1 Plasma Microbial Cell-free DNA Sequencing from Over 15,000 Patients Identified a Broad Spectrum of

2 Pathogens

- 3 Sarah Y. Park^a, Eliza J Chang^a, Nathan Ledeboer^b, Kevin Messacar^c, Martin S. Lindner^a, Shivkumar
- 4 Venkatasubrahmanyam^a, Sivan Bercovici^a, Judith C. Wilber^a, Marla Lay Vaughn^a, Bradley A. Perkins^a, and
- 5 Frederick S. Nolte^{a*}
- 6 ^aKarius, Redwood City, CA
- 7 ^bMedical College of Wisconsin, Milwaukee, WI
- 8 ^cUniversity of Colorado, Children's Hospital Colorado, Aurora, CO.
- 9 *Corresponding author contact information:
- 10 Karius, Inc.
- 11 975 Island Drive, Suite 101
- 12 Redwood City, CA 94065
- 13 rick.nolte@kariusdx.com
- 14
- 15 Abstract word count: 276
- 16 **Text word count:** 3,702
- 17
- 18 **Keywords:** microbial cell-free DNA, high-throughput nucleic acid sequencing, liquid biopsy for infectious
- 19 diseases, metagenomics

20 ABSTRACT

21 Microbial cell-free DNA (mcfDNA) sequencing is an emerging infectious disease diagnostic tool which 22 enables unbiased pathogen detection from plasma. The Karius Test®, a commercial mcfDNA sequencing 23 assay developed by and available since 2017 from Karius, Inc. (Redwood City, CA), detects and quantifies 24 mcfDNA as molecules/ μ l in plasma. The commercial sample data and results for all tests conducted 25 from April 2018 through mid-September 2021 were evaluated for laboratory performance metrics. 26 reported pathogens, and data from test requisition forms. A total of 18,690 reports were generated 27 from 15,165 patients in a hospital setting among 39 states and the District of Columbia. The median 28 time from sample receipt to reported result was 26 hours (IQR 25-28), and 96% of samples had valid 29 test results. Almost two-thirds (65%) of patients were adults, and 29% at the time of diagnostic testing 30 had ICD10 codes representing a diverse array of clinical scenarios. There were 10,752 (58%) reports that 31 yielded at least one taxon for a total of 22,792 detections spanning 701 unique microbial taxa. The 50 32 most common taxa detected included 36 bacteria, 9 viruses, and 5 fungi. Opportunistic fungi (374 33 Aspergillus spp., 258 Pneumocystis jirovecii, 196 Mucorales, and 33 dematiaceous fungi) comprised 861 34 (4%) of all detections. Additional diagnostically challenging pathogens (247 zoonotic and vector borne 35 pathogens, 144 Mycobacteria, 80 Legionella spp., 78 systemic dimorphic fungi, 69 Nocardia spp., and 57 protozoan parasites) comprised 675 (3%) of all detections. We report the largest cohort of patients 36 37 tested using plasma mcfDNA sequencing. The wide variety of pathogens detected by plasma mcfDNA 38 sequencing reaffirm our understanding of the ubiquity of some infections while also identifying taxa less commonly detected by conventional methods. 39

40

41 **INTRODUCTION**

42 Sequencing microbial cell-free DNA (mcfDNA) in plasma represents integration of progress in 43 genomic sequencing, computation analyses, and recognition of cell-free DNA as a clinically useful blood 44 analyte (1-3). Over the last four decades, PCR-based tests, specifically multiplexed broad syndromic 45 panels, have made welcomed contributions to infectious disease diagnostics but fall short of desired performance including breadth of pathogen detection and require samples of infected tissue or body 46 47 fluid (4). Broad range PCR testing arguably facilitates considering a wider range of potential pathogens but is still only limited to bacteria and fungi (5). A recent meta-analysis, which included 20 studies that 48 49 satisfied the Quality Assessment of Diagnostic Accuracy Studies (6) to assess the diagnostic accuracy of 50 next generation sequencing in distinguishing infectious diseases, concluded that this group of 51 technologies demonstrated satisfactory diagnostic performance for infections and yielded an overall detection rate superior to conventional methods (7). Four of the studies included in this review 52 53 employed plasma mcfDNA sequencing. Moreover, early experience with plasma mcfDNA sequencing 54 suggests this new approach, especially when applied early in a patient's clinical course and for specific 55 use cases, has potential to improve upon the above-noted shortcomings (8, 9). Plasma mcfDNA 56 sequencing enables unbiased pathogen detection through noninvasive sampling with rapid turnaround, 57 creating opportunities to enhance diagnosis of bloodstream and deep-seated infections (10-12). This is 58 urgently needed particularly among immunocompromised patients who are often the most vulnerable 59 to serious and frequently life-threatening infections. 60 The Karius Test[®] is an analytically and clinically validated mcfDNA sequencing test, commercially

available for US inpatients since 2017 as a laboratory developed test from Karius, Inc. The test can
identify and quantitate molecules/µl (MPM) mcfDNA in plasma from >1,500 bacteria, DNA viruses, fungi,
and parasites. The analytical and clinical validation of the test was previously reported (12). Since the
time of this study, others have reported how this unbiased test may contribute to the diagnosis and

65 management of life-threatening infections in defined patient populations, specifically 66 immunocompromised patients early in their clinical course, by creating the potential to minimize 67 invasive procedures (13), reducing time to specific etiologic diagnosis of infections compared with standard of care (SOC) microbiological testing (14), and, in some cases, optimizing antimicrobial therapy 68 69 (15, 16). In contrast, several retrospective, observational reviews of Karius Test utilization concluded 70 that in routine clinical practice the diagnostic and clinical impact of the test was limited, which highlights 71 the need for diagnostic stewardship to optimize implementation and maximize clinical utility in specific 72 patient populations (17-19).

Plasma mcfDNA sequencing for infectious disease diagnosis performance at scale with respect to time to results, quality metrics, positivity rates, and diversity of taxa detected has not been previously reported. Here we review the results for a large commercial laboratory testing cohort of over 18,000 plasma samples from over 15,000 patients in a hospital setting with the primary objective to provide additional insights about the breadth and depth of microbial identifications. In the course of doing so, we also describe the current test performance metrics and characterize clinical use based on the limited available data.

80 MATERIAL AND METHODS

Commercial laboratory test cohort. The Karius Test results for patients from across the United States were evaluated for reported pathogens and patient data (including basic demographics, ordering clinician, and ICD-10 codes if provided) obtained from the test request forms (TRF) for all samples tested from April 1, 2018 through mid-September, 2021. Laboratory performance metrics were gathered for all samples collected from April 1, 2018 through the end of September, 2021. Diagnosis codes submitted via TRFs were summarized at both the chapter level and Clinical Classifications Software

Refined Categories (20, 21). Immunocompromising conditions were then flagged using definitions
published by the Agency for Healthcare Research and Quality (22-24).

89 The Karius Test. Plasma mcfDNA sequencing was performed as previously described (12) in the 90 Karius clinical laboratory, certified under the Clinical Laboratory Improvement Amendments of 1988 and 91 accredited by the College of American Pathologists. Briefly, whole-blood samples were collected in 92 either BD Vacutainer plasma preparation tubes (PPTs) or K2-EDTA tubes. After plasma has been 93 separated from cells, the sample is stable at ambient temperature for 96 hours and at -20°C for 6 94 months. Upon receipt at Karius, controls for carry-over, sequencing bias, metagenomic sequencing 95 quality, and sample mix-ups were added to the sample. Proprietary chemistries were used to enrich 96 samples for mcfDNA without preselecting pathogens to test. Automated DNA extraction and 97 sequencing library preparation protocols were optimized for high speed and low pathogen bias. Single-98 end, 76-cycle sequencing was performed on NextSeq 500 instruments (Illumina, San Diego, CA) with an 99 average of >20 million reads/sample. Double-unique dual indexes were used to ensure robust sample 100 demultiplexing. Sequencing data were processed using a proprietary analytical pipeline, and microbial 101 reads were aligned to a database comprising >20,000 curated assemblies from >16,000 species of which 102 >1,500 taxa are reported, including bacteria, DNA viruses, fungi, and parasites

103 (<u>https://kariusdx.com/the-karius-test/pathogen-list/</u>).

Microorganisms present in statistically significant amounts were reported as a concentration of their mcfDNA expressed as MPM, a unique, absolute quantification capability of the Karius Test shown in preliminary work to correlate well with single-analyte quantitative PCR measurements (25, 26). The reports also contained median and range of MPM values observed for each microorganism reported in the last 1,000 specimens, as MPM values from different microbes are not comparable, and a reference interval determined from 675 asymptomatic donors for comparison. We routinely analyzed the raw data for mcfDNA from potential pathogens, including those present at levels below our standard

laboratory report thresholds. For this study, we focused on microorganisms identified in statisticallysignificant amounts.

113 Notable improvements in the test wet bench procedures and analytical pipeline, as may be
114 anticipated, occurred during the study period. We used the operational classes of pathogens described
115 by Relman, Falkow, and Ramakrishnan (27). The operational classes include obligate, commensal,
116 zoonotic, and environmental pathogens.

Data analytics. Data analysis and visualization were conducted using Python v. 3.9.7, pandas v.
 1.3.4, matplotlib v. 3.4.3, and seaborn v. 0.11.2 (28-30). Given the taxonomy and nomenclature for
 some genera continue to evolve, we selected three (*Legionella, Nocardia*, and *Mycobacterium*) to
 examine species detections, especially multiple species co-detections, more closely.

121 RESULTS

122 **Test cohort.** A total of 19,739 samples meeting collection and transport requirements were 123 tested from 16,172 patients in a hospital setting in 39 states and the District of Columbia during the study period. The median time from sample receipt at the Karius laboratory to reported result was 26 124 125 hours (IQR 25–28), and 96% of samples had valid test results. A summary of key performance metrics 126 for the test in this production data set are shown in **Table 1**. These metrics were not significantly 127 different (two-sided t-test p-value >0.01) from those reported for the first 2,000 clinical samples run by 128 the Karius clinical laboratory and reported in the initial validation study (12). Infectious disease and 129 hematology/oncology providers represented most ordering clinicians, 64% (n=9,804) and 14% (n=2,132), 130 respectively, for the 15,424 specimens with a National Provider Identifier indicated. We were able to 131 capture and analyze 18,690 reports from 15,165 patients. Twelve percent (n=1,839) of patients had at 132 least one repeat test during the study interval. Almost two thirds (65%, n=9,798) of patients were adults 133 (i.e., age >18 years). More than a quarter (29%, n=4,423) of patients at the time of diagnostic testing

had ICD10 codes representing a diverse array of clinical scenarios indicated in their TRFs (**Table 2**).
Eighteen percent (n=797) of these patients were indicated as immunocompromised (IC); 717 (16%) had
fever; and 230 (5%) had sepsis.

