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Abstract4

Algorithms that can classify hyper-scale multi-modal datasets, comprising of millions of images,5

into constituent modality types can help researchers quickly retrieve and classify diagnostic imaging6

data, accelerating clinical outcomes. This research aims to demonstrate that a deep neural network7

that is trained on a hyper-scale dataset (4.5 million images) composed of heterogeneous multi-modal8

data, can be used to obtain significant modality classification accuracy (96%). By combining 1029

medical imaging datasets, a dataset of 4.5 million images was created. A ResNet-50, ResNet-1810

and VGG16 were trained to classify these images by the imaging modality used to capture them11

(Computed Tomography (CT), Magnetic Resonance Imaging (MRI), Positron Emission Tomography12

(PET), and X-ray) across many body locations. The classification accuracy of the models was then13

tested on unseen data.14

The best performing model achieved classification accuracy of 96% on unseen data. The model15

achieved a balanced accuracy of 86%.16

This research shows it is possible to train Deep Learning (DL) Convolutional Neural Networks17

(CNNs) with hyper-scale multimodal data-sets, composed of millions of images. The trained model18

can be used to classify images by modality, with the best performing model achieving a classification19

accuracy of 96%. Such models can find use in real-world applications with volumes of image data20

in the hyper-scale range, such as medical imaging repositories, or national healthcare institutions.21

Further research can expand this classification capability to include 3D-scans.22

1 Introduction23

With the proliferation of deep neural networks trained on heterogenous multimodal data to detect and predict24

diseases, there has been an explosion in the volume of diagnostic medical imaging data [1]. Clinicians often25

order multiple scans of the same patient in different modalities to gather evidence to make improved diagno-26

sis/prognosis [2]. Algorithms that can accurately classify a large hetergogenous dataset into its constituent27

modalities can be beneficial to researchers and clinicians, allowing them to automatically segment a particular28
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type of modality for retrieval, archival, data balancing, and diagnostic purposes. Manual methods for classifying29

medical images are typically error-prone unless done by costly domain experts [3].30

This paper outlines an deep neural network that accurately classifies a hyper-scale (4.5 million images),31

mixed-modality dataset into constituent modalities. The developed approach has significant benefit potential32

for researchers, clinicians, and imaging archives by helping effectively and efficiently classify diagnostic imaging33

data, in the magnitude of real-world volumes. While classification of hyperscale datasets have been attempted in34

other areas, such as Earth-science[4], including studies of plankton and marine snow [5], and XYZ, the proposed35

approach is novel in the field of classification of medical imaging modalities. This study aims to stimulate other36

hyper-scale projects in this area.37

Figure 1: Visualisation of a spread of images from different locations in different modalities. Different modal-

ities use different kinds of radiation, and these are absorbed to varying degrees by tissue in the human body.

This leads to the same tissue looking different in each modality. Examples of modalities showing variation of

the same tissue: [6] [7] [8] [9] [10] [11] [12] [13] [14] [14] [15]

Multiple open-access data sets were used to build the hyper-scale multimodal dataset of 4.5 million images38

from sources such as The Cancer Imaging Archive [16], Stanford ML Group[17] the largest of which contains39

262,000 chest X-ray images, and Kaggle [18] host labelled datasets.40

Figure 2: XXX
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The models trained on this hyper-scale multimodal dataset were a ResNet-18,23 ResNet-50 and a VGG16.41

When these models were tested for classification accuracy, these results are in the high 90%’s across the train,42

validate and test sets which shows that the models are able to classify with significant accuracy. Table 1 shows43

the accuracy and balanced accuracy of each of the models on the test set. Figure 6 shows the confusion matrix44

for the ResNet18, the best performing of the models tested in this study. The confusion matrix shows that the45

model demonstrates significant classification performance (96%+) on classifying CT, MR and PET modalities.46

1.1 Previous Literature47

A number of research articles focus on deep learning systems to classify modalities in diagnostic imaging data.48

However, to the best of our knowledge,there have not been any examples of a system that combines medical49

imaging datasets at the hyper-scale (millions of images) level to perform modality classification.50

Approaches to classifying medical imaging data by modality primarily take two forms (1) hand-crafted51

features, and (2) Deep Learning.52

The early approaches were based on hand-crafted features, such as picking a specific texture and colour[19],53

