIV epidemic with a shift in the prevalent subtype

from B to CRF01_AE. However, the phylodynamic history of CRF01_AE in the Philippines

has yet to be reconstructed. We conducted a descriptive retrospective study reconstructing the

24 history of HIV-1 CRF01_AE transmissions in the Philippines through molecular

epidemiology. Partial polymerase sequences (n = 1429) collected between 2008 and 2018

from 13 Philippine regions were collated from the RITM drug resistance genotyping database.

27 Subsampling was performed on these Philippine and Los Alamos National Laboratory HIV

international sequences followed by estimation of the time to the most recent common

ancestor (tMRCA), effective reproductive number (R_e) , effective viral population size (N_e) ,

relative migration rates and geographic spread of CRF01_AE with BEAST. R_e and N_e were

compared between CRF01_AE and B. Most CRF01_AE sequences formed a single clade with

a tMRCA of 1999 [95% HPD: 1996, 2001]. Exponential growth of N_e was observed from

33 1999 to 2013. The R_e reached peaks of 3.71 [95% HPD: 1.71, 6.14] in 2009 and 2.87 [95%

HPD: 1.78, 4.22] between 2012 and 2015. A transient decrease to 0.398 [95% HPD: 0.0105,

2.28] occurred between 2010 and 2012. The epidemic most likely started in Luzon in the

36 National Capital Region, which then spread diffusely to the rest of the country. Both

37 CRF01_AE and subtype B exhibited similar but unsynchronized patterns of R_e over time.

These results characterize the subtype-specific phylodynamic history of the CRF01_AE

epidemic in the Philippines, which contextualizes and may inform past, present, and future

40 public health measures toward controlling the HIV epidemic in the Philippines.

41

42 **Running Title:** HIV-1 subtype CRF01_AE phylodynamics in the Philippines

43 Keywords: HIV-1, epidemic, CRF01_AE, subtype B, phylodynamics, molecular

44 epidemiology, Philippines

45 Introduction

46	Human immunodeficiency virus-1 (HIV-1) infections and deaths related to acquired
47	immunodeficiency syndrome (AIDS) have been rapidly increasing in the Philippines over
48	the past years, with a 237% percent change in new infections, the highest in Asia and the
49	Pacific from 2010 to 2020 [1]. As of June 2022, 101,768 confirmed HIV cases have been
50	reported since January 1984, with about 92% of these reported in the last 10 years and the
51	number of new diagnoses increasing from 6 cases/day in 2011 to 41 cases/day in 2022 [2].
52	The demographics of HIV-1 cases in the Philippines have also shifted over time.
53	From 1984 to 1990, the majority of diagnosed cases (62%) were females, compared to a
54	majority of male cases (94%) in 1991–2020 [3]. The largest proportion of new cases also
55	shifted to a younger age group, from 35-49 in 2001-2005 to 25-34 and 15-24 age groups
56	in 2010–2022 [2], [4], [5], [6]. Furthermore, the majority of transmissions were from male-
57	to-female sex until 2009, pointing to sexually active men who have sex with men (MSM) as
58	the major transmitters of HIV-1 in the Philippines since 2010 [5].
59	The composition of circulating subtypes in the Philippines has also changed. In
60	1998, the major subtype was B, with around 70% of infections, followed by the
61	CRF01_AE, a putative recombinant of subtypes A and E, with 16–29% of infections [7],
62	[8]. However, the major subtype has shifted to CRF01_AE, making up 77% of HIV-1
63	patients in a 2013 cohort and with 22% of the same cohort being subtype B [8]. A more
64	recent cohort from 2016 to 2018 reported the distribution of 77% CRF01_AE, 13.8%
65	subtype B, and 9.2% other subtypes or recombinants [9]. Furthermore, CRF01_AE was the
66	major subtype among the MSM population, while B was predominant among injecting drug
67	users (IDUs) in infections from 2007 to 2012 [10], [11]. It is important to highlight that the

HIV epidemic in the Philippines is predominantly CRF01_AE, which displays high
antiretroviral resistance [12], and thus treatment regimens may need readjustment since
recommendations are based primarily on clinical trials from regions with subtype B
infections [13], [14].

CRF01_AE may have been introduced into the Philippines around the mid-1990s, potentially from a neighboring Asian or Southeast Asian country [15], [16]. Despite the predominance of CRF01_AE among the circulating subtypes in the Philippines, to the best of our knowledge, there has not yet been any study disentangling epidemiological parameters of specific HIV subtypes in the Philippines using phylodynamic methods.

77 Although whole genome sequences would be able to more accurately distinguish recombinant sequences [17] and lead to more precise estimates [18], partial pol sequences 78 79 from drug resistance genotyping (DRG) have been shown sufficient to reconstruct 80 transmission histories phylogenetically and are highly available data from routine testing [19]. The Research Institute for Tropical Medicine (RITM) DRG database has archived *pol* 81 protease/reverse transcriptase (PR/RT) sequences from routine testing for over a decade 82 from referred samples spanning multiple Philippine regions, compiling a suitable and 83 available dataset for reconstructing subtype-specific phylodynamics. 84

Thus, we aimed to reconstruct CRF01_AE spatiotemporal dynamics using phylogenetic analysis of available partial *pol* sequences consisting of the PR/RT regions collected from patient samples referred to the RITM, one of the largest referral hubs in the Philippines, between 2008 and 2018. We investigated the dates of introduction events; historical changes in epidemiological parameters of effective viral population size, effective reproductive number, geographical spread, and migration rates of CRF01_AE; and how

these compared with the N_e and R_e of subtype B, to distinguish the relative contribution each subtype has had to the overall HIV epidemic and provide important context to public health policies attempting to control its spread in the country.

94 Methods

95 Study population and sample selection

96 The retrospective study population were HIV-positive cases from the in-house RITM HIV-

1 DRG database with 1530 cases matching the inclusion criteria (see the following section)

for CRF01_AE analysis, while 265 cases matched the inclusion criteria for the comparative

subtype B analysis. The data included PR/RT Sanger sequences generated from RITM

routine DRG with accompanying information on specimen collection date. Collated data

101 for CRF01_AE analysis consisted of sequences from patient samples from RITM and from

referring hospitals and social hygiene clinics from 13 out of 17 administrative regions from

all three Philippine island groups between January 2008 and November 2018. Meanwhile,

data for the subtype B analysis came from RITM patients and patients from referring

hospitals and social hygiene clinics from 10 out of 17 administrative regions from all three

106 Philippine island groups between February 2014 and February 2020.

Demographic data (i.e., sample collection date and requisitioner address as location) were obtained via request forms. Missing demographic data from the samples were requested from the Department of Health Epidemiology Bureau. People living with HIV have unique HIV laboratory test ID numbers, and these were used to obtain data from the Epidemiology Bureau without using patient names.

The Institutional Review Board (IRB) of the Research Institute of Tropical
Medicine waived ethical approval for this study by granting the study protocol a certificate
of exemption from review as it was a retrospective analysis of archived de-identified
routine DRG sequence data and metadata only.

116

117 Subtype classification and sequence alignment

118 The inclusion criteria used were: all PR/RT *pol* sequences available in the RITM MBL

119 DRG; sequences from RITM classified as CRF01_AE or subtype B; sequences at least 500

nucleotides long. The exclusion criteria were: non-CRF01_AE or non-subtype B sequences

121 from RITM MBL DRG, sequences less than 500 nucleotides long; Los Alamos National

Laboratory (LANL) HIV Sequence Database [20] sequences without country and year of

sampling information; sequences containing \geq 5% ambiguous nucleotides, frameshift

124 mutations, stop codons, and APOBEC-mediated hypermutations.

Thus, partial *pol* sequences from the RITM DRG database (n = 1621) were 125 classified according to HIV subtype (i.e. phylogenetically related strains defined by close 126 genetic distance with each other) using the Stanford HIV Drug Resistance Database [21] 127 and HIVdb program (v8.6) [22], and programs COMET [23] and REGA [24] were used to 128 129 exclude non-CRF01 AE and recombinant sequences, respectively. The 10 most closely related CRF01 AE pol gene sequences (HXB2 coordinates 2253-3233) per input sequence 130 were also retrieved from the LANL HIV Sequence Database [20] in January 2019 using 131 HIV-BLAST. LANL sequences (n = 454) from 1990 to 2016 with information on the 132

sampling year and country and without >5% ambiguous nucleotides, frameshift mutations,

134	stop codons, and APOBEC-mediated hypermutations were retrieved. Sequences that
135	contained frameshift insertions/deletions as determined by HIVdb were excluded. A small
136	number of sequences that had very few bases in the PR/RT region or had very long
137	insertions were also excluded. A codon alignment of all remaining sequences was produced
138	with the Gene Cutter tool from LANL [25]. A 129 bp-long stretch of sequence, spanning
139	reference HXB2 codon position 96 of the protease gene to codon position 39 of the reverse
140	transcriptase gene, was removed from the alignment since a majority of the Philippine
141	sequences in this study contained gaps in this region. Drug resistance-associated codons
142	were stripped to remove the influence of convergent evolution from drug resistance
143	mutations [26]. Large overhangs were trimmed using Aliview [27], and sequences from the
144	same patient were removed, resulting in 1429 sequences.
145	Using similar procedures, high-confidence subtype B sequences were identified ($n =$
146	265) for the comparative analysis. The 10 most similar subtype B pol sequences per input
147	sequence were also retrieved from LANL in May 2021 using HIV-BLAST ($n = 599$).
148	Codon alignment, filtering, and trimming were also performed. Five partial polymerase
149	sequences each from of subtype A (DQ396400, DQ445119, JQ403028, KX389622, and
150	MH705133) and subtype C (AB023804, AB097871, AB254143, AB254146, and
151	AB254150) were included as outgroups, leading to 874 sequences.
152	For both CRF01_AE and subtype B sequences, collection dates with complete year
153	and month but not day were imputed to the first day of the month, while collection dates
154	with complete year only but not month and day were imputed to the first month and day of
155	the year.