137 Taxa detection and quantification. Of samples yielding a valid result, 7,938 (42%) reported a 138 negative test with no pathogens identified. The remaining 10,752 (58%) Karius Test reports from 8,849 139 patients had at least one microbe identified (5,531 [30%] only one) representing 701 unique microbial 140 taxa (526 [75%] bacteria, 103 [15%] fungi, 47 [7%] viruses, and 24 [3%] parasites) and a total of 22,792 141 detections. The overall frequency of detection for each of these groups is shown in Fig. 1, and the 142 number of detected taxa counts per report for all positive reports is shown in Fig. 2. All the quality 143 control metrics were met for taxa quantification in MPM for 9,690 (90%) samples with positive results. 144 A complete list of all taxa reported along with their frequency of detection and median and IQR for the 145 MPM values are given in Supplemental Table 1.

Top 50 reported taxa. The top 50 reported taxa and the median, range, and IQR of MPM for
each taxon are shown in Table 3. They included 36 bacteria, 9 viruses, and 5 fungi. Together the top 50
taxa included a broad range of commensal and environmental pathogens and represented 15,692
detections (69% of all detections).

150 The distribution of these taxa are as follows. There were 11,023 detections of bacteria including 151 11 anaerobes (2,730, 25%), 8 Streptococcus spp. (1,379, 12%), 4 Enterobacterales (2,031, 18%), 3 152 Staphylococcus spp. (1,369, 12%)., 2 Rothia spp. (564, 5%), 2 Haemophilus spp. (466, 4%), 2 Enterococcus 153 spp. (1,092, 10%), and 1 each of Acinetobacter haemolyticus (199, 2%), Pseudomonas aeruginosa (817, 154 7%), Stenotrophomonas maltophilia (169, 1%), and Helicobacter pylori (207, 2%). There were 3,982 viral 155 detections of 9 different viruses that included 1,275 (32%) cytomegalovirus, 902 (23%) Epstein-Barr 156 virus, 479 (12%) herpes simplex virus 1, 468 (12%) human herpes virus 6B, 354 (9%) BK polyoma virus, 157 171 (4%) human adenovirus C, 135 (3%) torque teno virus (TTV), 100 (3%) human adenovirus B, and 98

- 158 (3%) human herpes virus 7. Finally, there were 920 detections of fungi comprising 260 (28%) Candida
- albicans, 258 (28%) Pneumocystis jirovecii, 186 (20%) Aspergillus fumigatus, 113 (12%) Candida
- 160 glabrata, and 103 (11%) Candida tropicalis.
- 161 **Difficult to diagnose uncommon pathogens.** The SOC methods for the organisms listed below
- 162 have considerable shortcomings including, but not limited to, sensitivity and specificity,
- 163 comprehensiveness, accuracy, time to result, and/or local availability.
- 164 <u>Bacteria</u>. The frequency distribution of the number of detections of *Legionella*-like organisms
- 165 (n=80) is shown in Fig. 3. Forty-one percent of these detections were the most recognized pathogen, L.
- 166 pneumophila. Two reports contained co-detections of two different species (L. brunensis, 400 MPM and
- 167 L. hackeliae, 270 MPM; and L. feeleii, 78,508 MPM and L. tunisiensis, 76,445 MPM, respectively).
- 168 Neither L. brunensis nor L. tunisiensis has been associated with human disease
- 169 (https://specialpathogenslab.com/legionella-species/), and the MPM values for the co-detections in
- 170 each report were similar.
- 171 The frequency distribution of *Nocardia* spp. detections, n=76, is shown in **Fig. 4**. Plasma
- 172 mcfDNA sequencing detected 25 of the approximately 100 validly named species. Of the 8 species
- 173 reported to be isolated more frequently from patients, 7 were detected (Fig. 4). One species, N.
- 174 cyriacigeorgica, dominated with 19 (25%) detections. Of the 69 patient reports represented by the
- 175 *Nocardia* spp. detections, 12 (17%) reported \geq 2 concurrent species (range 2–5). All the co-detections
- 176 were reported with similar MPM values, and 8 (67%) were co-detections of closely related species (4 N.
- 177 exalbida/gamkensis, 3 N. elegans/nova/africana, 1 N. kruczakiae/violaceofusca/aobensis) previously
- 178 reported to be indistinguishable by mcfDNA sequencing (31, 32).
- The frequency distribution of the 156 *Mycobacterium* spp. detections is shown in Fig 5. Plasma
 mcfDNA sequencing detected 107 (69%) slowly growing mycobacteria (SGM) and 49 (31%) rapidly
 - 8

181	growing mycobacteria (RGM). The frequency of species distributions of these three genera showed
182	similarities in that several species were predominant, followed by long tails of uncommon to single
183	species detections. We reported \geq 2 concurrent species (range 2–6) in 6 (4%) of the 144 reports
184	including Mycobacterium spp. All the co-detections were reported with similar MPM values. Three of
185	the reports contained <i>M. avium complex/chimera</i> and one each <i>M. avium</i> complex/celatum/kyorinense,
186	M. brisbanense/mucogenicum/obuense, and M. chubuense/elephantis/flavescens/goodii/holsaticum
187	/phlei. The co-detections of multiple Legionella, Nocardia, and Mycobacterium spp., respectively, within
188	the same patient are shown in Supplemental Table 2.
189	The frequency distribution of the 247 (3% of all bacterial detections) zoonotic and vector borne
190	bacterial detections are shown in Fig. 6. Bartonella henselae predominated with 90 (36%) detections.
191	<u>Fungi</u> . The frequency distribution of the 632 <i>Candida</i> spp. detections is shown in Fig 7 ; 374
192	Aspergillus spp. detections in Fig 8; 196 detections in the order Mucorales in Fig. 9; 78 detections of the
193	systemic dimorphic fungi in Fig. 10; and 33 detections of dematiaceous fungi in Fig. 11. We detected 9
194	microsporidia, including 5 Enterocytozoon bieneusi and one each of E. cuniculi, E. hellem, Anncaliia
195	algerae, and Vittaforma corneae. In addition, Pneumocystis jirovecii (258 detections) was among the
196	top 50 taxa detected.
197	Eukaryotic parasites. The frequency distribution of the 57 (89% of 64 parasite detections)

197 Eukaryotic parasites. The frequency distribution of the 57 (89% of 64 parasite detections)
198 protozoa is shown in Fig. 12. Among the protozoan parasite detections, 68% were *Toxoplasma gondii*,
199 and 14% were pathogenic amoebae. Among the 7 (11%) helminthic parasites, we detected 4
200 nematodes (all *Strongyloides stercoralis*), 2 cestodes (both *Echinococcus multilocularis*), and 1
201 trematode (*Schistosoma mansoni*).

202 DISCUSSION

203 We report the largest testing cohort of patients in which mcfDNA was identified and quantified. 204 The key test performance metrics in this large cohort mirror what was reported with a much smaller 205 cohort in the initial validation study (10), demonstrating that the Karius Test is robust and can be 206 performed at scale in a clinically relevant time frame. These mcfDNA sequencing data reaffirm the 207 ubiquity of some infections, as commonly expected microbes were detected in most patients while less 208 common microbes were rarely detected. However, notably, the unbiased approach of the plasma 209 mcfDNA sequencing made those "rare" detections possible, whereas conventional diagnostics require 210 targeting specific organisms. Identifying optimal utilization, both clinical indications and timing, of the 211 plasma mcfDNA sequencing in future studies to augment clinical decision-making and integration into 212 current testing algorithms (17, 18, 33-35) will serve to improve the utility of the test. Examples of such 213 studies include two recently completed prospective, observational clinical trials of the use of the Karius 214 Test to diagnose pneumonia in immunocompromised patients (NCT04047719) (36) and infections in 215 stem cell transplant inpatients and outpatients over time (NCT02804464) (26), respectively.

Our finding that 58% of the Karius Test reports identified ≥1 pathogen is substantially lower than
 the 70–85% reported for the test when applied to well-defined clinical uses (13, 14, 37). These findings
 support the need for diagnostic stewardship and additional clinical studies demonstrating how yield
 differs and should be carefully interpreted according to the specific patient population and disease
 prevalence considered.

The Karius Test quantitates detections in MPM, which can be influenced by several factors specific to the microbial genome—e.g., turnover rate and genome size (12). Confounding patient variables (e.g., infection site, therapeutic interventions, and immune status) may also influence this measure. Generally higher concentrations have been found in definite infections, but since considerable overlap of MPM values exists in unlikely infections and in the asymptomatic cohort, threshold values for definite infections have not been established (12). However, following the decay of mcfDNA

Notable among the most common detections were the many commensal bacterial and fungal

quantitatively by serial testing may have important implications for individual patient management in
assessing the effectiveness of antimicrobial therapy and other medical or surgical interventions (8, 38,
39), but needs further study.

230

231 pathogens that cause serious and often invasive infections in patients with relevant risk factors (e.g., 232 immunocompromised). Among the viruses most detected by the Karius Test (e.g., Herpesviridae), all 233 could represent latent infection, reactivation, or active infections depending on the respective clinical 234 conditions; regardless, the detection of these viruses may be of particular concern for 235 immunocompromised patients for whom they may cause considerable morbidity (40). 236 A key benefit of unbiased mcfDNA sequencing identified in this study is the ability to detect 237 diagnostically challenging microbes such as opportunistic and systemic dimorphic fungi and zoonotic 238 and vector borne pathogens (41). These pathogens often carry a sense of urgency for the management 239 of the individual patient and even for the public's health, as they may be associated with considerable 240 morbidity and potential mortality. As some are uncommonly expected pathogens, they present a major 241 challenge for clinicians in considering and ordering appropriate SOC testing to capture all possible 242 pathogens. For the laboratories, the microbiologic diagnosis of these infections often represents a 243 major challenge for SOC methods as has been described by others (42, 43).

The absence of certain pathogens such as the emerging, multidrug resistant *C. auris* among the detections may arguably reflect the relatively few cases occurring during the study period in the geographic locations or patient populations of the test cohort and reflects the rarity of clinical cases in the United States (44). Plasma mcfDNA sequencing has the potential to contribute to the greater understanding of the geographic distribution of microbes and even overall disease surveillance, as demonstrated by the systemic dimorphic fungi detections. At 43 detections (55% of dimorphic fungal

identifications), *Histoplasma capsulatum* predominated, very likely related to its wide geographic range
and opportunities for environmental exposure and mirrors what is known about the epidemiology and
incidence of systemic dimorphic fungal infections (45). The relative frequency of detections of *Coccidioides immitis* and *posadasii* and *Blastomyces dermatidis* may have been influenced by the
geographic bias in this study sample cohort. Of the nine *Cryptococcus* spp. detected, *gattii* was detected
only once compared with *neoformans*, reflecting its restricted geographic distribution and the overall
rarity of infections in the United States (46).

257 Among the rarely detected microbes during the study period are some deserving further 258 mention. The detection of Legionella, an obligate pathogen, signals public health concern, whether 259 community or hospital acquired. L. pneumophila serogroup 1 (LP1) is estimated to cause 84% of 260 community acquired Legionnaire's disease (LD) (47); however, other serogroups of L. pneumophila and 261 other Legionella spp. may cause 60% of hospital acquired LD (48). Urinary antigen detection is the most 262 common diagnostic in the United States and Europe; yet, given its specificity for LP1, as many as 40–50% 263 of patients with non-LP1 legionellosis could be missed (49, 50). Plasma mcfDNA sequencing provides 264 comprehensive testing for Legionella and Legionella-like organisms in one diagnostic test and could 265 thereby expand the known LD epidemiology, particularly in nosocomial cases.