SIFT descriptors[20], bag-of-colours[21] and then using SVM [22], KNN [23] as the classifier[24]. These ap-54

proaches were limited by the choice of features, and limited accuracy[3]. Further, typically high computational55

costs inherently limit the size of the datasets used.56

A number of approaches using deep learning classifiers are seen in literature. However, all approaches57

reviewed were seen to be utilising a limited dataset volumes with sizes in the lower order of magnitude, typically58

hundreds to thousands (102−103) of images. Therefore, real-world classification performance of these algorithms59

when operated on typical image-repository scales of millions of images is unknown.60

Chiang et al. use a dataset of 2,878 images to train a CNN classifier on 4 modalities[25], Abdominal CT,61

Brain CT, Lumbar Spine MRI, and Brain MRI, achieving an average validation accuracy of > 99.5%. Cheng62

et al. use a cascaded CNN to classify a bimodal dataset, comprised of MRI and PET images[26]. Using a63

dataset in the order of 102 images, they achieved a classification accuracy of 89.6%. Yu et al. use a DNN, and64

a dataset from the ImageCLEF database, comprising of 2,901 training and 2,582 test images to demonstrate65

a best classification accuracy of 70%[27]. Sevakula et al. use transfer learning to compare performance of66

seven DCNNs[28]. Using a curated dataset of 5,500 images from the Open-i Biomedical Image Search Engine,67

they achieve a best classification accuracy of 99.45% on the Inception-V3 network. Finally, Trenta et al. use68

a dataset comprised of 8,500 slices and a test set of 1,320 slices (split across 5 classes), and transfer learning69

techniques to achieve an overall accuracy of upto 100% on specific modalities, on their pre-trained VGGNet70

implementation[24].71

Summarising classification performance figures reported in extant literature:72

To summarise, two thing are evident, (1) deep learning learning models present several advantages over73

handcrafted, feature driven models, and (2) it is seen that the largest of the datasets in the literature reviewed74

is in the order of 103 images. Given that image repositories are now typically in the hyper-scale order, and75

growing rapidly, a suitably trained CNN capable of handling hyper-scale datasets is required.76
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Table 1: Dataset sizes vs Performance

Study Dataset

Magnitude

Classifier

Accuracy

Chiang et al.[25] 103 > 99.5%

Cheng et al.[26] 102 > 89.6%

Yu et al.[27] 103 70%

Sevakula et al.[28] 103 99.45%

Trenta et al.[24] 103 100%

2 Materials & Methods77

2.1 Data78

In total, 102 datasets were downloaded and combined to form an hyper-scale image dataset of 4.5 million images.79

The full list of datasets with citations is provided in Appendix A. Four modalities were selected as targets for the80

classification task; CT, MRI, X-ray and PET. Other modalities (e.g. ultrasound) were excluded from this study81

because of a lack of appreciable volumes of data. The main source of this data was the Cancer Imaging Archive82

(TCIA) [16]. The Cancer Imaging Archive provides a REST API that allows for programmatic retrieval of83

images which allowed data to be downloaded and combined easily, and in a reproducible way. However, because84

the Cancer Imaging Archive’s main purpose is to host datasets relating to cancer research it was important to85

seek out some extra datasets to augment the data TCIA provides. The full list of datasets can be found in86

Appendix A.87

This project was approved by the University of St Andrews University Teaching and Research Ethics Com-88

mittee (UTREC), approval code CS15171.89

2.2 Train-Validate-Test Split90

The downloaded data was split into three separate parts - train, validate and test. The train set was used91

to train the model, the validate set was used to evaluate the models between training runs, and the test set92

was used once to evaluate the final trained models. It was important to create the splits at the dataset level93

to prevent data-leakage. That is, all the images from a dataset were placed in the same split. Scans of the94

same patient in the same modality are likely to be similar, so if there is an image of the same patient in the95

train and test set then the test set does not contain completely unseen data. Putting each dataset into one of96

train, validate or test prevents this data leakage. Splitting the datasets like this also helps achieve the goal of97

demonstrating generalisation across datasets, because no dataset in the train set is represented in the test set.98

The train-validate-test split was created manually to ensure as even a spread as possible of images for each99

modality and location in each split. The manual split ensured that there are at least two locations for each100
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modality in each of the train, validate and test split. The main difficulty for this was X-rays, because in the101

TCIA datasets most X-rays are mammograms. This meant the non-TCIA datasets had to be carefully split.102