157 Phylodynamic analysis

158	FastTree2 [28] and IQ-TREE2 [29] were used to reconstruct a maximum likelihood
159	phylogeny from the full CRF01_AE alignment, and TempEst2 [30] was used to measure
160	the temporal signal of the sequence alignment by root-to-tip regression analysis. A manual
161	subsample of sequences from the largest Philippine clade and international sequences
162	nearest to the clade ($n = 200$) was used to estimate the time of introduction of CRF01_AE
163	into the Philippines based on the time to the most recent common ancestor (tMRCA) of that
164	clade. Only 200 sequences were selected to reduce computation time. BEAST v2.6.7 [31]
165	was used to estimate the tMRCA of the CRF01_AE clade, with a Coalescent Bayesian
166	Skyline Plot (BSP) tree prior [32], bModelTest [33] set as the nucleotide substitution
167	model, clock rate prior set to a normal distribution ($M = 1.5E-3$, $S = 4.9E-4$) [34]–[37],
168	clock rate standard deviation prior to an exponential distribution ($M = 0.1$), and the best-
169	fitting molecular clock model of either strict or relaxed clock [38] determined by the path
170	sampling and stepping-stone procedure [39], [40] implemented in BEAST v1.10.4 [41].
171	Five separate Markov chain Monte Carlo (MCMC) chains were run for 10M states each,
172	sampling every 1000 states. These were combined and downsampled with LogCombiner
173	[42] to 10,000 states and trees. TreeAnnotator [42] was used with a 10% burnin to generate
174	the maximum clade credibility (MCC) tree.
175	To estimate the effective viral population size (N_e) and effective reproductive

number (R_e) of CRF01_AE across time, the subset of Philippine sequences belonging to the large Philippine monophyletic clade was used. Sequences with missing sample collection dates or location data were excluded from the analysis. Sequences from this clade were subsampled uniformly (Supplemental File XLSX) across time and geographic location [43],

180	[44] according to island group (i.e., Luzon, Visayas, and Mindanao) and between May 2008
181	and November 2018. Specifically, the subsampling procedure outlined by Hidano et al was
182	used [44], producing a subset of 260 sequences. BEAST2 was run with the BSP and Birth-
183	Death Skyline (BDSKY) Serial [45] tree priors, MCMC chain lengths of 400M and 300M
184	states, sampling every 40,000 and 30,000 states to estimate N_e and R_e , respectively.
185	bModelTest [33] was selected as the nucleotide substitution model, the clock rate prior set
186	to as indicated previously, and the best-fitting molecular clock model determined by the
187	path sampling and stepping-stone procedure. For the BSP analysis, the bPopSizes and
188	bGroupSizes were both set to the dimension of 5. For the BDSKY analysis, the origin of
189	the epidemic prior was set to a log normal distribution (M=3.4, S=0.29), the become
190	uninfectious rate prior to a log normal distribution ($M = 2.08$, $S = 1.0$), the sampling
191	proportion prior to a normal distribution (mean = 0.004 , sigma = 0.001), the reproductive
192	number prior to a log normal distribution ($M = 0.0$ in log space, $S = 1.25$), and the
193	reproductive number dimensions to 10. The MCC tree was generated from trees sampled in
194	the BDSKY analysis using TreeAnnotator [42] with 10% burnin. The bdskyTools R
195	package was used to smooth the R_e estimates over time [46].
196	To compare the CRF01_AE N_e and R_e with those of another circulating subtype that
197	may reflect similar patterns if non-subtype-specific influences were acting upon their
198	transmission, an equivalent analysis was done using BEAST2 on the largest subtype B
199	monophyletic clade identified from a phylogeny reconstructed using IQ-TREE 2. No

subsampling was performed as only 195 sequences sampled from September 2008 to

February 2020 were available in this clade. The same respective priors as CRF01_AE were

used, with bModelTest [33] selected as a nucleotide substitution model and with the best-

fitting molecular clock model also determined by the path sampling and stepping-stone

204 procedure.

205

206 **Phylogeographic analysis**

We performed a Slatkin–Maddison test [47] on the FastTree2 phylogeny of all sequences 207 from the large monophyletic Philippine CRF01_AE clade to test for significant associations 208 $(\alpha = 0.05)$ between the trait of location (island group and region) and tree topology. We also 209 tested for significant associations ($\alpha = 0.05$) of island group and tree topology using the 210 Bayesian Tip-Significance Testing (BaTS) package [48], which calculates the Association 211 212 Index (AI), Parsimony Score (PS), and Monophyletic Clade (MC) index statistics, on 1000 downsampled trees from the BSP analysis of uniformly subsampled CRF01 AE sequences 213 214 and 999 null replicates. BEAST v1.10.4 [41] was used for the phylogeographic analysis of 215 the CRF01 AE alignment with nucleotide positions and demes set as the first and second partitions, respectively. Analysis was performed using a strict clock model and a BSP tree 216 prior. The asymmetric discrete trait substitution model with BSSVS was selected for using 217 Philippine island groups as demes. The symmetric discrete trait substitution model with 218 BSSVS was selected for using these island groups from the same subsampled data 219 220 converted to Philippine regions (NCR, I, II, III, IV-A, V, VI, VII, IX, X, XI, XII, and XIII) as demes. SpreaD3 [49] was used to visualize phylogeographic migration at eight different 221 time points and at both island group and regional levels over a geoJSON map of the 222 223 Philippines [50].

All other settings besides those stated were left at default values. See complete details of the models and parameters used for each analysis in the Supplemental File XLSX. An effective sample size (ESS) of ≥200 was deemed as satisfactory convergence of the estimated parameters. The TRACER [51], FigTree [52], and IcyTree [53] software and R packages "ggtree" [54] and "ggplot2" [55] were used to visualize the results.

229 **Results**

230 Introduction of CRF01_AE to the Philippines in the late 1990s to early 2000s

The majority CRF01_AE sequences sampled in the Philippines (1150/1185; 97%) belonged

to one large monophyletic clade (Fig. 1a; SH-aLRT, UFBoot branch support: 98.3, 100).

Fewer sequences (35/1185; 3%) were singletons or belonged to smaller clusters of at most

three sequences, suggesting multiple introductions from overseas over time. Furthermore,

the large monophyletic Philippine CRF01_AE clade contained sequences from the United

236 States, Japan, Hong Kong, Australia, Great Britain, China, and South Korea, suggesting

transmission to and/or from these countries either directly or involving unsampled

intermediate destinations (Fig. 1a). Root-to-tip linear regression on the full set of sequences

showed a positive correlation between sequence diversity and time of sampling (coefficient

of correlation: 0.74; $R^2 = 0.55$), indicating sufficient temporal signal for further molecular

clock estimations (Fig. 1b). Model selection through path sampling and stepping-stone

procedure on a subsample of 200 sequences indicated greater support for a relaxed

243 molecular clock over a strict clock. Under this model, the large Philippine cluster from the

subsampled alignment had a mean tMRCA of March 1999 [95% HPD: April 1996,

245 December] (Fig. 1c). Additionally, the estimated evolutionary rate for this international set

of sequences was a mean of 2.413E-3 [95% HPD: 2.0457E-3, 2.7851E-3] nucleotide
substitutions/site/year.

248

249 The growth of CRF01_AE in the Philippines

Coalescent BSP analysis was conducted with 260 subsampled sequences from the large 250 251 Philippine monophyletic clade. Model selection with path sampling and stepping-stone 252 procedure indicated greater support for a strict clock over a relaxed clock (Supplemental File XLSX). The resulting Skyline plot, showing changes of effective population size over 253 254 time, revealed an exponential growth phase that lasted about 14 years between 1999 and 255 2013 whereby N_e increased by four orders of magnitude (Fig. 2b). The peak of this growth phase was followed by a stable or plateau phase wherein N_e remained within the same order 256 257 of magnitude from 2013 onwards (Fig. 2b).