Nocardia have 8 species-specific drug susceptibility patterns (51). While accurate species
 identification can predict antimicrobial susceptibility patterns, molecular methods are required for
 accurate identifications but are not widely available. The Karius Test detected in our cohort 7 of the 8
 species with recognized susceptibility patterns and can provide results more rapidly than existing
 approaches to species identification.

Finally, culture for mycobacteria, while a complicated and lengthy process, is considered the gold standard, supplemented by direct detection of *M. tuberculosis* complex by nucleic acid

273 amplification tests (NAATs) in many laboratories. However, NAATs for the direct detection of 274 nontuberculous mycobacteria are not widely available, and accurate identification to species level from 275 cultured isolates remains challenging for most laboratories. The M. chimaera may be overrepresented 276 in our cohort since the Karius Test was optimized for its detection following reports of infections 277 occurring post-surgeries employing contaminated cardiopulmonary bypass devices (52). However, 278 these detections demonstrate the capability of mcfDNA sequencing to provide comprehensive 279 identification of these important obligate and commensal pathogens directly from plasma and provides 280 increased diagnostic value to the above-mentioned SOC methods (53). 281 Plasma mcfDNA sequencing offers a non-invasive means of detecting microbial infection and 282 capturing species diversity, potentially revealing new insights on genetic complexity not resolved by 283 current taxonomic classification. Still, our findings highlight the need to expand currently available 284 genomic sequencing libraries as many species across various genera remain undiscovered or 285 undescribed (54, 55). The species co-detections demonstrated among the genera we highlighted, 286 Legionella, Nocardia, and Mycobacteria, specifically those occurring at similar MPM values, suggest 287 detection of a single divergent strain, a species not in the Karius Test database, or, alternatively, true 288 polymicrobial detections. Similar challenges exist for broad range PCR testing (5, 56) and occurred with 289 adoption of proteomic identification by MALDI-TOF mass spectrometry (57).

This study has several limitations preventing us from directly comparing and fully elucidating plasma mcfDNA sequencing impact on patient care. Orthogonal testing data (including type, timing, and results) were not available for comparison with the Karius Test results; nor was information regarding antimicrobial or other therapies or procedures. Also, the clinical context for using the Karius Test was provided in only 29% of patients; that information was voluntarily provided, may have been incomplete, and would reflect the clinician's perspective at the time they ordered the test vs. the final diagnosis. However, others have reported potential increased diagnostic yield of plasma mcfDNA sequencing

compared with SOC tests in certain clinical scenarios (14-16, 58). Some have noted the test to be
commonly applied in managing severely ill, especially IC, patients (59), who are more likely to be
infected with unusual, and difficult to diagnose pathogens (60, 61).

Constraints of the underlying data structure prevented analyzing the data from those patients who had repeated testing to determine whether these tests were performed serially to diagnose new suspected infections or to monitor therapy response or conduct pathogen surveillance among immunocompromised patients as suggested by others (8, 26, 62-64). Further, the underlying data structure limited our ability to stratify the results by notable improvements to the bioinformatics pipeline over the course of the study period. Nevertheless, the unique data from this large testing cohort provides a wealth of information to help improve our understanding of infecting pathogens.

307 Unbiased plasma mcfDNA sequencing can potentially enhance patient outcomes by direct and 308 timely recognition of pathogens in specific clinical scenarios as well as benefit the overall public health 309 by increasing our understanding of the epidemiology of emerging infectious diseases such as 310 monkeypox virus or Borrelia miyamotoi (M.S. Lindner, K. Brick, N. Noll, S.Y. Park, et. al., submitted for 311 publication; L.A. Rubio, A.M. Kjemtrup, G.E. Marx, S. Cronan, et. al., submitted for publication, 312 respectively). Further, this powerful, novel diagnostic tool may facilitate medical advances through 313 recognizing previously unanticipated pathogens, as noted when mcfDNA sequencing was leveraged in a 314 research use only modality to identify porcine cytomegalovirus infection in a patient who had received a 315 genetically modified porcine-to-human cardiac transplant (65). As with any advanced diagnostic tool, 316 careful, timely clinical application with expert guidance and interpretation of its results as well as 317 appropriate diagnostic stewardship will optimize its application to offer even greater clinical impact. In 318 addition, the development of robust clinical outcomes studies to evaluate the clinical impact and cost 319 effectiveness of plasma mcfDNA sequencing for specific clinical indications to guide use remains a top 320 diagnostic stewardship priority.

321 ACKNOWLEDGEMENTS

- We thank the talented, experienced, and dedicated clinical laboratory operations and analytics teams at
- 323 Karius for generating the test results and sequencing analyses, respectively, that were foundational to
- this study. We also thank T. Matthew Hill, PharmD, PhD, formerly with Karius, Inc., and Asim A. Ahmed,
- 325 MD for their early contributions to the paper. This study was supported by Karius. Nathan Ledeboer,
- 326 PhD and Kevin Messacar, MD, PhD both serve as uncompensated consultants for Karius on this
- 327 manuscript. Their relationship with Karius has been reviewed and approved by the Medical College of
- 328 Wisconsin and the University of Colorado, Children's Hospital of Colorado, respectively, in accordance
- 329 with their conflict of interest policies.

330 **REFERENCES**

- Levy SE, Myers RM. 2016. Advancements in Next-Generation Sequencing. Annu Rev Genomics
 Hum Genet 17:95-115.
- Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. 1990. Basic local alignment search tool. J
 Mol Biol 215:403-10.
- 335 3. Kowarsky M, Camunas-Soler J, Kertesz M, De Vlaminck I, Koh W, Pan W, Martin L, Neff NF,
- 336 Okamoto J, Wong RJ, Kharbanda S, El-Sayed Y, Blumenfeld Y, Stevenson DK, Shaw GM, Wolfe
- 337 ND, Quake SR. 2017. Numerous uncharacterized and highly divergent microbes which colonize
- humans are revealed by circulating cell-free DNA. Proc Natl Acad Sci U S A 114:9623-9628.
- 4. Lewinski M, Alby K, Babady E, Butler-Wu S, Dien Bard J, Greninger A, Hanson K, Naccache S,
- 340 Newton D, Temple-Smolkin RL, Nolte F. *in press*. Exploring the Utility of Multiplex Infectious
- 341 Disease Panel Testing for Diagnosis of Infection in Different Body Sites: A Joint Report of the
- 342 Association for Molecular Pathology, American Society for Microbiology, Infectious Diseases
- 343 Society of America, and Pan American Society for Clinical Virology. The Journal of Molecular
- 344 Diagnostics.
- 345 5. Naureckas Li C, Nakamura MM. 2022. Utility of Broad-Range PCR Sequencing for Infectious
- 346 Diseases Clinical Decision Making: a Pediatric Center Experience. J Clin Microbiol 60:e0243721.
- 347 6. Whiting PF, Rutjes AW, Westwood ME, Mallett S, Deeks JJ, Reitsma JB, Leeflang MM, Sterne JA,
- Bossuyt PM, Group Q-. 2011. QUADAS-2: a revised tool for the quality assessment of diagnostic
 accuracy studies. Ann Intern Med 155:529-36.
- 350 7. Liu J, Zhang Q, Dong YQ, Yin J, Qiu YQ. 2022. Diagnostic accuracy of metagenomic next-
- 351 generation sequencing in diagnosing infectious diseases: a meta-analysis. Sci Rep 12:21032.
- 352 8. Eichenberger EM, Degner N, Scott ER, Ruffin F, Franzone J, Sharma-Kuinkel B, Shah P, Hong D,
- 353 Dalai SC, Blair L, Hollemon D, Chang E, Ho C, Wanda L, de Vries C, Fowler VG, Ahmed AA. 2022.

- 354 Microbial Cell-Free DNA Identifies the Causative Pathogen in Infective Endocarditis and Remains
- 355 Detectable Longer Than Conventional Blood Culture in Patients with Prior Antibiotic Therapy.
- 356 Clin Infect Dis doi:10.1093/cid/ciac426.
- 9. Dworsky ZD, Lee B, Ramchandar N, Rungvivatjarus T, Coufal NG, Bradley JS. 2022. Impact of Cell-
- 358 Free Next-Generation Sequencing on Management of Pediatric Complicated Pneumonia. Hosp
- 359 Pediatr 12:377-384.
- 10. Brenner T, Skarabis A, Stevens P, Axnick J, Haug P, Grumaz S, Bruckner T, Luntz S, Witzke O, Pletz
- 361 MW, Ruprecht TM, Marschall U, Altin S, Greiner W, Berger MM, Group TICCT. 2021.
- 362 Optimization of sepsis therapy based on patient-specific digital precision diagnostics using next
- 363 generation sequencing (DigiSep-Trial)-study protocol for a randomized, controlled,
- 364 interventional, open-label, multicenter trial. Trials 22:714.
- Han D, Li R, Shi J, Tan P, Zhang R, Li J. 2020. Liquid biopsy for infectious diseases: a focus on
 microbial cell-free DNA sequencing. Theranostics 10:5501-5513.
- 367 12. Blauwkamp TA, Thair S, Rosen MJ, Blair L, Lindner MS, Vilfan ID, Kawli T, Christians FC,
- 368 Venkatasubrahmanyam S, Wall GD, Cheung A, Rogers ZN, Meshulam-Simon G, Huijse L,
- 369 Balakrishnan S, Quinn JV, Hollemon D, Hong DK, Vaughn ML, Kertesz M, Bercovici S, Wilber JC,
- Yang S. 2019. Analytical and clinical validation of a microbial cell-free DNA sequencing test for
 infectious disease. Nat Microbiol 4:663-674.
- 13. Rossoff J, Chaudhury S, Soneji M, Patel SJ, Kwon S, Armstrong A, Muller WJ. 2019. Noninvasive
- 373 Diagnosis of Infection Using Plasma Next-Generation Sequencing: A Single-Center Experience.
- 374 Open Forum Infect Dis 6.
- 375 14. Benamu E, Gajurel K, Anderson JN, Lieb T, Gomez CA, Seng H, Aquino R, Hollemon D, Hong DK,
- 376 Blauwkamp TA, Kertesz M, Blair L, Bollyky PL, Medeiros BC, Coutre S, Zompi S, Montoya JG,

377		Deresinski S. 2021. Plasma Microbial Cell-free DNA Next Generation Sequencing in the Diagnosis
378		and Management of Febrile Neutropenia. Clin Infect Dis doi:10.1093/cid/ciab324.
379	15.	Yu J, Diaz JD, Goldstein SC, Patel RD, Varela JC, Reyenga C, Smith M, Smith T, Balls J, Ahmad S,
380		Mori S. 2021. Impact of Next-Generation Sequencing Cell-free Pathogen DNA Test on
381		Antimicrobial Management in Adults with Hematological Malignancies and Transplant
382		Recipients with Suspected Infections. Transplant Cell Ther doi:10.1016/j.jtct.2021.02.025.
383	16.	Francisco DMA, Woc-colburn L, Carlson TJ, Lasco T, Barrett MB, Mohajer MA. 2020. 680. The use
384		of plasma next-generation sequencing test in the management of immunocompetent and
385		immunocompromised patients – a single center retrospective study. Open Forum Infectious
386		Diseases 7:S393-S394.
387	17.	Hogan CA, Yang S, Garner OB, Green DA, Gomez CA, Dien Bard J, Pinsky BA, Banaei N. 2021.
388		Clinical Impact of Metagenomic Next-Generation Sequencing of Plasma Cell-Free DNA for the
389		Diagnosis of Infectious Diseases: A Multicenter Retrospective Cohort Study. Clin Infect Dis
390		72:239-245.
391	18.	Lee RA, Al Dhaheri F, Pollock NR, Sharma TS. 2020. Assessment of the Clinical Utility of Plasma
392		Metagenomic Next-Generation Sequencing in a Pediatric Hospital Population. J Clin Microbiol
393		58.
394	19.	Niles DT, Wijetunge DSS, Palazzi DL, Singh IR, Revell PA. 2020. Plasma Metagenomic Next-
395		Generation Sequencing Assay for Identifying Pathogens: a Retrospective Review of Test
396		Utilization in a Large Children's Hospital. J Clin Microbiol 58.
397	20.	National Center for Health Statistics (CDC). 2015. International Classification of Diseases, Tenth
398		Revision, Clinical Modification (ICD-10-CM).
399		https://ftp.cdc.gov/pub/Health_Statistics/NCHS/Publications/ICD10CM/2022/icd10cm-tabular-
400		<u>2022-April-1.pdf</u> .