Again, Appendix A shows the split each dataset was placed in. Figure 3c shows the number of images in the103

train, validate and test set. TCIA hosts many CT and MR datasets and some of these datasets are very large.104

For example, the CT Colonography dataset [29] has more than 900,000 CT images, which is more than the105

total number of X-ray images across all datasets used in this study. To ensure the other modalities were not106

completely dwarfed by these datasets, a maximum of 50,000 CT images and 100,000 MR images was taken from107

each individual dataset. The images were selected in the order given by TCIA. This selection method was not108

applied to the images from sources other than TCIA. After imbalance correction, the total number of images109

in the dataset were 6,433,838 (6.4 million images), with a spilt of 4,104,184 in training, 936,347 in test, and110

1,393,307 in validate datasets.111

2.3 Preprocessing112

In order for 2D and 3D scans to be used in the same study, the 3D scans (CT, MR and PT) were treated as a113

collection of 2D images. These images are sometimes referred to as slices. The images were resized to 224× 224114

and rescaled between 0 and 1. Each image was rescaled using min-max normalisation with the maximum and115

minimum values being the highest and lowest pixel values present within the image.116

2.4 Network Architecture and Training117

The models trained on this dataset were a ResNet-18 [30], ResNet-50 and a VGG16 [31]. The code used was118

adapted from PyTorch’s hosted versions of these models[32]. Changes were made to the channel depth of the119

input layer, from three channels to one channel (grayscale). These three models were chosen because they have120

all been shown to perform well when trained with large quantities of data on the ImageNet dataset [30, 31].121

The code created as part of this research is open-source and hosted online at Github [33].122

All models were trained for 10 epochs with a batch size of 128. The training set contained 2,954,097 (2.9x106)123

samples and the validate set contained 704,685 samples. The models were optimised using stochastic gradient124

descent, with a learning rate of 0.1 that was divided by 10 every time the loss plateaued, a momentum of 0.9125

and an L2 weight decay penalty of 0.005. The models were trained on a machine with an Intel(R) Xeon(R)126

CPU E5-1650 v4 @3.60GHz with 6 physical cores (12 threads), 250GB of RAM and two Nvidia GeForce GTX127

1080Tis.128
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Figure 3: Figures showing the number of images for each modality in the created splits: a) train, b) validate

and c) test. Note that each graph has a different scale, the purpose is to show the ratios of each class are similar.

There are 73 datasets in the train set, 13 in the validate set and 16 in the test set.

(a) Number of images for each modality in the created train set.

(b) Number of images for each modality in the created validate set.

(c) Number of images for each modality in the created test set.
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3 Results & Discussion129

3.1 Training and Validation Accuracy130

Figures 4, shows the training and validation accuracy curves for the ResNet50, ResNet18 and VGG16 models.131

The small gap between the training and validation accuracies suggests that the models are not overfitting.132

Figure 5 shows the time it took to train the models over the 10 epochs.133

Figure 4: Training and validation accuracy each of the three networks, found at the end of each epoch. The

small gap between the training and validation accuracies suggests that the models are not overfitting. Note the

scale starts at 90%.

3.2 Test Set Accuracy134

Figure 6 shows the accuracy of the three models. These results are in the high 90%’s across the train, validate135

and test sets which shows that the models have all learned the problem well. Table 2 shows the accuracy and136

balanced accuracy of each of the models on the test set. Figure 7 shows the confusion matrix for the ResNet18137

model. The confusion matrix shows that the model performs very well on CT, MR and PET. Accuracy for138

X-rays can be improved by adding additional X-ray images across a larger spread of locations.139
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Figure 5: Time in hours to train the models for 10 epochs.The training and validation accuracy both level-off

around epochs 5–6 which shows that the models are able to fit the data.
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Model Accuracy Balanced Accuracy

ResNet18 96.00% 86.17%

ResNet50 95.60% 85.65%

VGG16 94.58% 81.08%

Table 2: Table containing the accuracy and balanced accuracy of various models on the test set. Each model

was trained for 10 epochs.