258

259 Fluctuations of CRF01_AE reproductive number from the late 1990s to 2016

Phylodynamic analysis was performed with the same 260 subsampled CRF01_AE 260 sequences and the best-fitting strict clock model. Between the late 1990s and 2016, the 261 confidence intervals of the estimated R_e of CRF01 AE in the Philippines spanned 1.0 for 262 two periods, wherein the epidemic or the number of secondary cases per infected case 263 remained stable, and was significantly above 1.0 for two periods, during which there was 264 265 exponential growth of the epidemic (Fig. 2b). In more detail, R_e increased from about 1.06 [95% HPD: 0.0210, 3.86] to a peak of about 3.71 [95% HPD: 1.71, 6.14] from February of 266 2000 to April of 2008, then decreased between 2009 and 2013 to as low as 0.398 [95% 267

268	HPD: 0.0105, 2.2	31. and finall	v rebounded up	p to about 2.87	[95% HPD: 1.7	78. 4.221 j	in
	111 2 . 0.0100, 2.2					<u> </u>	

- 269 December of 2013, where it remained until 2016, the end of the interval with informative
- common ancestor nodes from the dataset (Fig. 2b).

271 Transmission of CRF01_AE from the National Capital Region to other Philippine

- 272 island groups and regions
- 273 The Slatkin–Maddison test performed on all Philippine sequences from the large
- 274 CRF01_AE transmission cluster detected significant clustering of sequences by island
- group (96 observed transitions, 109–117 min–max null model transitions; *p*-value <0.001)
- and by Philippine region (152 observed transitions, 163–171 min–max null model
- transitions; *p*-value <0.001) (Fig. S1). Similarly, with the BaTS test, significant clustering
- 278 by island group was obtained for the AI (7.82-10.45 observed 95% CI, 12.86–15.08 null
- 279 95% CI, p-value <0.001), PS (50.00–58.00 observed 95% CI, 69.33–74.42 null 95% CI, p-
- value <0.001), MC Luzon (11.00–17.00 observed 95% CI, 6.44–10.29 null 95% CI, p-
- value = 0.014), MC Visayas (2.00–3.00 observed 95% CI, 1.21-2.08 null 95%, *p*-value =
- 282 0.002), and MC Mindanao (4.00–6.00 observed 95% CI, 1.96–3.05 null 95% CI, *p*-value =
- 283 0.0010) statistics (Table S2).

284 Phylogeographic analysis was performed with the same 260 subsampled

- 285 CRF01_AE sequences and the best-fitting strict clock model. The most likely location of
- the root of the CRF01_AE phylogeny was estimated to be either the Luzon island group
- (posterior probability = 1.0) (Fig. 3a) or the NCR administrative division (posterior
- probability = 0.9992) (Fig. S2a), implicating these locations as the origin of the CRF01_AE
- epidemic. No significant differences were observed among the estimated relative migration
- rates between the three different island groups (Fig. 3b).

291	The reconstructed phylogeographical spread of CRF01_AE over time indicated low
292	local spread in NCR (Luzon) around early 2000 during the estimated start of the epidemic
293	followed by a substantial increase by late 2000 (Fig. 3c and Fig. S2c). The spread of the
294	strain from NCR to Mindanao (Region XI) can be traced back to the late 2004, while the
295	spread from NCR to Visayas (Region VI) can be traced back to 2007 (Fig. 3c and Fig.
296	S2c). Local spread in all three island groups increased by mid-2008 during the peak of R_e
297	(Fig. 3c and Fig. S2c). When R_e rebounded during the late 2013 and onward, the strain was
298	reintroduced to Luzon from Mindanao (Fig. 3c and Fig. S2c).
299	
300	CRF01_AE effective population size N_e overtook that of subtype B around 2013, while
301	the effective reproductive number R_e of the two subtypes fluctuated out of phase
302	To contextualize the population dynamics of CRF01_AE, phylodynamic analysis was also
302 303	To contextualize the population dynamics of CRF01_AE, phylodynamic analysis was also performed on subtype B sequences available in the RITM Molecular Biology Laboratory
302 303 304	To contextualize the population dynamics of CRF01_AE, phylodynamic analysis was also performed on subtype B sequences available in the RITM Molecular Biology Laboratory database and by using the best-fitting relaxed clock model determined by the path sampling
302 303 304 305	To contextualize the population dynamics of CRF01_AE, phylodynamic analysis was also performed on subtype B sequences available in the RITM Molecular Biology Laboratory database and by using the best-fitting relaxed clock model determined by the path sampling and stepping-stone procedure (Supplemental File XLSX), focusing on the largest
302 303 304 305 306	To contextualize the population dynamics of CRF01_AE, phylodynamic analysis was also performed on subtype B sequences available in the RITM Molecular Biology Laboratory database and by using the best-fitting relaxed clock model determined by the path sampling and stepping-stone procedure (Supplemental File XLSX), focusing on the largest monophyletic Philippine clade of subtype B sequences (Fig. S3). The resulting BSP
302 303 304 305 306 307	To contextualize the population dynamics of CRF01_AE, phylodynamic analysis was also performed on subtype B sequences available in the RITM Molecular Biology Laboratory database and by using the best-fitting relaxed clock model determined by the path sampling and stepping-stone procedure (Supplemental File XLSX), focusing on the largest monophyletic Philippine clade of subtype B sequences (Fig. S3). The resulting BSP analysis revealed an exponential growth phase in subtype B <i>N</i> _e from 2003 until about 2010,
 302 303 304 305 306 307 308 	To contextualize the population dynamics of CRF01_AE, phylodynamic analysis was also performed on subtype B sequences available in the RITM Molecular Biology Laboratory database and by using the best-fitting relaxed clock model determined by the path sampling and stepping-stone procedure (Supplemental File XLSX), focusing on the largest monophyletic Philippine clade of subtype B sequences (Fig. S3). The resulting BSP analysis revealed an exponential growth phase in subtype B <i>N</i> _e from 2003 until about 2010, during which it was comparable to the CRF01_AE <i>N</i> _e (Fig. 4), followed by a peak and
 302 303 304 305 306 307 308 309 	To contextualize the population dynamics of CRF01_AE, phylodynamic analysis was also performed on subtype B sequences available in the RITM Molecular Biology Laboratory database and by using the best-fitting relaxed clock model determined by the path sampling and stepping-stone procedure (Supplemental File XLSX), focusing on the largest monophyletic Philippine clade of subtype B sequences (Fig. S3). The resulting BSP analysis revealed an exponential growth phase in subtype B <i>N</i> _e from 2003 until about 2010, during which it was comparable to the CRF01_AE <i>N</i> _e (Fig. 4), followed by a peak and plateau phase wherein <i>N</i> _e remained within the same order of magnitude from 2010 onwards
 302 303 304 305 306 307 308 309 310 	To contextualize the population dynamics of CRF01_AE, phylodynamic analysis was also performed on subtype B sequences available in the RITM Molecular Biology Laboratory database and by using the best-fitting relaxed clock model determined by the path sampling and stepping-stone procedure (Supplemental File XLSX), focusing on the largest monophyletic Philippine clade of subtype B sequences (Fig. S3). The resulting BSP analysis revealed an exponential growth phase in subtype B <i>N</i> _e from 2003 until about 2010, during which it was comparable to the CRF01_AE <i>N</i> _e (Fig. 4), followed by a peak and plateau phase wherein <i>N</i> _e remained within the same order of magnitude from 2010 onwards (Fig. 4). The CRF01_AE <i>N</i> _e had a longer lasting growth phase and a significantly higher
 302 303 304 305 306 307 308 309 310 311 	To contextualize the population dynamics of CRF01_AE, phylodynamic analysis was also performed on subtype B sequences available in the RITM Molecular Biology Laboratory database and by using the best-fitting relaxed clock model determined by the path sampling and stepping-stone procedure (Supplemental File XLSX), focusing on the largest monophyletic Philippine clade of subtype B sequences (Fig. S3). The resulting BSP analysis revealed an exponential growth phase in subtype B N_e from 2003 until about 2010, during which it was comparable to the CRF01_AE N_e (Fig. 4), followed by a peak and plateau phase wherein N_e remained within the same order of magnitude from 2010 onwards (Fig. 4). The CRF01_AE N_e had a longer lasting growth phase and a significantly higher peak than the subtype B N_e by 2013 (Fig. 4). The estimated evolutionary rate of 2.524E-3

HPD: 1982.4503, 2003.6044] for subtype B were not significantly different from those of
CRF01_AE (Table 1).