- 401 21. Agency for Healthcare Research and Quality. October 2021. Clinical Classifications Software
- 402 Refined (CCSR). Healthcare Cost and Utilization Project (HCUP). Rockville, MD.
- 403 <u>https://www.hcup-us.ahrq.gov/toolssoftware/ccsr/ccs_refined.jsp.</u>
- 404 22. Agency for Healthcare Research and Quality. July 2021. Immunocompromised State Diagnosis
- 405 and Procedure Codes.
- 406 https://qualityindicators.ahrq.gov/Downloads/Modules/PQI/V2021/TechSpecs/PQI_Appendix_C
- 407 <u>.pdf</u>.
- 408 23. Agency for Healthcare Research and Quality. July 2021. Intermediate-Risk Immunocompromised
 409 State Diagnosis Codes.
- 410 <u>https://qualityindicators.ahrq.gov/Downloads/Modules/PDI/V2021/TechSpecs/PDI_Appendix_G</u>
- 411 <u>.pdf</u>.
- 412 24. Agency for Healthcare Research and Quality. July 2021. High-Risk Immunocompromised State
- 413 Diagnosis and Procedure Codes.
- 414 https://qualityindicators.ahrq.gov/Downloads/Modules/PDI/V2021/TechSpecs/PDI Appendix F
- 415 <u>.pdf</u>.
- 416 25. Blauwkamp TA, Ho C, Seng H, Hollemon D, Blair L, Yao JD, Warren D, Russell P, Davis T, Hong DK.
- 417 2019. Evaluation of Karius plasma next generation sequencing of microbial cell-free DNA to
- 418 detect and quantitate Cytomegalovirus, Epstein-Barr Virus, and BK Virus, abstr American Society
- 419 for Microbiology (ASM) Microbe 2019, San Francisco, CA,
- 420 26. Fung M, Teraoka J, Lien K, Seng H, Parham A, Hollemon D, Hong DK, Blair L, Zompì S, Logan AC,
- 421 Yao JD, Chin-Hong P. 2019. Use of the quantitative Karius® plasma next generation sequencing
- 422 cell-free pathogen DNA test to detect and monitor Cytomegalovirus infection in allogeneic stem-
- 423 cell transplant recipients, abstr 2019 TCT: Transplantation & Cellular Therapy Meetings of
- 424 ASBMT and CIBMTR, Houston, TX,

425	27.	Relman DA, Falkow S, Ramakrishnan L. 2020. Chapter 1: A Molecular Perspective of Microbial
426		Pathogenicity, p 1-11. In Bennett JE, Bennett JE, Dolin R, Blaser MJ (ed), Mandell, Douglas, and
427		Bennett's principles and practice of infectious diseases, Ninth edition. ed, vol 1. Elsevier,
428		Philadelphia, PA.
429	28.	McKinney W. Data structures for statistical computing in python, abstr 9th Python in Science
430		Conference, Austin, TX, June 28 - July 3, 2010.
431	29.	Hunter J. 2007. Matplotlib: a 2D graphics environment. Computing in Science & Engineering.
432		9(3):90-95. doi:10.1109/MCSE.2007.55.
433	30.	Waskom M, Botvinnik O, O'Kane D, Hobson P, Lukauskas S, Gemperline DC, Augspurger T,
434		Halchenko Y, Cole JB, Warmenhoven J, de Ruiter J, Pye C, Hoyer S, Vanderplas J, Villalba S,
435		Kunter G, Quintero E, Bachant P, Martin M, Meyer K, Miles A, Ram Y, Yarkoni T, Williams ML,
436		Evans C, Fitzgerald C, B, Fonnesbeck C, Lee A, Qalieh A. 2017. mwaskom/seaborn: v0.8.1
437		(September 2017), September 3, 2017 ed doi:10.5281/zenodo.883859. Zenodo.
438	31.	Ahmed AA, Rosen M, Hong DK, Dalai SC, Macintyre A, Blair L, Lindner M, Balakrishnan S,
439		Bercovici S. Next-generation sequencing of pathogen cell-free DNA in plasma (Karius Test)
440		reveals Nocardia species diversity in clinical infections, abstr ASM Microbe, San Francisco, CA,
441		June 20-24, 2019.
442	32.	Smollin M, Lindner M, Blair L, Arun A, Degner N, Equils O, de Vries CR, Dalai SC, MacIntyre A,
443		Ahmed AA. Rapid, non-invasive detection of Legionella and Nocardia and resolution of species
444		diversity in clinical infections in immunocompromised hosts using the Karius Test, a plasma-
445		based microbial cell-free DNA sequencing test for pathogen identification, abstr 21st ICHS
446		Symposium, Melbourne, Australia, February 17-19, 2021.

- 447 33. Graff K, Dominguez SR, Messacar K. 2021. Metagenomic Next-Generation Sequencing for
- 448 Diagnosis of Pediatric Meningitis and Encephalitis: A Review. J Pediatric Infect Dis Soc 10:S78-
- 449 S87.
- 450 34. Haslam DB. 2021. Future Applications of Metagenomic Next-Generation Sequencing for

451 Infectious Diseases Diagnostics. J Pediatric Infect Dis Soc 10:S112-S117.

- 452 35. Huang AL, Hendren N, Carter S, Larsen C, Garg S, La Hoz R, Farr M. 2022. Biomarker-Based
- 453 Assessment for Infectious Risk Before and After Heart Transplantation. Curr Heart Fail Rep 454 doi:10.1007/s11897-022-00556-z.
- 455 36. Bergin SP, Chemaly R, Duttagupta R, Bigelow R, Dadwal S, Hill JA, Lee YJ, Haidar G, Luk A, Drelick
- 456 A, Chin-Hong PV, Benamu E, Davis T, Wolf O, McClain M, Maziarz E, Madut D, Bedoya A, Gilstrap
- 457 DL, Todd J, Barkauskas C, Spallone A, McDowell BJ, Small CB, Shariff D, Salsgiver E, Khawaja F,
- 458 Papanicolaou GA, Spagnoletti J, Van Besien K, English M, Fung M, Rusell P, Ibrahimi S, Pandey S,
- 459 Adams S, Liang W, Visweswaran A, Ho C, Nemirovich-Danchenko E, Braaten J, Sundermann L,
- 460 Mughar M, Chavez R, Romano R, Montgomery S, Kumar S, Dalai SC, Cho Y, Ahmed AA, et al.
- 461 2022. PICKUP: Pneumonia in the ImmunoCompromised use of the Karius Test[®] for the
- detection of Undiagnosed Pathogens abstr IDWeek 2022, Washington, D.C., October 20, 2022.
- 463 37. Farnaes L, Wilke J, Ryan Loker K, Bradley JS, Cannavino CR, Hong DK, Pong A, Foley J, Coufal NG.
- 464 2019. Community-acquired pneumonia in children: cell-free plasma sequencing for diagnosis
- and management. Diagn Microbiol Infect Dis 94:188-191.
- 466 38. Eichenberger EM, de Vries CR, Ruffin F, Sharma-Kuinkel B, Park L, Hong D, Scott ER, Blair L,
- 467 Degner N, Hollemon DH, Blauwkamp TA, Ho C, Seng H, Shah P, Wanda L, Fowler VG, Ahmed AA.
- 468 2022. Microbial Cell-Free DNA Identifies Etiology of Bloodstream Infections, Persists Longer
- 469 Than Conventional Blood Cultures, and Its Duration of Detection Is Associated With Metastatic

470	Infection in Patients With Staphylococcus aureus and Gram-Negative Bacteremia. Clin Infect Dis
471	74:2020-2027.

- 472 39. To RK, Ramchandar N, Gupta A, Pong A, Cannavino C, Foley J, Farnaes L, Coufal NG. 2021. Use of
- 473 Plasma Metagenomic Next-generation Sequencing for Pathogen Identification in Pediatric
- 474 Endocarditis. Pediatr Infect Dis J 40:486-488.
- 475 40. de Melo Silva J, Pinheiro-Silva R, Dhyani A, Pontes GS. 2020. Cytomegalovirus and Epstein-Barr
- 476 Infections: Prevalence and Impact on Patients with Hematological Diseases. Biomed Res Int
- 477 2020:1627824.
- 478 41. Hilt EE, Ferrieri P. 2022. Next Generation and Other Sequencing Technologies in Diagnostic
- 479 Microbiology and Infectious Diseases. Genes 13:1566.
- 480 42. Vaca DJ, Dobler G, Fischer SF, Keller C, Konrad M, von Loewenich FD, Orenga S, Sapre SU, van
- 481 Belkum A, Kempf VAJ. 2022. Contemporary diagnostics for medically relevant fastidious
- 482 microorganisms belonging to the genera Anaplasma, Bartonella, Coxiella, Orientia, and

483 Rickettsia. FEMS Microbiol Rev doi:10.1093/femsre/fuac013.

- 484 43. Haydour Q, Hage CA, Carmona EM, Epelbaum O, Evans SE, Gabe LM, Knox KS, Kolls JK,
- 485 Wengenack NL, Prokop LJ, Limper AH, Murad MH. 2019. Diagnosis of Fungal Infections. A
- 486 Systematic Review and Meta-Analysis Supporting American Thoracic Society Practice Guideline.
- 487 Ann Am Thorac Soc 16:1179-1188.
- 488 44. Centers for Disease Control and Prevention (CDC). Tracking *Candida auris*.
- 489 <u>https://www.cdc.gov/fungal/candida-auris/tracking-c-auris.html</u>. Accessed December 15, 2022.
- 490 45. Lockhart SR, Toda M, Benedict K, Caceres DH, Litvintseva AP. 2021. Endemic and Other
- 491 Dimorphic Mycoses in The Americas. J Fungi (Basel) 7.