3.3 Dataset Level Results140

Table 3 shows the accuracy of the model on each dataset in the test set for the ResNet18 model, chosen because141

this model demonstrated superior classification performance over others tested in this study. It is interesting142

to note that in both tables the X-ray performance is in the 80-90% range for the Cancer Imaging Archive143

X-ray datasets, then drops for the MURA and Osteoarthritis Initiative datasets. This is likely because these144

datasets are bone X-rays, and most of the datasets only contain chest X-rays. Therefore, a better spread of145

X-ray datasets is needed for the performance of these models to be improved.146
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Figure 6: Accuracy of 3 models on the test set.

Figure 7: The confusion matrix for the ResNet18 on the test set. The model gains very high accuracy on the

CT, MRI and PET. The ResNet18 results were chosen for this plot as this model achieved the highest accuracy

and highest balanced accuracy.
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Table 3: Table containing the accuracy of the ResNet18 model on every dataset in the test set. Some datasets

appear more than once in this table because they contain multiple image modalities.

Dataset

(Location) Modality Accu-

racy

(%)

CPTAC-LUAD (Chest) CT 99

Pelvic-Reference-Data(Pelvis) CT 81

C4KC-KiTS (Kidney) CT 100

Anti-PD-1 Lung (Chest) CT 97

CPTAC-PDA (Pancreas) CT 100

NaF PROSTATE (Prostate) CT 100

TCGA-READ (Kidney) CT 100

QIN-HEADNECK (Head) CT 100

CPTAC-LSCC (Chest) CT 100

CPTAC-CCRCC (Kidney) CT 100

CPTAC-LUAD (Chest) MR 100

ISPY1 (Breast) MR 99

Brain-Tumor-Progression (Head) MR 92

REMBRANDT (Head) MR 100

BraTS20 (Head) MR 97

CPTAC-PDA (Pancreas) MR 99

TCGA-READ (Kidney) MR 98

CPTAC-CCRCC (Kidney) MR 99

CPTAC-LUAD (Chest) PT 100

Anti-PD-1 Lung (Chest) PT 100

QIN-HEADNECK (Head) PT 100

CPTAC-PDA (Pancreas) PT 100

NaF PROSTATE (Prostate) PT 100

CPTAC-LSCC (Chest) PT 100

CPTAC-LUAD (Chest) XR 100

CPTAC-PDA (Pancreas) XR 96

CPTAC-LSCC (Chest) XR 92

CPTAC-CCRCC (Kidney) XR 100

MURA (Bone) XR 28

Osteo-Arthritis Initiative (Bone) XR 62
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4 Conclusion147

In this work, we proposed a hyper-scale classifier, capable of classifying diagnostic imaging data in the scale148

of millions of medical images, with significant classification accuracy. We used a dataset comprised of 4.5149

million images to train a ResNet-50, ResNet-18, and VGG16 CNN. The trained classifiers were then tested150

for their classification accuracy on 4 modalities ((Computed Tomography (CT), Magnetic Resonance Imaging151

(MRI), Positron Emission Tomography (PET), and X-ray). The best performing model, among the ones tested152

demonstrated a classification accuracy of 96%. Our results show that hyper-scale classifiers are capable of153

accurately classifying volumes of image data encountered in real-word applications, such as those contained in154

image repositories or diagnostic imaging data collected by national healthcare institutions.155

Future work on this topic will be to extend the scope of the hyper-scale modality classifier to work on 3D156

scan modalities, such as CT, MR, PET.157

A List of All Datasets Used158

Name Dataset Webpage Citations Split

ACRIN-DSC-MR-Brain https://doi.org/10.7937/tcia.2019.zr1pjf4i [7] Train

Head-Neck-Radiomics-HN1 https://doi.org/10.7937/tcia.2019.8kap372n [34] Train

Lung-PET-CT-Dx https://doi.org/10.7937/TCIA.2020.NNC2-0461 [10] Train

AAPM RT-MAC Grand Ch. 2019 https://doi.org/10.7937/tcia.2019.bcfjqfqb [35] Train

COVID-19-AR https://doi.org/10.7937/tcia.2020.py71-5978 [36] Train

CPTAC-CM https://doi.org/10.7937/K9/TCIA.2018.ODU24GZE [13] Train

CPTAC-HNSCC https://doi.org/10.7937/K9/TCIA.2018.UW45NH81 [37] Train

PDMR-997537-175-T https://doi.org/10.7937/TCIA.2020.BRY9-4N29 [38] Train

PDMR-292921-168-R https://doi.org/10.7937/TCIA.2020.PCAK-8Z10 [38] Train

PDMR-425362-245-T https://doi.org/10.7937/TCIA.2020.7YRS-7J97 [38] Train

HNSCC https://doi.org/10.7937/k9/tcia.2020.