315	Phylodynamic analysis with the Birth–Death Skyline Serial model showed that the
316	trend of the subtype B R_e also fluctuated over time in a similar but lagging pattern
317	compared with the R_e of CRF01_AE (Fig. 2a; Supplemental File XLSX). During the first
318	peak of the CRF01_AE R _e around 2008 (3.71 [95% HPD: 1.71, 6.14] in 2008-04-10), the
319	subtype B R _e was still increasing (1.26 [95% HPD: 0.0225, 3.70] in 2008-01-28) (Fig. 2c).
320	When the CRF01_AE R_e transiently decreased around 2010–2011 (0.398 [95% HPD:
321	0.0105, 2.28] in 2011-07-16), the subtype B R_e had reached its first peak phase (2.32 [95%
322	HPD: 0.86, 4.15] in 2011-07-07) (Fig. 2c). When the CRF01_AE <i>R_e</i> rebounded in 2013
323	(2.87 [95% HPD: 1.78, 4.22] in 2013-12-26), the subtype B R_e was decreasing (1.63 [95%
324	HPD: 0.73, 2.48] in 2013-11-30) until it increased again in early 2016 (2.10 [95% HPD:
325	0.85, 2.96] in 2016-04-25) (Fig. 2c). The peaks and troughs of the subtype B R_e
326	fluctuations were less in magnitude and steepness than those of CRF01_AE (Fig. 2c).
327	Discussion
328	The HIV CRF01_AE phylogeny in this study revealed a large monophyletic Philippine
329	clade, supporting a single past introductory event that led to the majority of infections in the
330	country. This is consistent with the first-comer advantage and strong founder effect
331	observed in HIV epidemics outside Africa [37]. Based on the phylogeny of sampled
332	sequences, there is no evidence of much ongoing transmission from other sporadic
333	introductions. The monophyly and estimated tMRCA of CRF01_AE are consistent with
334	results from a study using nearly full-length genomes from the Philippines [15] and a recent
335	reconstruction of CRF01_AE transmission from Africa to Asia [16]. The tMRCA estimates

336	of the single largest CRF01_AE transmission cluster under different datasets and models
337	were all close to each other at around the late 1990s to early 2000s, about a decade later
338	than when the subtype expanded in Southeast Asia coming from Africa [16] and the earliest
339	identified CRF01_AE sample in the country around the 1980s [10]. The estimated
340	evolutionary rates for CRF01_AE from the BSP and BDSKY analyses were similarly
341	robust at about 0.003 substitutions/site/year, very close to the estimate in a previous study
342	when either the full coding region or the gag gene is used but not when the pol gene or
343	nearly full-length genome is used [16], [37]. This could be due to different selected regions
344	in the sequence or different epidemiological dynamics in the sampled locations [56].
345	In our analysis, the confidence intervals of the tMRCA and R_e of the largest
346	monophyletic CRF01_AE and B clusters overlap and thus are comparable or not
347	significantly different from one another. However, the trend of the CRF01_AE R_e was to
348	always be above that of subtype B except during 2010–2012 when CRF01_AE R_e
349	decreased transiently. A recent study in 2022 by Salvaña et al. has shown evidence of
350	significantly higher viral load in CRF01_AE infections compared to subtype B and to other
351	circulating subtypes, which suggests potentially higher transmissibility of CRF01_AE
352	infections and a mechanism for why CRF01_AE has become the predominant subtype in
353	the Philippines instead of subtype B [9]. The trend of higher CRF01_AE R_e in our study is
354	consistent with the hypothesis of faster transmissibility over subtype B, although further
355	analysis should be done to confirm these findings. Use of whole genome sequences instead
356	of subgenomic sequences may lead to more precise estimates of these epidemiological
357	parameters for each subtype [18] as well as allow for more accurate classification of
358	subtypes and recombinants forms [17]. The same study by Salvaña et al also suggested

higher rates of transmitted drug resistance (TDR) among CRF01_AE infections compared 359 360 to other HIV subtypes, which if confirmed may be a mechanism by which the current antiretroviral treatment regimens in the country that were tailored for non-CRF01_AE 361 362 epidemics selectively favor the survival and transmission of CRF01_AE [9]. Another 363 explanation for the predominance of CRF01_AE may be due to its being the first to expand 364 in the local sexually active MSM networks by chance, such as through first-comer 365 advantage [57]. Both subtypes have been present in the Philippines since the 1980s, but 366 earlier rapid growth of CRF01_AE over B was not observed in the country at that time [10]. Both of their largest transmission clusters were introduced prior to 2008 when most cases 367 were from the heterosexual population [2], but our results suggest that a steep increase in 368 369 CRF01_AE R_e may have preceded that in B peaking around 2008–2009, shortly after which 370 cases in the MSM population overtook those in the heterosexual population and during the rise in cases among 25-34 and 15-24 age groups relative to 35-49 year olds [2]. Consistent 371 with being the first to expand in the susceptible sexually active MSM population, 372 373 CRF01_AE was found in greater proportion (64%) than B (27%) in a subanalysis of MSM 374 patients from infections between 2007 and 2012 [10], [11]. One might also speculate that 375 the period of time wherein public health interventions targeted heterosexual/IDU rather than MSM risk groups early on in the epidemic may have favored more rapid expansion of 376 377 the subtype that spread in the MSM population first if this occurred before policy change 378 could adapt to the shift in the largest risk group. For example, in the 2009 country report to the UN Declaration of Commitment to HIV and AIDS, there was a 14% and 55% reach of 379 prevention programs among the most-at-risk population in female sex workers (FSWs) in 380 2007 and 2009 compared to 19 and 29% in MSM, respectively [58]. From the same report, 381

there was also a 65 and 65% proportion of condom use among FSWs in 2007 and 2009 382 383 compared to 32 and 32% in MSM, respectively [58]. In the HIV epidemic in China, the 384 infection route of sexual contact was found to be more likely to be an infection with 385 CRF01_AE compared to contaminated needles, showing that specific transmission routes and risk-groups can be dominated by a specific subtype [59]. Transmission in the MSM 386 387 risk-group was also found to more likely form clusters [60] and has been linked to more 388 occurrences of superspreaders than in non-MSM risk groups [61], [62]. Finally, it is also 389 possible for a combination of multiple factors to have contributed to the predominance of CRF01_AE in the Philippines. 390

The CRF01_AE R_e declined transiently in 2010–2012, overlapping with the 4th and 391 392 5th Philippine AIDS Medium Term Plans developed by the Philippine National AIDS Council for 2005–2010 [63] and 2011–2016 [58], respectively. Meanwhile, subtype B R_e 393 reached its first peak, which may have masked any more appreciable decline in cases in this 394 period. Public health interventions have had a measurable effect on transmission based on 395 modeling by the Philippine Epidemiology Bureau [1]. Perhaps this is what is reflected in 396 397 the fluctuations in R_{e_1} in particular the shift in the focus of intervention to the MSM risk group during the 5th AMTP. Further evidence would be needed to confirm this association, 398 and attribute the decline to specific interventions if not other contributing factors. It must 399 be mentioned that drug resistance mutation genotyping at RITM was not performed from 400 2012 to 2013 due to lack of reagents, and neither were there CRF01 AE sequences from 401 this time sourced from referring hospitals and social hygiene clinics. Thus, no CRF01 AE 402 Philippine sequences from this period were included in this dataset for analysis. It is 403 possible that undersampling of HIV sequences in this period could affect common ancestor 404

nodes and parameter estimates in the years prior to it. However, the observed dip in CRF01_AE R_e is likely to be genuine since decreases in the proportion of CRF01_AE cases relative to subtype B in 2010 and in the absolute counts of CRF01_AE cases in 2010–2012 were also observed in cohort study data from Telan et al. [11] and visualized by Salvaña et al. [10]. Additionally, both subtypes exhibited a decrease in R_e in our analysis, and four (4) subtype B sequences sampled in 2012 belonging to the large subtype B transmission cluster were included in the phylodynamic analysis.

The peak and decrease in subtype B R_e on the other hand lagged by a year, again 412 consistent with cohort study data from Telan et al. [11] and visualized by Salvaña et al. [10] 413 showing asynchronous peaks and declines of CRF01_AE and B infections over 2008-2013 414 [10]. One reason may be a later start of expansion of subtype B in the MSM population 415 while remaining to make up a large if not dominant proportion in heterosexual/IDU cases 416 [10], [11]. Perhaps interventions that caused a steep decline in the R_e of the larger 417 CRF01_AE transmission cluster among MSM had a delayed and more gradual effect on the 418 smaller subtype B transmission cluster spreading in the same susceptible MSM population. 419 420 It may also be of interest to investigate whether inter-subtype competition between CRF01 AE and B for susceptible hosts played a role in the opposed alternating pattern of 421 their respective R_e . A pattern of opposed and alternating oscillation was observed in the R_e 422 423 of competing Influenza A virus strains [64]. In 2013 onward, the CRF01 AE N_e was significantly greater than that of B, which 424 425 plateaued since 2009. Additionally, the CRF01_AE R_e experienced a steep rebound in 2013, while that of B remained suppressed although not significantly different from each 426

427 other given their wide confidence intervals. These agree with the study by Salvaña et al.