492	46.	Centers for Disease Control and Prevention (CDC). C. gattii Infe	ction Statistics.
-----	-----	--	-------------------

- 493 https://www.cdc.gov/fungal/diseases/cryptococcosis-gattii/statistics.html. Accessed June 5,
- 494 2022.
- 495 47. Yu VL, Plouffe JF, Pastoris MC, Stout JE, Schousboe M, Widmer A, Summersgill J, File T, Heath
- 496 CM, Paterson DL, Chereshsky A. 2002. Distribution of Legionella species and serogroups isolated
- 497 by culture in patients with sporadic community-acquired legionellosis: an international

498 collaborative survey. J Infect Dis 186:127-8.

- 499 48. Helbig JH, Uldum SA, Bernander S, Luck PC, Wewalka G, Abraham B, Gaia V, Harrison TG. 2003.
- 500 Clinical utility of urinary antigen detection for diagnosis of community-acquired, travel-
- 501 associated, and nosocomial legionnaires' disease. J Clin Microbiol 41:838-40.
- Fields BS, Benson RF, Besser RE. 2002. Legionella and Legionnaires' disease: 25 years of
 investigation. Clin Microbiol Rev 15:506-26.
- 504 50. Phin N, Parry-Ford F, Harrison T, Stagg HR, Zhang N, Kumar K, Lortholary O, Zumla A, Abubakar I.
- 505
 2014. Epidemiology and clinical management of Legionnaires' disease. Lancet Infect Dis
- 506 14:1011-21.
- 507 51. CLSI. 2018. Performance Standards for Susceptibility Testing of Mycobacteria, Nocardia spp.,
- 508and Other Aerobic Actinomycetes. In (ed), CLSI Supplement M62. Clinical and Laboratory
- 509 Standards Institute, Wayne, PA.
- 510 52. Sax H, Bloemberg G, Hasse B, Sommerstein R, Kohler P, Achermann Y, Rossle M, Falk V, Kuster
- 511 SP, Bottger EC, Weber R. 2015. Prolonged Outbreak of Mycobacterium chimaera Infection After
- 512 Open-Chest Heart Surgery. Clin Infect Dis 61:67-75.
- 513 53. Pollock NR, MacIntyre AT, Blauwkamp TA, Blair L, Ho C, Calderon R, Franke MF. 2021. Detection
- 514 of Mycobacterium tuberculosis cell-free DNA to diagnose TB in pediatric and adult patients. Int J
- 515 Tuberc Lung Dis 25:403-405.

- 516 54. Goldberg B, Sichtig H, Geyer C, Ledeboer N, Weinstock GM. 2015. Making the Leap from
- 517 Research Laboratory to Clinic: Challenges and Opportunities for Next-Generation Sequencing in
- 518 Infectious Disease Diagnostics. mBio 6:e01888-15.
- 519 55. Simner PJ, Miller S, Carroll KC. 2018. Understanding the Promises and Hurdles of Metagenomic
- 520 Next-Generation Sequencing as a Diagnostic Tool for Infectious Diseases. Clin Infect Dis 66:778-
- 521 788.
- 522 56. Wright WF, Simner PJ, Carroll KC, Auwaerter PG. 2022. Progress Report: Next-Generation
- 523 Sequencing, Multiplex Polymerase Chain Reaction, and Broad-Range Molecular Assays as
- 524 Diagnostic Tools for Fever of Unknown Origin Investigations in Adults. Clin Infect Dis 74:924-932.
- 525 57. Steensels D, Verhaegen J, Lagrou K. 2011. Matrix-assisted laser desorption ionization-time of
- flight mass spectrometry for the identification of bacteria and yeasts in a clinical microbiological
 laboratory: a review. Acta Clin Belg 66:267-73.
- 528 58. Camargo JF, Ahmed AA, Lindner MS, Morris MI, Anjan S, Anderson AD, Prado CE, Dalai SC,
- 529 Martinez OV, Komanduri KV. 2019. Next-generation sequencing of microbial cell-free DNA for
- 530 rapid noninvasive diagnosis of infectious diseases in immunocompromised hosts. F1000Res
- 531 8:1194.
- 53259.Edward P, Handel AS. 2021. Metagenomic Next-Generation Sequencing for Infectious Disease533Diagnosis: A Review of the Literature With a Focus on Pediatrics. J Pediatric Infect Dis Soc
- 534 10:S71-S77.
- 535 60. Fishman JA. 2022. Approach to the immunocompromised patient with fever and pulmonary
 536 infiltrates. *In* Blumberg EA, Bond S (ed), UptoDate, Waltham, MA.
- 537 61. Pierce KK. 2013. Chapter 40 Immunocompromised Host, p 277-292. *In* Parsons PE, Wiener-
- 538 Kronish JP (ed), Critical Care Secrets (Fifth Edition) doi:<u>https://doi.org/10.1016/B978-0-323-</u>
- 539 <u>08500-7.00041-2</u>. Mosby.

540	62.	Goggin KP, Gonzalez-Pena V, Inaba Y, Allison KJ, Hong DK, Ahmed AA, Hollemon D, Natarajan S,
541		Mahmud O, Kuenzinger W, Youssef S, Brenner A, Maron G, Choi J, Rubnitz JE, Sun Y, Tang L,
542		Wolf J, Gawad C. 2020. Evaluation of Plasma Microbial Cell-Free DNA Sequencing to Predict
543		Bloodstream Infection in Pediatric Patients With Relapsed or Refractory Cancer. JAMA Oncol
544		6:552-556.
545	63.	Solanky D, Ahmed AA, Fierer J, Golts E, Jones M, Mehta SR. 2022. Utility of plasma microbial cell-
546		free DNA decay kinetics after aortic valve replacement for Bartonella endocarditis: case report.
547		Front Trop Dis 3:842100.
548	64.	Ahsouri N, Nieves D, Singh J, Arrieta A. 2022. Serial Microbial Cell-Free DNA Next Generation
549		Sequencing (NGS) As A Means of Diagnosis and Monitoring of Clinical Response To Treatment Of
550		Invasive Fungal Infections (IFI) In Immunocompromised Pediatric Patients, abstr IDWeek 2022,
551		Washington, D.C., October 21, 2022.
552	65.	Griffith BP, Goerlich CE, Singh AK, Rothblatt M, Lau CL, Shah A, Lorber M, Grazioli A, Saharia KK,
553		Hong SN, Joseph SM, Ayares D, Mohiuddin MM. 2022. Genetically Modified Porcine-to-Human
554		Cardiac Xenotransplantation. N Engl J Med 387:35-44.
555	66.	Conville PS, Brown-Elliott BA, Witebsky FG. February 2019. Nocardia, Rhodococcus, Gordonia,
556		Actinomadura, Streptomyces, and other aerobic actinomycetes. In Carroll KC, Pfaller MA, Landry
557		ML, McAdam AJ, Patel R, Richter SS, Warnock DW (ed), Manual of Clinical Microbiology, 12th ed.
558		ASM Press.
559	67.	Caulfield AJ, Elvira, Brown-Elliott BA, Wallace J, Richard J., Wengenack NL. February 2019.
560		Mycobacterium: laboratory characteristics of slowly growing mycobacteria other than
561		Mycobacterium tuberculosis. In Carroll KC, Pfaller MA, Landry ML, McAdam AJ, Patel R, Richter
562		SS, Warnock DW (ed), Manual of Clinical Microbiology, 12th ed. ASM Press.

563	68.	Brown-Elliott BA, Wallace J, Richard J. February 2019. <i>Mycobacterium</i> : clinical and laboratory
564		characteristics of rapidly growing mycobacteria. In Carroll KC, Pfaller MA, Landry ML, McAdam
565		AJ, Patel R, Richter SS, Warnock DW (ed), Manual of Clinical Microbiology, 12th ed. ASM Press.
566	69.	Centers for Disease Control and Prevention (CDC). 2022 National Notifiable Infectious Diseases.
567		https://ndc.services.cdc.gov/search-results-year/. Accessed March 1, 2022.
568	70.	Hoffmann K, Pawlowska J, Walther G, Wrzosek M, de Hoog GS, Benny GL, Kirk PM, Voigt K.
569		2013. The family structure of the Mucorales: a synoptic revision based on comprehensive
570		multigene-genealogies. Persoonia 30:57-76.

572 **Table 1.** Plasma mcfDNA sequencing test performance metrics in production, April 2018–end of

573 September 2021.

Metric	Production ¹	Validation ²
Sample acceptance rate	98%	98%
Total yield	96%	98%
First pass yield	91%	91%
Results delivered next operational day	90%	90%

574

¹Based on 20,087 clinical samples received during this study.

²Based on 2,000 clinical samples tested as part of the initial Karius Test validation study (12)

 Table 2.
 ICD10 codes by principal diagnosis type for those patients with ICD10 codes indicated on Karius TRFs (N=4,423), April 2018–September

2021.

Principal diagnosis type (ICD10-CM Chapter)	Total	IC	Fever	Sepsis
(Unmappable)	68			
Conditions not elsewhere classified	1437		722	
Respiratory system diseases	800			
Neoplasms	580	288		
Infectious/parasitic diseases	543	47		231
Blood diseases	485	320		
Circulatory system diseases	416			
Factors influencing health status and contact with health services	290	140		
Musculoskeletal system diseases	259	9		
Nervous system diseases	242			

Digestive system diseases	162	21		
Skin diseases	111			
Genitourinary system diseases	101	15		
Endocrine/metabolic diseases	91	4		
Injury, poisoning, external causes	83	25		
Congenital malformations	76			
Codes for special purposes	20			
Eye/adnexa diseases	16			
Mental/behavioral disorders	13			
Ear/mastoid diseases	7			
Pregnancy/childbirth	7			
External causes of morbidity	3			
Total number of patients by diagnosis chapter	5810	869	722	231

TRF = test report form. IC = immunocompromised. Fever: any ICD10 starting with "R50"; sepsis: any ICD10 starting with "A41"; IC: any ICD10 annotated as immunocompromised from AHRQ code list. Each TRF could contain up to 2 ICD10 codes, and each patient had between 1–5 unique ICD10 codes. For the study period, there were 15,165 patients with a positive or negative report (18,690 reports).

Table 3. Top 50 taxa detected by sorted microorganism group (bacteria, fungi, and viruses) and then alphabetically by taxon name with number detected and median and IQR of molecules/ μ l (MPM) values for each taxon, April 2018–September 2021.