a8sh-7363

[39, 40] Train

DRO Toolkit https://doi.org/10.7937/t062-8262 [41] Train

QIN GBM Treatment Response https://doi.org/10.7937/K9/TCIA.2016.nQF4gpn2 [42] Train

CPTAC-GBM https://doi.org/10.7937/K9/TCIA.2018.3RJE41Q1 [43] Train

CPTAC-SAR https://doi.org/10.7937/TCIA.2019.9bt23r95 [44] Train

CPTAC-UCEC https://doi.org/10.7937/K9/TCIA.2018.3R3JUISW [45] Train

OPC-Radiomics https://doi.org/10.7937/tcia.2019.8dho2gls [46] Train

Acrin-FLT-Breast (ACRIN 6688) https://doi.org/10.7937/K9/TCIA.2017.ol20zmxg [8] Train

QIN-Breast https://doi.org/doi:10.7937/K9/TCIA.2016.

21JUebH0

[47] Train

Lung Fused-CT-Pathology https://doi.org/10.7937/K9/TCIA.2018.SMT36LPN [48] Train

NSCLC-Radiomics https://doi.org/10.7937/K9/TCIA.2015.PF0M9REI [34] Train

NSCLC-Radiomics-Interobserver1 https://doi.org/10.7937/tcia.2019.cwvlpd26 [49, 34] Train

PDMR-BL0293-F563 https://doi.org/10.7937/tcia.2019.b6u7wmqw [38] Train
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Name Dataset Webpage Citations Split

QIN-BRAIN-DSC-MRI https://doi.org/doi:10.7937/K9/TCIA.2016.

5DI84Js8

[50] Train

CC-Radiomics-Phantom https://doi.org/10.7937/K9/TCIA.2017.zuzrml5b [51] Train

CC-Radiomics-Phantom-2 https://doi.org/10.7937/TCIA.2019.4l24tz5g [51] Train

CC-Radiomics-Phantom-3 https://doi.org/10.7937/tcia.2019.j71i4fah [51] Train

LCTSC https://doi.org/10.7937/K9/TCIA.2017.3r3fvz08 [52] Train

Anti-PD-1 MELANOMA https://doi.org/10.7937/tcia.2019.1ae0qtcu [53] Train

TCGA-UCEC https://doi.org/10.7937/K9/TCIA.2016.GKJ0ZWAC [54] Train

TCGA-HNSC https://doi.org/10.7937/K9/TCIA.2016.LXKQ47MS [55] Train

HNSCC-3DCT-RT https://doi.org/10.7937/K9/TCIA.2018.13upr2xf [56] Train

MRI-DIR https://doi.org/10.7937/K9/TCIA.2018.3f08iejt [57] Train

Head-Neck-PET-CT https://doi.org/10.7937/K9/TCIA.2017.8oje5q00 [58] Train

LGG-1p19qDeletion https://doi.org/10.7937/K9/TCIA.2017.dwehtz9v [59] Train

CBIS-DDSM https://doi.org/10.7937/K9/TCIA.2016.7O02S9CY [60] Train

Phantom FDA https://doi.org/10.7937/K9/TCIA.2015.ORBJKMUX [61] Train

QIN LUNG CT https://doi.org/10.7937/K9/TCIA.2015.NPGZYZBZ [62] Train

Mouse-Astrocytoma https://doi.org/10.7937/K9TCIA.2017.SGW7CAQW [63] Train

TCGA-LUSC https://doi.org/10.7937/K9/TCIA.2016.TYGKKFMQ [64] Train

TCGA-LUAD https://doi.org/10.7937/K9/TCIA.2016.JGNIHEP5 [64] Train

TCGA-KIRP https://doi.org/10.7937/K9/TCIA.2016.ACWOGBEF [15] Train

TCGA-LIHC https://doi.org/10.7937/K9/TCIA.2016.IMMQW8UQ [65] Train

IvyGAP https://doi.org/10.7937/K9/TCIA.2016.XLwaN6nL [66] Train

Prostate Fused-MRI-Pathology https://doi.org/10.7937/K9/TCIA.2016.TLPMR1AM [67, 68, 69, 70] Train