[10], which showed a rebound and statistically significant shift in the predominant subtype 428 429 to CRF01_AE by 2013. While further investigation on the cause of the rebound is needed, one suspect that could be considered from our phylogeographic analysis is inter-island 430 431 reintroduction of CRF01_AE such as the Mindanao-to-Luzon transmission we identified around this time. Continued growth in Philippine island groups/regions outside Luzon/NCR 432 433 could also be a factor, given diffuse transmission across locations. Local CRF01_AE spread 434 in Visayas increased around this time while that in Luzon and Mindanao remained stable. 435 Still, other factors may explain the rebound, like behavioral changes facilitated by increased usage of mobile dating services [65]. It would be interesting to investigate whether this 436 increased CRF01_AE Re and Ne in 2013 was simultaneous with the date of increased usage 437 438 of mobile dating services in the country. CRF01_AE R_e remaining higher than that of B from 2013 to 2016 could have given CRF01_AE ample time to grow even more 439 predominant in the MSM population, reaching 82% of cases since that time [66]. It is 440 possible that the sequences in this dataset are less informative of N_e closer to the latest 441 sample collection date, or that increases in R_e are not immediately reflected in N_e . Thus, 442 analysis with more recent sequences is needed to determine if the rebounded R_e of subtypes 443 CRF01_AE and B after 2013 and 2016, respectively, resulted in continued increases to their 444 corresponding N_e soon after. 445

For Luzon, particularly the NCR, to have been inferred the origin of the CRF01_AE
epidemic is plausible since the most dense and urbanized cities in the Philippines are found
therein. Citizens from various provinces regularly travel to the big cities such as Metro
Manila for work [53], and the busiest and most highly connected airport in the country is in
the NCR [67]. Following this was a complex pattern of diffusion between the three

Philippine island groups (13 sampled Philippine regions). The relative rates of migration 451 452 between locations could not be concluded to be different from each other, suggesting 453 uniform import/export of CRF01_AE infections between island groups. This is also 454 expected given the extensive interconnectedness and frequent travel of the Filipino 455 population to and from different island groups/regions in the archipelago [47]. Such a 456 pattern of CRF01_AE diffusion suggests the need for geographically wide coverage of 457 control measures to suppress the overall HIV epidemic in the Philippines. As only limited 458 samples were sequenced from Visayas and Mindanao relative to Luzon (Supplemental File XLSX), follow up analysis should be performed using a more uniform sampling of 459 sequences from all island groups and Philippine regions over time to confirm these findings 460 461 as well as achieve higher resolution phylogeography.

To summarize, we showed that the introduction of CRF01_AE into the Philippines 462 was between the late 1990s and early 2000s, the majority of CRF01_AE sequences belong 463 to a single cluster, the CRF01_AE viral population size N_e exceeded that of subtype B by 464 465 2013, the CRF01_AE R_e peaked in 2008–2009 and in 2013 onward, the CRF01_AE R_e 466 transiently decreased from 2010 to 2012, the peaks and trough of subtype B R_e lagged behind that of CRF01 AE, CRF01 AE spread diffusely from Luzon (NCR) to other 467 Philippine island groups and regions, and CRF01_AE migration rates between island 468 469 groups/regions are comparable with one another. The shift from subtype B to the more aggressive CRF01_AE, with its faster progression to advanced immunosuppression [9], 470 [68] and its implications on treatment and control interventions, greatly highlights the need 471 to be vigilant on changing phylodynamics of HIV subtypes in the Philippines. Similar 472 analysis with a more updated dataset should be performed to elucidate how the events from 473

- the COVID-19 pandemic from 2020 to 2022 influenced the trajectories of the largest
- 475 ongoing HIV-1 transmission clusters in the country. The results of our study characterize
- the CRF01_AE-predominant epidemic, providing context for the effectiveness of past and
- 477 current public health measures and may inform future measures toward more effective
- 478 control of the HIV epidemic in the Philippines.
- 479
- 480

481 Acknowledgements

The authors would like to acknowledge the help of the Epidemiology Bureau of the Philippine Department of Health for providing access to de-identified metadata from its national database that were relevant to this study. The authors would also like to thank Hasnat Sujon for providing valuable technical help in reviewing and improving earlier versions of the manuscript.

487

488 Data Availability

489 The datasets and the XML files used in this study can be found at 490 https://github.com/mblbdmu/CRF01_AE-PH.

491

492 Supplementary Data

Supplementary data contain the parameters used in running BEAST and BEAST2 analyses; 493 494 list of HIV subtype CRF01_AE sequences sampled manually from phylogenetic tree to estimate CRF01_AE tMRCA; list of HIV subtype CRF01_AE sequences sampled uniformly 495 across date and island group to reconstruct N_e , R_e , and phylogeography; list of HIV subtype 496 B sequences available for analysis (no subsampling); distribution by island group and region 497 of uniform subsample of CRF01 AE sequences; effective reproductive number of HIV 498 subtype CRF01_AE and subtype B over time using Birth–Death Skyline analysis; and 499 submission, sample, and accession IDs of subtype B and CRF01_AE sequences in the study. 500

501

502 Funding

503 This research received no specific grant from any funding agency in the public, commercial, 504 or not-for-profit sectors.

505

506 **Conflicts of Interest**

507 The authors declare that they have no conflicts of interest.

508 **References**

- [1] Epidemiology Bureau DoH, "A Briefer on the Philippine HIV Estimates 2020," 2020.
 [Online]. Available:
- https://doh.gov.ph/sites/default/files/publications/A%20Briefer%20on%20the%20PH
 %20Estimates%202020_08232021.pdf
- Epidemiology Bureau DoH, "HIV/AIDS and ART Registry of the Philippines, June
 2022." Department of Health, 2022. [Online]. Available:
- 515 https://doh.gov.ph/sites/default/files/statistics/EB_HARP_June_AIDSreg2022.pdf
- 516 [3] Epidemiology Bureau DoH, "HIV/AIDS and ART Registry of the Philippines:
 517 October 2020," 2020.
- [4] A. C. Farr and D. P. Wilson, "An HIV epidemic is ready to emerge in the
 Philippines.," *J. Int. AIDS Soc.*, vol. 13, p. 16, Apr. 2010, doi: 10.1186/1758-2652-1316.
- [5] A. G. Ross *et al.*, "HIV epidemic in men who have sex with men in Philippines,"
 Lancet Infect. Dis., vol. 13, no. 6, pp. 472–473, Jun. 2013, doi: 10.1016/S1473 3099(13)70129-4.
- [6] A. G. P. Ross *et al.*, "The dire sexual health crisis among MSM in the Philippines: an exploding HIV epidemic in the absence of essential health services.," *Int. J. Infect. Dis. IJID Off. Publ. Int. Soc. Infect. Dis.*, vol. 37, pp. 6–8, Aug. 2015, doi: 10.1016/j.ijid.2015.06.001.
- 528 [7] F. J. Paladin, O. T. Monzon, H. Tsuchie, M. R. Aplasca, G. H. J. Learn, and T.
 529 Kurimura, "Genetic subtypes of HIV-1 in the Philippines.," *AIDS Lond. Engl.*, vol. 12, no. 3, pp. 291–300, Feb. 1998, doi: 10.1097/00002030-199803000-00007.
- Ino. 5, pp. 291–500, Feb. 1998, doi: 10.1097/00002050-199805000-00007.
 M. L. Santiago *et al.*, "Molecular epidemiology of HIV-1 infection in the Philippines,
- Ki. E. Santiago et al., Wroteedial epidemiology of fit v T infection in the Timppines,
 1985 to 1997: transmission of subtypes B and E and potential emergence of subtypes
 C and F.," J. Acquir. Immune Defic. Syndr. Hum. Retrovirology Off. Publ. Int. *Retrovirology Assoc.*, vol. 18, no. 3, pp. 260–269, Jul. 1998, doi: 10.1097/00042560199807010-00010.
- E. M. T. Salvaña *et al.*, "HIV-1 Subtype Shift in the Philippines is Associated With
 High Transmitted Drug Resistance, High Viral Loads, and Fast Immunologic
 Decline," *Int. J. Infect. Dis.*, vol. 122, pp. 936–943, Sep. 2022, doi:

539 10.1016/j.ijid.2022.06.048.