Taxon name	Number	Median (MPM)	IQR (MPM)
	detected		
Bacteria			
Acinetobacter haemolyticus	199	142.97	192.68
Bacteroides fragilis	217	264.74	1,046.1
Bacteroides ovatus	133	141.43	476.14
Bacteroides thetaiotaomicron	146	221.79	742.60
Bacteroides vulgatus	392	153.01	413.32
Enterobacter cloacae complex	343	821.34	6,742.3
Enterococcus faecalis	582	617.90	3,285.1
Enterococcus faecium	510	687.63	3,958.3
Escherichia coli	1088	684.92	3,623.1
Fusobacterium nucleatum	299	460.25	1,922.03
Haemophilus influenzae	288	157.09	425.59
Haemophilus parainfluenzae	178	284.92	1,121.1
Helicobacter pylori	207	217.44	601.83
Klebsiella pneumoniae	501	910.19	5,889.84
Lactobacillus fermentum	165	256.13	1,058.0
Lactobacillus rhamnosus	281	344.33	1,250.1
Prevotella melaninogenica	509	208.52	545.66

Prevotella oris	170	517.78	2,094.07
Pseudomonas aeruginosa	817	1,005.18	6,874.18
Rothia dentocariosa	110	117.02	256.72
Rothia mucilaginosa	454	177.53	369.36
Serratia marcescens	99	492.72	2,956.54
Staphylococcus aureus	561	838.21	5,665.43
Staphylococcus epidermidis	716	579.58	2,689.68
Staphylococcus haemolyticus	92	1,137.08	5,450.01
Stenotrophomonas maltophilia	169	1,983.18	11,864.14
Streptococcus intermedius	100	354.95	1,048.47
Streptococcus mitis	356	226.15	897.48
Streptococcus oralis	140	235.54	730.42
Streptococcus parasanguinis	186	152.35	298.03
Streptococcus pneumoniae	214	975.48	11,933.10
Streptococcus pyogenes	95	1,064.08	9,773.54
Streptococcus salivarius	104	253.73	799.10
Streptococcus thermophilus	184	190.84	339.33
Veillonella dispar	162	140.88	269.85
Veillonella parvula	256	202.30	476.57
Fungi			
Aspergillus fumigatus	186	300.10	723.60
Candida albicans	260	624.63	2,074.97
Candida glabrata	113	611.85	1,449.20

Candida tropicalis	103	784.49	3,997.85
Pneumocystis jiroveci	258	2,452.78	18,084.89
Viruses	1		
BK polyomavirus	354	472.38	2,677.18
Cytomegalovirus	1275	633.93	3,889.67
Epstein-Barr virus	902	272.34	852.32
Herpes simplex virus type 1	479	754.78	3,208.06
Human herpesvirus 6B	468	518.74	3,268.72
Human herpesvirus 7	98	82.74	342.37
Human adenovirus B	100	3,184.75	69,714.71
Human adenovirus C	171	573.87	10,160.48
Torque teno virus	135	484.19	1,935.97

Figure Captions

Fig. 1. Number of detections by the Karius test of the different super groups of taxa, Apr 2018–Sept 2021, N=22,792: bacteria, 16,221; viruses, 4,737; fungi, 1,758; and parasites, 70. Percentages reflect proportion of total number of detections spanning 701 microbial taxa.

Fig. 2. Number of detected taxa counts per report for all positive reports, Apr 2018–Sept 2021.

Percentages reflect the proportion of all positive reports (N=10,752).

Fig. 3. Frequency distribution of Legionella-like organisms detected, n=80 (<1% of all bacterial

detections, N=16,203), Apr 2018–Sept 2021.

Fig. 4. Frequency distribution of Nocardia spp. detections, n=76 (<1% bacterial detections, N=16,203),

Apr 2018–Sept 2021. *Indicates species more frequently isolated from clinical specimens (66).

+Indicates species-specific susceptibility patterns (51)

Fig. 5. Frequency distribution of Mycobacterium spp. detections, n=156 (1% of all bacterial detections,

N=16,203), Apr 2018–Sept 2021. *Indicates slowly growing mycobacteria of established clinical

significance (67). †Indicates rapidly growing mycobacteria considered common human pathogens.

‡Indicates rapidly growing mycobacteria considered less common or rare human pathogens (68).

Fig. 6. Frequency distribution of zoonotic and vector borne bacteria detections, n=247 (2% of all

bacterial detections, N=16,203), Apr 2018–Sept 2021. *Indicates bacteria causing a nationally notifiable infectious disease (69).

Fig. 7. Frequency distribution of *Candida* spp. detections, n=648 (36% of all fungal detections, N=1,776), Apr 2018–Sept 2021.

Fig. 8. Frequency distribution of *Aspergillus* spp. detections, n=374 (21% of all fungal detections, n=1,776), Apr 2018–Sept 2021. *Indicates most common pathogenic species.

Fig 9. Frequency distribution of detections in the order *Mucorales*, n=196 (11% of all fungal detections, N=1,776), Apr 2018–Sept 2021. *Indicates taxa implicated in human mucormycosis (70).

Fig 10. Frequency distribution of detections of systemic dimorphic fungi, n=78 (4% of all fungal

detections, N=1,776), Apr 2018–Sept 2021.

Fig 11. Frequency distribution of detections of dematiaceous fungi, n=33 (2% of all fungal detections,

N=1,776), Apr 2018–Sept 2021.

Fig 12. Frequency distribution of detections of protozoan parasites, n=57 (89% of all eukaryotic parasite

detections, N=64), Apr 2018-Sept 2021.

Supplemental Table 1. All 701 taxa detected in reports with number detected and median and

interquartile range for quantification in molecules/µl (MPM) for each taxon, Apr 2018–Sept 2021. The

top 50 detected are highlighted in **bold**.

Taxa name	Number	Median	IQR
	detected	МРМ	
Abiotrophia defectiva	17	123.78	299.60
Acanthamoeba	1	12,186.93	0.00
Acetobacter nitrogenifigens	2	168.78	20.74
Achromobacter insolitus	1	37,178.62	0.00
Achromobacter ruhlandii	6	482.95	1,836.01
Achromobacter xylosoxidans	32	689.96	2,977.61
Acidaminococcus intestini	10	440.20	634.82
Acidovorax citrulli	2	53,316.31	37,869.12
Acinetobacter baumannii	27	289.72	809.16
Acinetobacter bereziniae	1	441.41	0.00
Acinetobacter haemolyticus	199	142.97	192.68
Acinetobacter nosocomialis	2	37.02	12.10
Acinetobacter pittii	10	419.25	1,648.00
Acinetobacter radioresistens	3	53.56	207.40
Acinetobacter soli	2	142.97	58.05
Acinetobacter ursingii	8	122.31	205.92
Actinomyces europaeus	1	54.51	0.00
Actinomyces gerencseriae	1	1,318.27	0.00

Actinomyces graevenitzii	39	145.47	205.79
Actinomyces israelii	10	89.85	180.58
Actinomyces massiliensis	1	82.41	0.00
Actinomyces neuii	4	2,279.05	25,827.25
Actinomyces odontolyticus	32	87.49	162.81
Actinomyces oris	25	134.56	124.41
Actinomyces turicensis	2	346.60	212.30
Actinomyces viscosus	45	87.93	98.10
Adeno-associated dependoparvovirus A	25	1,611.82	9,610.65
Aerococcus christensenii	2	466.47	402.10
Aerococcus urinae	2	3,266.81	2,733.34
Aerococcus viridans	2	61.26	36.48
Aeromonas caviae	13	69.51	84.93
Aeromonas hydrophila	1	197.69	0.00
Aggregatibacter actinomycetemcomitans	15	1,841.34	23,328.59
Aggregatibacter aphrophilus	29	1,041.16	18,934.90
Aggregatibacter segnis	24	664.17	1,392.99
Agrobacterium tumefaciens	7	123.86	41.69
Alloscardovia omnicolens	5	113.08	83.54
Alphapapillomavirus 9	4	14,786.35	29,889.21
Alternaria alternata	11	142.47	315.88
Alternaria arborescens	1	106.86	0.00
Anaerobiospirillum succiniciproducens	1	86.80	0.00

Anaerococcus hydrogenalis	2	763.57	645.00
Anaerococcus lactolyticus	2	495.87	213.92
Anaerococcus prevotii	2	72.70	27.37
Anaerococcus tetradius	3	2,981.82	1,234.60
Anaeroglobus geminatus	8	283.70	351.35
Anaerostipes caccae	5	963.17	458.19
Anaplasma phagocytophilum	6	27,154.21	120,865.63
Anncaliia algerae	1	117,297.14	0.00
Arcanobacterium haemolyticum	1	192.25	0.00
Aspergillus calidoustus	17	264.07	753.65
Aspergillus chevalieri	2	36.04	12.13
Aspergillus flavus	54	543.15	2,437.50
Aspergillus fumigatus	186	300.10	723.60
Aspergillus glaucus	3	64.01	25.74
Aspergillus lentulus	3	5,783.25	4,067.74
Aspergillus luchuensis	3	108.15	92,159.37
Aspergillus niger	23	150.50	403.84
Aspergillus nomiae	1	85.74	0.00
Aspergillus nomius	1	387.11	0.00
Aspergillus novofumigatus	1	214.80	0.00
Aspergillus oryzae	41	349.37	1,739.82
Aspergillus pseudoterreus	1	108.95	0.00
Aspergillus ruber	3	22.40	13.31

Aspergillus sydowii	3	80.90	16.85
Aspergillus terreus	12	399.25	1,965.25
Aspergillus thermomutatus	1	15.53	0.00
Aspergillus tubingensis	16	576.23	8,260.64
Aspergillus udagawae	3	48.37	103.09
Atopobium parvulum	18	122.20	203.85
Atopobium rimae	5	352.99	869.84
Atopobium vaginae	11	411.66	499.92
Aureobasidium melanogenum	1	13.31	0.00
Aureobasidium pullulans	3	336.28	947.39
Aureobasidium subglaciale	1	1,247.08	0.00
Babesia microti	1	162,139.56	0.00
Bacillus cereus	51	926.50	10,719.62
Bacillus coagulans	1	150.16	0.00
Bacillus licheniformis	1	73.56	0.00
Bacillus megaterium	1	144.20	0.00
Bacillus subtilis	1	75.10	0.00
Bacillus thuringiensis	11	358.99	3,434.89
Bacteroides caccae	52	98.68	308.62
Bacteroides distasonis	80	141.94	297.31
Bacteroides eggerthii	4	370.01	662.35
Bacteroides faecis	17	264.41	1,469.41
Bacteroides forsythus	2	50.32	0.95

Bacteroides fragilis	217	264.74	1,046.15
Bacteroides merdae	31	111.12	134.39
Bacteroides ovatus	133	141.43	476.14
Bacteroides pyogenes	2	132.40	13.83
Bacteroides salyersiae	2	4,234.08	2,497.91
Bacteroides stercoris	36	113.62	186.94
Bacteroides thetaiotaomicron	146	221.79	742.60
Bacteroides uniformis	90	182.90	380.86
Bacteroides vulgatus	392	153.01	413.32
Balamuthia mandrillaris	1	99.03	0.00
Bartonella clarridgeiae	3	759.52	2,412.20
Bartonella henselae	90	2,912.27	15,938.61
Bartonella quintana	5	36,551.67	40,236.66
Bartonella vinsonii	2	13,357.39	13,293.11
Bergeyella zoohelcum	1	113.67	0.00
Bifidobacterium adolescentis	1	54.54	0.00
Bifidobacterium animalis	4	155.74	138.28
Bifidobacterium breve	26	285.78	3,313.08
Bifidobacterium dentium	3	65.97	108.26
Bifidobacterium longum	39	196.50	457.04
Bifidobacterium scardovii	2	118.98	83.45
Bipolaris papendorfii	1	2,432.40	0.00
BK polyomavirus	354	472.38	2,677.18