TCGA-PRAD https://doi.org/10.7937/K9/TCIA.2016.YXOGLM4Y [71] Train

Breast-MRI-NACT-Pilot https://doi.org/10.7937/K9/TCIA.2016.QHSYHJKY [72] Train

RIDER Neuro MRI https://doi.org/10.7937/K9/TCIA.2015.VOSN3HN1 [73] Train

Soft-tissue-Sarcoma https://doi.org/10.7937/K9/TCIA.2015.7GO2GSKS [74] Train

Mouse-Mammary https://doi.org/10.7937/K9/TCIA.2015.9P42KSE6 [75] Train

TCGA-THCA https://doi.org/10.7937/K9/TCIA.2016.9ZFRVF1B [76] Train

TCGA-SARC https://doi.org/10.7937/K9/TCIA.2016.CX6YLSUX [77] Train

LungCT-Diagnosis https://doi.org/10.7937/K9/TCIA.2015.A6V7JIWX [78] Train

TCGA-CESC https://doi.org/10.7937/K9/TCIA.2016.SQ4M8YP4 [79] Train

TCGA-OV https://doi.org/10.7937/K9/TCIA.2016.NDO1MDFQ [80] Train

TCGA-COAD https://doi.org/10.7937/K9/TCIA.2016.HJJHBOXZ [76] Train

TCGA-KIRC https://doi.org/10.7937/K9/TCIA.2016.V6PBVTDR [14] Train

TCGA-LGG https://doi.org/10.7937/K9/TCIA.2016.L4LTD3TK [81] Train

QIN PET Phantom https://doi.org/10.7937/K9/TCIA.2015.ZPUKHCKB [82] Train

QIN Breast DCE-MRI https://doi.org/10.7937/K9/TCIA.2014.A2N1IXOX [83] Train

NSCLC-Radiomics-Genomics https://doi.org/10.7937/K9/TCIA.2015.L4FRET6Z [34] Train

Lung Phantom https://doi.org/10.7937/K9/TCIA.2015.08A1IXOO [84] Train

TCGA-KICH https://doi.org/10.7937/K9/TCIA.2016.YU3RBCZN [85] Train

TCGA-GBM https://doi.org/10.7937/K9/TCIA.2016.RNYFUYE9 [86] Train

SPIE-AAPM Lung CT Challenge https://doi.org/10.7937/K9/TCIA.2015.UZLSU3FL [87] Train

Prostate-3T https://doi.org/10.7937/K9/TCIA.2015.QJTV5IL5 [88] Train
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https://doi.org/10.7937/tcia.2019.j71i4fah 
https://doi.org/10.7937/K9/TCIA.2017.3r3fvz08 
https://doi.org/10.7937/tcia.2019.1ae0qtcu 
https://doi.org/10.7937/K9/TCIA.2016.GKJ0ZWAC 
https://doi.org/10.7937/K9/TCIA.2016.LXKQ47MS 
https://doi.org/10.7937/K9/TCIA.2018.13upr2xf 
https://doi.org/10.7937/K9/TCIA.2018.3f08iejt 
https://doi.org/10.7937/K9/TCIA.2017.8oje5q00 
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https://doi.org/10.7937/K9/TCIA.2016.JGNIHEP5 
https://doi.org/10.7937/K9/TCIA.2016.ACWOGBEF 
https://doi.org/10.7937/K9/TCIA.2016.IMMQW8UQ 
https://doi.org/10.7937/K9/TCIA.2016.XLwaN6nL 
https://doi.org/10.7937/K9/TCIA.2016.TLPMR1AM 
https://doi.org/10.7937/K9/TCIA.2016.YXOGLM4Y 
https://doi.org/10.7937/K9/TCIA.2016.QHSYHJKY 
https://doi.org/10.7937/K9/TCIA.2015.VOSN3HN1 
https://doi.org/10.7937/K9/TCIA.2015.7GO2GSKS 
https://doi.org/10.7937/K9/TCIA.2015.9P42KSE6 
https://doi.org/10.7937/K9/TCIA.2016.9ZFRVF1B 
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https://doi.org/10.7937/K9/TCIA.2015.08A1IXOO 
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Name Dataset Webpage Citations Split