- [10] E. M. T. Salvaña, B. E. Schwem, P. R. Ching, S. D. W. Frost, S. K. C. Ganchua, and
 J. R. Itable, "The changing molecular epidemiology of HIV in the Philippines.," *Int. J. Infect. Dis. IJID Off. Publ. Int. Soc. Infect. Dis.*, vol. 61, pp. 44–50, Aug. 2017, doi:
 10.1016/j.ijid.2017.05.017.
- [11] E. F. O. Telan *et al.*, "Possible HIV transmission modes among at-risk groups at an
 early epidemic stage in the Philippines.," *J. Med. Virol.*, vol. 85, no. 12, pp. 2057–
 2064, Dec. 2013, doi: 10.1002/jmv.23701.
- [12] E. M. T. Salvaña *et al.*, "High rates of tenofovir failure in a CRF01_AE-predominant
 HIV epidemic in the Philippines.," *Int. J. Infect. Dis. IJID Off. Publ. Int. Soc. Infect. Dis.*, vol. 95, pp. 125–132, Jun. 2020, doi: 10.1016/j.ijid.2020.02.020.
- [13] A. Huang *et al.*, "Global Comparison of Drug Resistance Mutations After First-Line
 Antiretroviral Therapy Across Human Immunodeficiency Virus-1 Subtypes.," *Open*

552		Forum Infect. Dis., vol. 3, no. 2, p. ofv158, Apr. 2016, doi: 10.1093/ofid/ofv158.
553	[14]	P. Piot and T. C. Quinn, "Response to the AIDS Pandemic — A Global Health
554		Model," N. Engl. J. Med., vol. 368, no. 23, pp. 2210–2218, Jun. 2013, doi:
555		10.1056/NEJMra1201533.
556	[15]	Y. Chen et al., "Increased predominance of HIV-1 CRF01_AE and its recombinants in
557		the Philippines.," J. Gen. Virol., vol. 100, no. 3, pp. 511–522, Mar. 2019, doi:
558		10.1099/jgv.0.001198.
559	[16]	D. M. Junqueira et al., "New Genomes from the Congo Basin Expand History of
560		CRF01_AE Origin and Dissemination," AIDS Res. Hum. Retroviruses, vol. 36, no. 7,
561		pp. 574–582, Jul. 2020, doi: 10.1089/aid.2020.0031.
562	[17]	C. Topcu, V. Georgiou, J. H. Rodosthenous, and L. G. Kostrikis, "Comparative HIV-1
563		Phylogenies Characterized by PR/RT, Pol and Near-Full-Length Genome Sequences,"
564		Viruses, vol. 14, no. 10, p. 2286, Oct. 2022, doi: 10.3390/v14102286.
565	[18]	G. Dudas and T. Bedford, "The ability of single genes vs full genomes to resolve time
566		and space in outbreak analysis," BMC Evol. Biol., vol. 19, no. 1, p. 232, Dec. 2019,
567		doi: 10.1186/s12862-019-1567-0.
568	[19]	S. Hué, J. P. Clewley, P. A. Cane, and D. Pillay, "HIV-1 pol gene variation is
569		sufficient for reconstruction of transmissions in the era of antiretroviral therapy,"
570		AIDS, vol. 18, no. 5, 2004, [Online]. Available:
571		https://journals.lww.com/aidsonline/Fulltext/2004/03260/HIV_1_pol_gene_variation_
572		is_sufficient_for.2.aspx
573	[20]	B. T. Foley et al., "HIV Sequence Compendium 2018," Jun. 2018, doi:
574		10.2172/1458915.
575	[21]	SY. Rhee, M. J. Gonzales, R. Kantor, B. J. Betts, J. Ravela, and R. W. Shafer,
576		"Human immunodeficiency virus reverse transcriptase and protease sequence
577		database.," Nucleic Acids Res., vol. 31, no. 1, pp. 298–303, Jan. 2003, doi:
578		10.1093/nar/gkg100.
579	[22]	T. F. Liu and R. W. Shafer, "Web resources for HIV type 1 genotypic-resistance test
580		interpretation.," Clin. Infect. Dis. Off. Publ. Infect. Dis. Soc. Am., vol. 42, no. 11, pp.
581		1608–1618, Jun. 2006, doi: 10.1086/503914.
582	[23]	D. Struck, G. Lawyer, AM. Ternes, JC. Schmit, and D. P. Bercoff, "COMET:
583		adaptive context-based modeling for ultrafast HIV-1 subtype identification.," Nucleic
584		Acids Res., vol. 42, no. 18, p. e144, Oct. 2014, doi: 10.1093/nar/gku739.
585	[24]	AC. Pineda-Peña et al., "Automated subtyping of HIV-1 genetic sequences for
586		clinical and surveillance purposes: performance evaluation of the new REGA version
587		3 and seven other tools.," Infect. Genet. Evol. J. Mol. Epidemiol. Evol. Genet. Infect.
588		Dis., vol. 19, pp. 337–348, Oct. 2013, doi: 10.1016/j.meegid.2013.04.032.
589	[25]	Los Alamos National Laboratory, "Gene Cutter." Los Alamos National Laboratory.
590		Accessed: Feb. 07, 2019. [Online]. Available:
591		https://www.hiv.lanl.gov/content/sequence/GENE_CUTTER/cutter.html
592	[26]	A. M. Wensing et al., "2017 Update of the Drug Resistance Mutations in HIV-1.,"
593		Top. Antivir. Med., vol. 24, no. 4, pp. 132–133, Dec. 2016.
594	[27]	A. Larsson, "AliView: a fast and lightweight alignment viewer and editor for large
595		datasets.," Bioinforma. Oxf. Engl., vol. 30, no. 22, pp. 3276-3278, Nov. 2014, doi:
596		10.1093/bioinformatics/btu531.

- [28] M. N. Price, P. S. Dehal, and A. P. Arkin, "FastTree 2--approximately maximum-likelihood trees for large alignments.," *PloS One*, vol. 5, no. 3, p. e9490, Mar. 2010, doi: 10.1371/journal.pone.0009490.
- [29] B. Q. Minh *et al.*, "IQ-TREE 2: New Models and Efficient Methods for Phylogenetic
 Inference in the Genomic Era," *Mol. Biol. Evol.*, vol. 37, no. 5, pp. 1530–1534, May
 2020, doi: 10.1093/molbev/msaa015.
- [30] A. Rambaut, T. T. Lam, L. Max Carvalho, and O. G. Pybus, "Exploring the temporal
 structure of heterochronous sequences using TempEst (formerly Path-O-Gen).," *Virus Evol.*, vol. 2, no. 1, p. vew007, Jan. 2016, doi: 10.1093/ve/vew007.
- [31] R. Bouckaert *et al.*, "BEAST 2.5: An advanced software platform for Bayesian
 evolutionary analysis.," *PLoS Comput. Biol.*, vol. 15, no. 4, p. e1006650, Apr. 2019,
 doi: 10.1371/journal.pcbi.1006650.
- [32] A. J. Drummond, A. Rambaut, B. Shapiro, and O. G. Pybus, "Bayesian coalescent inference of past population dynamics from molecular sequences.," *Mol. Biol. Evol.*, vol. 22, no. 5, pp. 1185–1192, May 2005, doi: 10.1093/molbev/msi103.
- [33] R. R. Bouckaert and A. J. Drummond, "bModelTest: Bayesian phylogenetic site
 model averaging and model comparison.," *BMC Evol. Biol.*, vol. 17, no. 1, p. 42, Feb.
 2017, doi: 10.1186/s12862-017-0890-6.
- [34] S. C. Dalai *et al.*, "Evolution and molecular epidemiology of subtype C HIV-1 in
 Zimbabwe.," *AIDS Lond. Engl.*, vol. 23, no. 18, pp. 2523–2532, Nov. 2009, doi:
 10.1097/QAD.0b013e3283320ef3.
- [35] G. M. Jenkins, A. Rambaut, O. G. Pybus, and E. C. Holmes, "Rates of molecular
 evolution in RNA viruses: a quantitative phylogenetic analysis.," *J. Mol. Evol.*, vol.
 54, no. 2, pp. 156–165, Feb. 2002, doi: 10.1007/s00239-001-0064-3.
- [36] M. Jung *et al.*, "The origin and evolutionary history of HIV-1 subtype C in Senegal.,"
 PloS One, vol. 7, no. 3, p. e33579, 2012, doi: 10.1371/journal.pone.0033579.
- [37] J. Á. Patiño-Galindo and F. González-Candelas, "The substitution rate of HIV-1
 subtypes: a genomic approach.," *Virus Evol.*, vol. 3, no. 2, p. vex029, Jul. 2017, doi:
 10.1093/ve/vex029.
- [38] A. J. Drummond, S. Y. W. Ho, M. J. Phillips, and A. Rambaut, "Relaxed
 phylogenetics and dating with confidence.," *PLoS Biol.*, vol. 4, no. 5, p. e88, May
 2006, doi: 10.1371/journal.pbio.0040088.
- [39] N. Lartillot and H. Philippe, "Computing Bayes factors using thermodynamic integration.," *Syst. Biol.*, vol. 55, no. 2, pp. 195–207, Apr. 2006, doi: 10.1080/10635150500433722.
- [40] W. Xie, P. O. Lewis, Y. Fan, L. Kuo, and M.-H. Chen, "Improving marginal
 likelihood estimation for Bayesian phylogenetic model selection.," *Syst. Biol.*, vol. 60,
 no. 2, pp. 150–160, Mar. 2011, doi: 10.1093/sysbio/syq085.
- [41] M. A. Suchard, P. Lemey, G. Baele, D. L. Ayres, A. J. Drummond, and A. Rambaut,
 "Bayesian phylogenetic and phylodynamic data integration using BEAST 1.10," *Virus Evol.*, vol. 4, no. 1, Jan. 2018, doi: 10.1093/ve/vey016.
- [42] A. J. Drummond and A. Rambaut, "BEAST: Bayesian evolutionary analysis by
 sampling trees.," *BMC Evol. Biol.*, vol. 7, p. 214, Nov. 2007, doi: 10.1186/1471-2148 7-214.
- [43] M. D. Hall, M. E. J. Woolhouse, and A. Rambaut, "The effects of sampling strategy