Blastomyces dermatitidis	10	848.96	1,341.24
Bordetella bronchiseptica	2	4,526.17	4,177.42
Bordetella hinzii	1	128.84	0.00
Bordetella pertussis	2	92.47	43.01
Bordetella trematum	1	76.35	0.00
Borrelia burgdorferi	1	195.35	0.00
Borrelia hermsii	1	988.13	0.00
Brachyspira pilosicoli	1	92.04	0.00
Brevibacterium casei	10	131.21	284.45
Brevundimonas diminuta	3	132.30	392.15
Brucella melitensis	5	373.73	386.84
Bulleidia extructa	3	271.01	197.25
Burkholderia ambifaria	2	909.75	831.71
Burkholderia anthina	1	108.71	0.00
Burkholderia cenocepacia	4	233.10	667.72
Burkholderia cepacia	6	319.85	569.70
Burkholderia cepacia complex	46	105.98	270.69
Burkholderia contaminans	7	78.48	47.62
Burkholderia gladioli	5	136.42	160.50
Burkholderia multivorans	14	108.65	397.76
Campylobacter coli	1	550.26	0.00
Campylobacter concisus	27	203.89	336.72
Campylobacter curvus	4	159.86	213.02

Campylobacter fetus	3	398.01	1,838.80
Campylobacter gracilis	4	91.15	144.24
Campylobacter jejuni	6	230.28	219.37
Campylobacter showae	8	320.77	351.41
Campylobacter upsaliensis	2	69.79	19.83
Campylobacter ureolyticus	6	110.70	380.34
Candida albicans	260	624.63	2,074.97
Candida carpophila	5	15,987.23	22,145.87
Candida dubliniensis	38	1,130.01	2,173.12
Candida glabrata	113	611.85	1,449.20
Candida kefyr	4	195.64	1,330.87
Candida krusei	17	2,806.67	26,774.01
Candida lusitaniae	5	840.07	645.34
Candida orthopsilosis	5	3,068.99	10,092.36
Candida parapsilosis	72	447.94	2,020.79
Candida tropicalis	103	784.49	3,997.85
Candida utilis	4	147.35	47.24
Capnocytophaga canimorsus	6	3,404.20	9,150.42
Capnocytophaga gingivalis	13	139.37	206.78
Capnocytophaga granulosa	1	304.45	0.00
Capnocytophaga ochracea	3	433.17	372.25
Capnocytophaga sputigena	15	95.80	296.68
Cardiobacterium hominis	26	8,419.91	23,662.49

Cellulomonas flavigena	4	87.77	83.74
Chimpanzee alpha-1 herpesvirus	3	6,380.71	15,691.54
Chlamydia pneumoniae	1	185.79	0.00
Chlamydia trachomatis	2	94.87	43.63
Chlamydophila pneumoniae	1	178.58	0.00
Chromobacterium haemolyticum	1	670.28	0.00
Chryseobacterium indologenes	2	846.11	538.86
Citrobacter amalonaticus	12	128.09	1,209.45
Citrobacter braakii	9	317.67	550.18
Citrobacter freundii	48	318.96	2,449.89
Citrobacter koseri	20	2,213.27	8,786.56
Cladophialophora bantiana	3	65.05	105.91
Clavispora lusitaniae (Candida lusitaniae)	4	2,031.99	6,036.17
Clostridioides difficile (Clostridium difficile)	10	418.00	1,377.85
Clostridium baratii	3	63.89	31.30
Clostridium bifermentans	1	12,394.39	0.00
Clostridium butyricum	14	359.16	1,482.07
Clostridium cadaveris	2	134,104.38	133,713.96
Clostridium clostridioforme	23	168.39	149.54
Clostridium difficile	11	359.74	839.88
Clostridium hylemonae	3	248.36	720.76
Clostridium innocuum	81	199.92	359.57
Clostridium neonatale	12	213.37	209.89

Clostridium novyi	1	2,231.87	0.00
Clostridium paraputrificum	8	113.22	379.46
Clostridium perfringens	25	145.68	3,153.06
Clostridium sordellii	2	399.72	333.56
Clostridium ventriculi	8	313.30	1,235.18
Coccidioides immitis	14	136.76	113.94
Coccidioides posadasii	4	179.60	828.91
Comamonas kerstersii	1	47.81	0.00
Comamonas testosteroni	1	3,272.81	0.00
Conidiobolus incongruus	1	48.23	0.00
Corynebacterium accolens	2	64.43	43.63
Corynebacterium afermentans	9	98.51	75.43
Corynebacterium amycolatum	27	496.48	809.76
Corynebacterium aurimucosum	13	81.42	136.10
Corynebacterium diphtheriae	3	4,891.94	3,193.06
Corynebacterium freneyi	1	47.98	0.00
Corynebacterium jeikeium	16	625.78	1,064.80
Corynebacterium kroppenstedtii	7	100.38	428.77
Corynebacterium massiliense	3	70.34	909.02
Corynebacterium matruchotii	6	127.24	247.41
Corynebacterium minutissimum	2	89.98	32.45
Corynebacterium propinquum	11	324.85	832.56
Corynebacterium pseudodiphtheriticum	2	12,671.39	12,436.87

Corynebacterium riegelii	1	423.76	0.00
Corynebacterium striatum	40	844.16	1,833.64
Corynebacterium urealyticum	2	382.25	270.50
Corynebacterium ureicelerivorans	1	358.20	0.00
Corynebacterium xerosis	1	36.10	0.00
Coxiella burnetii	10	1,059.25	6,607.37
Cronobacter sakazakii (Enterobacter sakazakii)	3	238.87	9,741.76
Cryptococcus gattii VGIII (Cryptococcus	1	170.32	0.00
bacillisporus)			
Cryptococcus neoformans	6	618.88	748.02
Cryptosporidium hominis	1	26.58	0.00
Cryptosporidium parvum	2	502.43	33.62
Cunninghamella	17	2,125.97	5,735.88
Cupriavidus gilardii	1	7,409.84	0.00
Cupriavidus metallidurans	4	118.73	133.91
Curvularia lunata	2	1,038.94	938.16
Curvularia papendorfii (Bipolaris papendorfii)	1	364.16	0.00
Cutibacterium granulosum (Propionibacterium	1	430.63	0.00
granulosum)			
Cyberlindnera fabianii (Hansenula fabianii)	1	826.61	0.00
Cyberlindnera jadinii (Candida utilis)	1	47.54	0.00
Cyclospora cayetanensis	1	34,376.00	0.00
Cytomegalovirus (CMV)	1275	633.93	3,889.67

Delftia acidovorans	3	145.56	656.29
Dermacoccus nishinomiyaensis	12	215.47	245.46
Dialister micraerophilus	1	3,320.59	0.00
Dysgonomonas capnocytophagoides	2	1,105.81	879.71
Dysgonomonas mossii	2	3,397.16	2,953.55
Echinococcus multilocularis	2	365.15	10.57
Eggerthella lenta	5	361.83	768.91
Ehrlichia chaffeensis	15	638,224.07	27,830,155.73
Ehrlichia muris	1	167,462.89	0.00
Eikenella corrodens	11	197.05	345.79
Elizabethkingia anophelis	3	1,740.10	1,595.66
Encephalitozoon cuniculi	1	138.90	0.00
Encephalitozoon hellem	1	738.90	0.00
Entamoeba histolytica	4	217.00	177.36
Enterobacter aerogenes	18	582.41	1,517.71
Enterobacter cloacae complex	343	821.34	6,742.30
Enterobacter sakazakii	1	69.47	0.00
Clostridium clostridioforme	26	228.09	873.58
Enterococcus avium	34	321.64	2,834.41
Enterococcus casseliflavus	12	80.85	717.36
Enterococcus cecorum	2	24.05	0.14
Enterococcus durans	11	1,163.27	5,902.22
Enterococcus faecalis	582	617.90	3,285.15

Enterococcus faecium	510	687.63	3,958.33
Enterococcus gallinarum	42	498.60	1,084.89
Enterococcus gilvus	1	14.74	0.00
Enterococcus hirae	1	2,013.10	0.00
Enterococcus italicus	1	22.57	0.00
Enterococcus mundtii	3	110.99	313.15
Enterococcus raffinosus	21	760.91	8,028.00
Enterococcus saccharolyticus	1	22.43	0.00
Enterocytozoon bieneusi	5	4,069.52	4,182.75
Epstein-Barr virus (EBV)	902	272.34	852.32
Erwinia billingiae	1	363.57	0.00
Erysipelothrix rhusiopathiae	2	112.31	46.47
Escherichia albertii	1	680.08	0.00
Escherichia coli	1088	684.92	3,623.17
Eubacterium limosum	3	161.41	3,525.21
Eubacterium nodatum	4	414.98	459.34
Exophiala dermatitidis	3	15,333.38	43,020.90
Exophiala oligosperma	1	120.68	0.00
Exophiala sideris	1	53.15	0.00
Exophiala xenobiotica	2	107.22	44.29
Fenollaria massiliensis	1	92.90	0.00
Filifactor alocis	11	180.11	503.01
Filobasidium wieringae	1	1,067.05	0.00

Finegoldia magna	10	66.60	154.12
Fluoribacter bozemanae (Legionella bozemanae)	5	696.51	172.05
Francisella tularensis	5	1,300.91	3,708.73
Fusarium euwallaceae	3	146.05	2,243.26
Fusarium fujikuroi	1	1,197.99	0.00
Fusarium graminearum	1	24.47	0.00
Fusarium oxysporum	3	424.38	612.34
Fusarium proliferatum	5	55.47	34.81
Fusarium solani	6	205.17	150.05
Fusobacterium mortiferum	7	462.67	2,476.66
Fusobacterium necrophorum	38	3,678.24	26,778.68
Fusobacterium nucleatum	299	460.25	1,922.08
Fusobacterium periodonticum	34	178.91	241.99
Fusobacterium ulcerans	5	55.62	49.69
Fusobacterium varium	2	49.18	23.25
Gardnerella vaginalis	34	138.12	203.18
Gemella bergeri	6	76,955.37	452,814.11
Gemella haemolysans	32	178.44	316.61
Gemella morbillorum	15	215.69	845.80
Gemella sanguinis	8	163.63	721.34
Gleimia europaea (Actinomyces europaeus)	2	103.94	33.67
Gordonia aichiensis	1	65.41	0.00
Gordonia bronchialis	6	219.80	71.67

Gordonia terrae	1	25.50	0.00
Granulicatella adiacens	34	273.92	1,115.83
Granulicatella elegans	4	169.28	252.13
Graphilbum fragrans	1	65.53	0.00
Haemophilus haemolyticus	23	205.44	720.41
Haemophilus influenzae	288	157.09	425.59
Haemophilus parahaemolyticus	9	184.28	338.82
Haemophilus parainfluenzae	178	284.92	1,121.19
Haemophilus quentini	11	125.14	219.98
Haemophilus sputorum	1	331.33	0.00
Hafnia paralvei	6	13,126.59	26,361.30
Helicobacter bilis	10	293.61	119.67
Helicobacter cinaedi	11	116.73	113.48
Helicobacter fennelliae	2	130.12	41.01
Helicobacter magdeburgensis	5	133.98	748.86
Helicobacter pylori	207	217.44	601.83
Herpes simplex virus type 1 (HSV-1)	479	754.78	3,208.06
Herpes simplex virus type 2 (HSV-2)	86	324.72	2,900.39
Histoplasma capsulatum	43	2,614.46	22,781.42
Human adenovirus A	30	3,030.46	31,375.54
Human adenovirus B	100	3,184.75	69,714.71
Human adenovirus C	171	573.87	10,160.48
Human adenovirus D	26	451.67	1,427.75