Prostate-Diagnosis https://doi.org/10.7937/K9/TCIA.2015.FOQEUJVT [89] Train

RIDER Phantom PET-CT https://doi.org/10.7937/K9/TCIA.2015.8WG2KN4W [90] Train

RIDER Lung CT https://doi.org/10.7937/K9/TCIA.2015.U1X8A5NR [91] Train

RIDER Phantom MRI https://doi.org/10.7937/K9/TCIA.2015.MI4QDDHU [92] Train

RIDER Breast MRI https://doi.org/10.7937/K9/TCIA.2015.H1SXNUXL [93] Train

CT Colonography (ACRIN 6664) https://doi.org/10.7937/K9/TCIA.2015.NWTESAY1 [29] Train

Chexpert https://stanfordmlgroup.github.io/

competitions/chexpert/

[9] Train

RSNA Bone Age https://www.kaggle.com/kmader/rsna-bone-age None Train

TCGA-BRCA https://doi.org/10.7937/K9/TCIA.2016.AB2NAZRP [11] Validate

Acrin-FMISO-Brain (ACRIN 6684) https://doi.org/10.7937/K9/TCIA.2018.vohlekok [6] Validate

TCGA-BLCA https://doi.org/10.7937/K9/TCIA.2016.8LNG8XDR [76] Validate

Pancreas-CT https://doi.org/10.7937/K9/TCIA.2016.tNB1kqBU [94] Validate

CT Lymph Nodes https://doi.org/10.7937/K9/TCIA.2015.AQIIDCNM [95] Validate

TCGA-ESCA https://doi.org/10.7937/K9/TCIA.2016.VPTNRGFY [96] Validate

TCGA-STAD https://doi.org/10.7937/K9/TCIA.2016.GDHL9KIM [97] Validate

LIDC-IDRI https://doi.org/10.7937/K9/TCIA.2015.LO9QL9SX [98] Validate

QIBA CT-1C https://doi.org/10.7937/K9/TCIA.2016.YxgR4blU [99] Validate

RIDER Lung PET-CT https://doi.org/10.7937/K9/TCIA.2015.OFIP7TVM [12] Validate

Prostate-MRI https://doi.org/10.7937/K9/TCIA.2016.6046GUDv [100] Validate

NIH 100000 Chest X-ray https://nihcc.app.box.com/v/ChestXray-NIHCC [101] Validate

MRNet: Knee MRIs https://stanfordmlgroup.github.io/

competitions/mrnet/

[102] Validate

CPTAC-CCRCC https://doi.org/10.7937/K9/TCIA.2018.OBLAMN27 [103] Test

C4KC-KiTS https://doi.org/10.7937/TCIA.2019.IX49E8NX [104] Test

CPTAC-LSCC https://doi.org/10.7937/K9/TCIA.2018.6EMUB5L2 [105] Test

LDCT-and-Projection-data https://doi.org/10.7937/9npb-2637 [106] Test

CPTAC-LUAD https://doi.org/10.7937/K9/TCIA.2018.PAT12TBS [107] Test

CPTAC-PDA https://doi.org/10.7937/K9/TCIA.2018.SC20FO18 [108] Test

Pelvic-Reference-Data https://doi.org/10.7937/TCIA.2019.woskq5oo [109] Test

Anti-PD-1 Lung https://doi.org/10.7937/tcia.2019.zjjwb9ip [110] Test

ISPY1 (ACRIN 6657) https://doi.org/10.7937/K9/TCIA.2016.HdHpgJLK [111] Test

QIN-HeadNeck https://doi.org/10.7937/K9/TCIA.2015.K0F5CGLI [112] Test

TCGA-READ https://doi.org/10.7937/K9/TCIA.2016.F7PPNPNU [113] Test

NaF Prostate https://doi.org/10.7937/K9/TCIA.2015.ISOQTHKO [114] Test

REMBRANDT https://doi.org/10.7937/K9/TCIA.2015.588OZUZB [115] Test

MURA https://stanfordmlgroup.github.io/

competitions/mura/

[116] Test

NDA Osteoarthritis Initiative https://nda.nih.gov/oai/ None Test

BraTS20 http://braintumorsegmentation.org/ None Test
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Code, Data, & Materials Availability160

The data used in this study comes from multiple sources, as indicated in Appendix A. If not specified here then161

the data can be accessed with no special permission required by the data provider. Permission was required to162

access MURA, ChexPERT, MRNet, the NDA Osteo-Arthritis Initiative and BraTS20.163

Code created for this research is hosted on GitHub with an MIT Licence[33].164
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