- on the quality of reconstruction of viral population dynamics using Bayesian skyline
 family coalescent methods: A simulation study.," *Virus Evol.*, vol. 2, no. 1, p.
 vew003, Jan. 2016, doi: 10.1093/ve/vew003.
- [44] A. Hidano and M. C. Gates, "Assessing biases in phylodynamic inferences in the
 presence of super-spreaders," *Vet. Res.*, vol. 50, no. 1, p. 74, Sep. 2019, doi:
 10.1186/s13567-019-0692-5.
- [45] T. Stadler, D. Kühnert, S. Bonhoeffer, and A. J. Drummond, "Birth-death skyline plot reveals temporal changes of epidemic spread in HIV and hepatitis C virus (HCV).," *Proc. Natl. Acad. Sci. U. S. A.*, vol. 110, no. 1, pp. 228–233, Jan. 2013, doi: 10.1073/pnas.1207965110.
- [46] L. Du Plessis, (2018) bdskytools [Source code].
 https://github.com/laduplessis/bdskytools.
- [47] P. McAdam, (2017) Perform Slatkin Maddison Test on for Trait Transition Across
 Phylogeny [Source code]. https://github.com/prmac/slatkin.maddison.
- [48] J. Parker, A. Rambaut, and O. G. Pybus, "Correlating viral phenotypes with
 phylogeny: accounting for phylogenetic uncertainty," *Infect. Genet. Evol. J. Mol. Epidemiol. Evol. Genet. Infect. Dis.*, vol. 8, no. 3, pp. 239–246, May 2008, doi:
 10.1016/j.meegid.2007.08.001.
- [49] F. Bielejec, G. Baele, B. Vrancken, M. A. Suchard, A. Rambaut, and P. Lemey,
 "SpreaD3: Interactive Visualization of Spatiotemporal History and Trait Evolutionary
 Processes," *Mol. Biol. Evol.*, vol. 33, no. 8, pp. 2167–2169, Aug. 2016, doi:
 10.1093/molbev/msw082.
- [50] J. Faeldon, (2020) Philippines Administrative Boundaries JSON Maps [Source code].
 https://github.com/faeldon/philippines-json-maps/tree/master/geojson/regions/lowres.
- [51] A. Rambaut, A. J. Drummond, D. Xie, G. Baele, and M. A. Suchard, "Posterior
 Summarization in Bayesian Phylogenetics Using Tracer 1.7.," *Syst. Biol.*, vol. 67, no.
 5, pp. 901–904, Sep. 2018, doi: 10.1093/sysbio/syy032.
- [52] Rambaut, A., "FigTree v1.3.1." 2010. [Online]. Available:
 http://tree.bio.ed.ac.uk/software/figtree/
- [53] T. G. Vaughan, "IcyTree: rapid browser-based visualization for phylogenetic trees and networks," *Bioinforma. Oxf. Engl.*, vol. 33, no. 15, pp. 2392–2394, Aug. 2017, doi: 10.1093/bioinformatics/btx155.
- [54] G. Yu, D. K. Smith, H. Zhu, Y. Guan, and T. T. Lam, "ggtree : an r package for visualization and annotation of phylogenetic trees with their covariates and other associated data," *Methods Ecol. Evol.*, vol. 8, no. 1, pp. 28–36, Jan. 2017, doi: 10.1111/2041-210X.12628.
- [55] H. Wickham, *ggplot2*. Cham: Springer International Publishing, 2016. doi: 10.1007/978-3-319-24277-4.
- [56] S. O. Scholle, R. J. F. Ypma, A. L. Lloyd, and K. Koelle, "Viral substitution rate
 variation can arise from the interplay between within-host and epidemiological
 dynamics," *Am. Nat.*, vol. 182, no. 4, pp. 494–513, Oct. 2013, doi: 10.1086/672000.
- ⁶⁸² dynamics, *Am. 1val.*, vol. 182, no. 4, pp. 494–515, Oct. 2015, doi: 10.1080/072000. ⁶⁸³ [57] B. Ferdinandy, E. Mones, T. Vicsek, and V. Müller, "HIV Competition Dynamics
- 684 over Sexual Networks: First Comer Advantage Conserves Founder Effects," *PLOS Comput. Biol.*, vol. 11, no. 2, p. e1004093, Feb. 2015, doi:
- 686 10.1371/journal.pcbi.1004093.

- [58] Department of Health (DOH) Philippines, "5th AIDS Medium Term Plan: 20112016 Philippine Strategic Plan on HIV and AIDS." Philippine National AIDS
 Council, 2011.
- [59] Y. Zhang *et al.*, "Dominance of HIV-1 Subtype CRF01_AE in Sexually Acquired
 Cases Leads to a New Epidemic in Yunnan Province of China," *PLoS Med.*, vol. 3, no. 11, p. e443, Nov. 2006, doi: 10.1371/journal.pmed.0030443.
- [60] M. Otani *et al.*, "Phylodynamic analysis reveals changing transmission dynamics of
 HIV-1 CRF01_AE in Japan from heterosexuals to men who have sex with men," *Int. J. Infect. Dis.*, vol. 108, pp. 397–405, Jul. 2021, doi: 10.1016/j.ijid.2021.05.066.
- [61] X. Li *et al.*, "Nationwide Trends in Molecular Epidemiology of HIV-1 in China," *AIDS Res. Hum. Retroviruses*, vol. 32, no. 9, pp. 851–859, Sep. 2016, doi:
 10.1089/aid.2016.0029.
- [62] Q. Fan *et al.*, "Analysis of the Driving Factors of Active and Rapid Growth Clusters
 Among CRF07_BC-Infected Patients in a Developed Area in Eastern China," *Open Forum Infect. Dis.*, vol. 8, no. 3, p. ofab051, Mar. 2021, doi: 10.1093/ofid/ofab051.
- [63] Department of Health (DOH) Philippines, "4th AIDS Medium Term Plan."
 Philippine National AIDS Council, 2005.
- [64] L. Gatti *et al.*, "Cross-reactive immunity potentially drives global oscillation and
 opposed alternation patterns of seasonal influenza A viruses," *Sci. Rep.*, vol. 12, no. 1,
 p. 8883, May 2022, doi: 10.1038/s41598-022-08233-w.
- [65] J. Clark, "Mobile dating apps could be driving HIV epidemic among adolescents in
 Asia Pacific, report says," *BMJ*, p. h6493, Dec. 2015, doi: 10.1136/bmj.h6493.
- [66] E. M. Salvaña *et al.*, "1282. Detection of HIV Transmitted Drug Resistance by NextGeneration Sequencing in a CRF01_AE Predominant Epidemic," *Open Forum Infect. Dis.*, vol. 5, no. Suppl 1, p. S391, Nov. 2018, doi: 10.1093/ofid/ofy210.1115.
- [67] P. Cal, E. Doña, H. Lidasan, and A. B. Manalang, "Airport Location and the Intensity of Urban Concentration." Eastern Asia Society for Transportation Studies, 2010. doi: 10.11175/easts.8.2365.
- [68] M. Chu *et al.*, "HIV-1 CRF01_AE strain is associated with faster HIV/AIDS
 progression in Jiangsu Province, China," *Sci. Rep.*, vol. 7, no. 1, p. 1570, May 2017, doi: 10.1038/s41598-017-01858-2.
- 718
- 719

720 Figure Legends

721	Figure 1. (A) Maximum likelihood phylogenetic tree of Philippine CRF01_AE PR/RT
722	sequences relative to international sequences obtained from the LANL database
723	reconstructed with IQ-TREE2. The red arrow indicates the node, with SH-aLRT and
724	UFBoot branch support values, of the most recent common ancestor of the large
725	monophyletic clade to which the majority of CRF01_AE sequences belong. This clade is
726	also emphasized with a blue rectangular highlight. The bottom scale bar shows a reference
727	branch length for 0.02 substitutions/site. Country abbreviation: AT:Austria; AU:Australia;
728	CM:Cameroon; CN:China; DK:Denmark; ES:Spain; FI:Finland; FR:France; GB:United
729	Kingdom; HK:Hong Kong; ID:Indonesia; JP:Japan; KR:South Korea; KW:Kuwait;
730	MM:Myanmar; MY:Malaysia; PH:Philippines; PK:Pakistan; SE:Sweden; SG:Singapore;
731	TH:Thailand; TW:Taiwan; US:United States; VN:Vietnam. (B) Root-to-tip plot generated
732	with TempEst showing a positive correlation between time and divergence or accumulating
733	mutations among sequences, indicating suitability of sequence data for time-scaled
734	phylogenetic and phylodynamic analysis. (C) Time-scaled phylogenetic tree generated using
735	BEAST2 from a manual subset of the monophyletic Philippine CRF01_AE sequences and
736	contextual international LANL sequences. The red arrow indicates the node of the most
737	likely time to the most recent common ancestor for the Philippine CRF01_AE sequences,
738	along with an error bar for the uncertainty in estimated time. This clade is also emphasized
739	with a blue rectangular highlight.

Figure 2. Phylodynamics of HIV CRF01_AE in the Philippines measured between mid-740 741 1990s and 2018 reconstructed by BEAST2 analysis of uniformly sampled Philippine 742 CRF01_AE PR/RT sequences. (A) Time-scaled maximum clade credibility tree from 743 BDSKY analysis summarized with TreeAnnotator. Common ancestor nodes are highlighted 744 as black dots. (B) The change in CRF01_AE effective population size (N_e) over time in log 745 scale, with the median represented as a black line and the 95% HPD as a blue-shaded interval, 746 obtained from BSP analysis. (C) The change in the effective reproductive number (R_e) over 747 time, with the mean represented as a black line and the 95% HPD as a blue-shaded interval, 748 obtained from BDSKY analysis. A dashed red line indicates the value of R_e equal to 1.

749

Figure 3. Analysis of geographic spread and relative migration rates of HIV CRF01_AE 750 across Philippine island groups. (A) Maximum clade credibility tree of monophyletic 751 752 Philippine CRF01_AE PR/RT sequences generated with BEAST under the "phylogeo" model and summarized with TreeAnnotator. Branches are labeled with posterior probability 753 support values of corresponding nodes and are colored according to the most likely 754 geographic location of a branch at the level of Philippines island groups: Luzon (red), Visayas 755 (green), Mindanao (purple), and Mindanao+Luzon (blue). (B) Forest plot with mean and 95% 756 HPD estimate of the asymmetric relative migration rates of CRF01 AE between all pairs of 757 Philippine island groups. A dashed line indicates a relative migration rate equal to 1.0, or no 758 greater or lesser than other migration rates. (C) Phylogeographic spread of CRF01 AE 759 760 between Luzon, Visayas, and Mindanao island groups over time visualized with SPREAD3. 761 The size of the red polygons over island groups correspond to the intensity of localized virus transmission at the specified location and time. 762

763

764 Figure 4. Comparison of phylodynamics between Philippine CRF01_AE and subtype B. (A) 765 Time-scaled maximum clade credibility tree from BDSKY analysis of subtype B PR/RT 766 sequences summarized with TreeAnnotator. Common ancestor nodes are highlighted as 767 black dots. (B) The change in subtype B effective population size (N_e) over time in log scale 768 obtained from BSP analysis, superimposed over that of CRF01_AE, with the median 769 represented as a black line and the 95% HPD as an orange-shaded interval. (C) The change 770 in the effective reproductive number (R_e) over time obtained from BDSKY analysis, superimposed over that of CRF01_AE, with the mean represented as a black line and the 771 95% HPD as an orange-shaded interval. A dashed red line indicates the value of R_e equal to 772 773 1.

Figure 3

Figure 4

Α

Reconstructing the phylodynamic history and geographic spread of the CRF01_AE-predominant

HIV-1 epidemic in the Philippines from PR/RT sequences sampled from 2008-2018

Supplementary Data

Supplementary Figures

Figure S1. Slatkin–Maddison test for geographic clustering using the full set of Philippine CRF01_AE PR/RT sequences from the large CRF01_AE transmission cluster by (A) island group and (B) region. The dashed red line indicates the observed number of transitions. The gray histograms depict the distribution of transitions from the null model with 999 replicates.

Symmetric Migration Rates Betwen PH Regions

С

Figure S2. Analysis of geographic spread and relative migration rates of HIV CRF01_AE in the Philippines across PH administrative regions. (a) Maximum clade credibility tree of monophyletic PH CRF01_AE PR/RT sequences generated with BEAST1 under 'phylogeo' model and summarized with TreeAnnotator. Branches are labeled with posterior probability support values of corresponding nodes. Branches are colored according to the most likely geographic location of a branch at the level of PH administrative regions, wherein NCR (color red) was the most likely location of origin for the local epidemic followed by spread to other regions. (b) Forest plot of the relative migration rates of CRF01_AE between all pairs of PH administrative regions with a dashed line indicating a relative migration rate equal to 1.0. The 95% HPD intervals imply that there is no significant difference between the rate of migration of CRF01_AE between PH administrative regions. This suggests that no subset of migration rates dominate the diffusion process (i.e. no pair of locations that are the primary exporter-importer pair for CRF01_AE between PH

administrative regions over time visualized with SPREAD3. The size of the red polygons over the regions correspond to the intensity of localized virus transmission at the specified location and time.

Figure S3. Maximum likelihood phylogeny of HIV subtype B generated with IQ-TREE2 using all eligible Philippine subtype B PR/RT sequences from the RITM MBL DRG database with a sampling period from 2008 to 2020, in the context of the closest subtype B sequences retrieved from LANL using HIV-BLAST and subtype C and A outgroup sequences. Tips of Philippines sequences from either the RITM MBL DRG or LANL databases are colored blue while overseas sequences from LANL are colored red. The red arrow indicates the node, with SH-aLRT and UFBoot branch support values, of the most recent common ancestor of the large monophyletic clade to which the majority of Philippine subtype B sequences belong. This clade is also emphasized with a blue rectangular highlight. The bottom scale bar shows a reference branch length for 0.02 substitutions/site. Overseas sequences contained within this cluster included those from Taiwan, Canada, United States, Japan, South Korea, Thailand, Australia.

Supplementary Tables

Table S1. Posterior epidemiological and evolutionary parameter estimates from all BEAST and BEAST2 analyses performed in the

study, including the mean and 95% HPD of each parameter under each analysis.

analysis / model / software	tMRCA analysis / Coalescent Bayesian Skyline / BEAST2	Phylodynamics / Coalescent Bayesian Skyline / BEAST2		Phylodynamics / Birth-Death Skyline Serial / BEAST2		Phylogeography / Coalescent Bayesian Skyline / BEAST	
HIV subtype	CRF01_AE	CRF01_AE	В	CRF01_AE	В	CRF01_AE	
subsampling / sequences	manual / PH largest monophyletic + international	uniform-island group / PH largest monophyletic	NA / PH largest monophyletic	uniform-island group / PH largest monophyletic	NA / PH largest monophyletic	uniform-island group / PH largest monophyletic	
tMRCA of largest monophyletic PH clade	1999.2027 [95% HPD: 1996.2853, 2001.9984]	1996.8085 [95% HPD: 1992.6457, 2000.6302]	1995.1435 [95% HPD: 1982.4503, 2003.6044]	1997.9899 [95% HPD: 1995.0292, 2000.888]	2001.0256 [95% HPD: 1995.091, 2004.9955]	1998.5122 [95% HPD: 1994.9761, 2001.5033]	
clock rate (strict ucld)	2.413E-3 [95% HPD: 2.0457E-3, 2.7851E-3]	2.7204E-3 [95% HPD: 2.2991E-3, 3.1225E-3]	2.524E-3 [95% HPD: 1.8829E-3, 3.1806E-3]	2.8037E-3 [95% HPD: 2.4367E-3, 3.1644E-3]	2.89E-3 [95% HPD: 2.36E-3, 3.41E-3]	2.9214E-3 [95% HPD: 2.4574E-3, 3.381E-3]	
clock rate std dev (ucld)	0.4135 [95% HPD: 0.3119, 0.5204]	NA	0.4512 [95% HPD: 0.3479, 0.54]	NA	0.475 [95% HPD: 0.382, 0.566]	NA	
origin of the epidemic	NA	NA	NA	1994.5544 [95% HPD: 1992.6878, 1998.2369]	1991.5307 [95% HPD: 1988.2588, 1994.8316]	NA	
becomeUninfectious rate	NA	NA	NA	0.3315 [95% HPD: 0.1857, 0.5058]	0.572 [95% HPD: 0.343, 0.8163]	NA	
sampling proportion	NA	NA	NA	3.2456E-3 [95% HPD: 1.2577E-3, 5.1211E-3]	3.94E-3 [95% HPD: 2.06E-3, 5.66E-3]	NA	

Statistic	observed.mean	lower.95CI	upper.95CI	null.mean	lower.95CI.1	upper.95CI.1	significance
AI	9.14	7.82	10.45	14.00	12.86	15.08	<0.001
PS	54.35	50.00	58.00	72.14	69.33	74.42	<0.001
MC (Luzon)	13.39	11.00	17.00	7.92	6.44	10.29	0.014
MC (Visayas)	2.56	2.00	3.00	1.66	1.21	2.08	0.002
MC (Mindanao)	4.75	4.00	6.00	2.31	1.96	3.05	0.001

 Table S2. BaTS analysis using island group as trait, 1000 trees downsampled from the CRF01_AE BSP sampled trees, and 999 simulated null trees.