Human adenovirus E	1	107,282.84	0.00
Human bocavirus	29	1,220.78	5,360.88
Human herpesvirus 6A	54	182.72	697.25
Human herpesvirus 6B	468	518.74	3,268.72
Human herpesvirus 7	98	82.74	342.37
Human papillomavirus 2	2	47.34	3.09
Human parvovirus	5	239.40	2,068.01
Human parvovirus B19	11	8,084.47	15,721.03
Human polyomavirus 6	25	122.57	278.60
Human polyomavirus 7	8	269.11	681.14
Janibacter indicus	5	129.90	42.67
JC polyomavirus	52	224.82	417.80
Kaposi sarcoma-associated herpesvirus	42	593.21	4,796.06
KI polyomavirus	4	1,975.32	5,069.99
Kingella denitrificans	3	79.66	60.33
Kingella kingae	18	180.36	297.50
Klebsiella aerogenes	22	184.60	926.18
Klebsiella aerogenes (Enterobacter aerogenes)	45	3,056.44	6,026.75
Klebsiella michiganensis	53	1,210.50	10,222.36
Klebsiella oxytoca	31	542.85	2,449.33
Klebsiella pneumoniae	501	910.19	5,889.84
Klebsiella quasipneumoniae	32	431.21	12,757.58
Klebsiella variicola	56	655.76	4,440.31

Kluyvera ascorbata	2	258.18	136.69
Kluyvera cryocrescens	2	126.26	113.58
Kluyveromyces marxianus (Candida kefyr)	5	708.32	6,149.77
Kocuria kristinae	1	188.97	0.00
Kocuria rhizophila	9	114.18	742.54
Kytococcus sedentarius	15	131.57	375.38
Lactobacillus acidophilus	25	285.46	2,591.23
Lactobacillus casei	71	426.98	1,772.48
Lactobacillus crispatus	23	239.98	332.32
Lactobacillus fermentum	165	256.13	1,058.08
Lactobacillus gasseri	89	295.93	1,023.59
Lactobacillus iners	8	210.70	1,157.73
Lactobacillus jensenii	8	418.21	2,797.12
Lactobacillus plantarum	18	187.50	707.49
Lactobacillus rhamnosus	281	344.33	1,250.14
Lactobacillus sakei	2	97.72	76.11
Lactobacillus ultunensis	3	98.39	53.35
Lactococcus garvieae	1	52.98	0.00
Lawsonella clevelandensis	2	715.24	169.78
Leclercia adecarboxylata	2	80.78	37.28
Legionella anisa	3	2,719.09	2,035.94
Legionella bozemanae	1	396,695.61	0.00
Legionella bozemaniae	3	391.47	418,155.06

Legionella brunensis	1	400.54	0.00
Legionella cincinnatiensis	1	76.45	0.00
Legionella feeleii	6	1,093.57	7,557.04
Legionella hackeliae	1	270.00	0.00
Legionella jordanis	1	1,330.26	0.00
Legionella longbeachae	6	1,234.99	3,502.14
Legionella maceachernii	7	4,043.52	6,027.02
Legionella micdadei	3	14,462.63	12,364.41
Legionella pneumophila	33	3,071.64	70,034.47
Legionella sainthelensi	3	24,516.11	1,247,656.68
Legionella tunisiensis	1	76,444.86	0.00
Leishmania panamensis	1	3,351.42	0.00
Lelliottia amnigena (Enterobacter amnigenus)	1	34.22	0.00
Leptospira borgpetersenii	1	40.53	0.00
Leptospira interrogans	4	3,951.60	4,351.77
Leptospira kirschneri	6	837.62	244.70
Leptospira noguchii	1	382.24	0.00
Leptospira santarosai	2	331.11	47.28
Leptotrichia buccalis	1	578.89	0.00
Leptotrichia goodfellowii	2	598.58	464.03
Leptotrichia shahii	3	152.79	128.74
Leptotrichia wadei	9	681.54	664.48
Leuconostoc citreum	3	183.37	46.15

Leuconostoc lactis	10	429.96	1,566.93
Leuconostoc mesenteroides	5	65.09	97.47
Lichtheimia corymbifera	9	9,539.75	146,942.20
Lichtheimia ramosa	6	2,440.46	3,281.24
Listeria monocytogenes	3	299.93	51,690.46
Lomentospora prolificans	2	1,043.36	828.85
Macrophomina phaseolina	1	5,088.66	0.00
Malassezia dermatis	1	84.77	0.00
Malassezia globosa	19	109.37	131.24
Malassezia obtusa	1	294.10	0.00
Malassezia slooffiae	1	148.67	0.00
Megasphaera micronuciformis	18	300.41	825.26
Merkel cell polyomavirus	11	126.20	386.54
Methanobrevibacter smithii	6	1,386.70	7,847.25
Meyerozyma carpophila (Candida carpophila)	1	850.50	0.00
Microbacterium maritypicum	4	21,879.00	46,834.91
Micrococcus luteus	19	80.09	114.24
Micrococcus lylae	5	251.86	432.35
Mogibacterium timidum	3	2,569.39	1,946.72
Molluscum contagiosum virus	1	128.37	0.00
Moraxella catarrhalis	67	190.58	3,101.78
Moraxella nonliquefaciens	4	110.85	95.32
Morganella morganii	9	172.14	2,192.56

Morococcus cerebrosus	59	160.88	263.25
Mucor circinelloides	7	707.09	1,792.86
Mucor indicus	4	884.52	764.34
Mucor velutinosus	4	1,267.27	3,840.99
Myceliophthora thermophila	1	2,931.91	0.00
Mycobacterium abscessus	6	123.48	93.43
Mycobacterium avium complex (MAC)	43	1,009.09	6,486.08
Mycobacterium brisbanense	1	20.42	0.00
Mycobacterium canariasense	1	8,880.45	0.00
Mycobacterium celatum	1	135.09	0.00
Mycobacterium chimaera	18	1,311.56	4,304.26
Mycobacterium fortuitum	4	11,318.29	19,170.07
Mycobacterium genavense	1	2,789.10	0.00
Mycobacterium haemophilum	3	711.97	558.62
Mycobacterium iranicum	1	3,496.88	0.00
Mycobacterium kansasii	7	283.80	1,092.27
Mycobacterium kyorinense	1	193.95	0.00
Mycobacterium mageritense	3	77.31	13.50
Mycobacterium mucogenicum	2	2,373.76	2,352.27
Mycobacterium neoaurum	1	98.35	0.00
Mycobacterium obuense	1	28.27	0.00
Mycobacterium szulgai	1	613.94	0.00
Mycobacterium tuberculosis complex	31	529.86	1,839.79

Mycobacterium xenopi	1	145.68	0.00
Mycobacteroides abscessus (Mycobacterium	10	986.83	2,176.30
abscessus)			
Mycobacteroides chelonae (Mycobacterium	3	99.55	11,021.03
chelonae)			
Mycolicibacterium brisbanense (Mycobacterium	1	31.90	0.00
brisbanense)			
Mycolicibacterium chubuense (Mycobacterium	1	60.58	0.00
chubuense)			
Mycolicibacterium elephantis (Mycobacterium	1	124.16	0.00
elephantis)			
Mycolicibacterium flavescens (Mycobacterium	1	111.66	0.00
flavescens)			
Mycolicibacterium fortuitum (Mycobacterium	1	6,851.84	0.00
fortuitum)			
Mycolicibacterium goodii (Mycobacterium	1	54.03	0.00
goodii)			
Mycolicibacterium holsaticum (Mycobacterium	1	108.30	0.00
holsaticum)			
Mycolicibacterium mageritense (Mycobacterium	3	46.13	132.81
mageritense)			
Mycolicibacterium mucogenicum	4	138.57	58.87
(Mycobacterium mucogenicum)			

Mycolicibacterium obuense (Mycobacterium	1	174.52	0.00
obuense)			
Mycolicibacterium phlei (Mycobacterium phlei)	1	100.16	0.00
Mycoplasma fermentans	1	46.76	0.00
Mycoplasma genitalium	1	72.01	0.00
Mycoplasma hominis	22	850.33	2,985.97
Mycoplasma orale	1	27,016.86	0.00
Mycoplasma pneumoniae	30	501.76	875.94
Naegleria fowleri	1	252,165.62	0.00
Nectria haematococca	8	214.71	264.23
Neisseria bacilliformis	6	84.41	125.81
Neisseria cinerea	19	189.75	436.40
Neisseria elongata	16	199.41	1,823.69
Neisseria flavescens	50	233.39	674.51
Neisseria gonorrhoeae	7	172.42	1,700.95
Neisseria lactamica	7	91.14	313.20
Neisseria meningitidis	4	742.84	923.05
Neisseria mucosa	65	263.79	747.92
Neisseria polysaccharea	1	2,405.17	0.00
Neisseria sicca	54	176.64	296.18
Neisseria weaveri	1	55.19	0.00
Nocardia abscessus	5	540.43	263.13
Nocardia africana	1	1,745.35	0.00

Nocardia alba	1	221.70	0.00
Nocardia aobensis	1	1,122.03	0.00
Nocardia arthritidis	1	316.63	0.00
Nocardia asiatica	2	634.77	331.76
Nocardia beijingensis	1	7,533.17	0.00
Nocardia brasiliensis	3	5,028.15	22,899.90
Nocardia caishijiensis	1	333.61	0.00
Nocardia coubleae	3	219.76	204.60
Nocardia cyriacigeorgica	19	2,114.43	5,435.89
Nocardia elegans	5	1,652.28	403.11
Nocardia exalbida	4	9,219.34	14,900.52
Nocardia farcinica	6	540.15	17,278.34
Nocardia gamkensis	4	8,265.16	15,257.72
Nocardia ignorata	2	223.45	40.99
Nocardia kruczakiae	1	3,074.36	0.00
Nocardia niwae	1	1,075.16	0.00
Nocardia nova	4	2,145.74	1,737.71
Nocardia pseudobrasiliensis	1	209.14	0.00
Nocardia testacea	3	6,458.07	3,689.88
Nocardia thailandica	2	160.57	9.99
Nocardia transvalensis	1	326.06	0.00
Nocardia veterana	3	248.21	1,373.42
Nocardia violaceofusca	1	1,513.97	0.00

Ochrobactrum anthropi	1	19.02	0.00
Ochrobactrum intermedium	6	67.40	44.55
Odoribacter splanchnicus	15	157.99	419.22
Oligella urethralis	1	95.29	0.00
Olsenella uli	5	304.72	222.00
Ophiostoma piceae	6	95.63	114.04
Oribacterium sinus	3	265.27	101.91
Oscillibacter ruminantium	1	2,177.92	0.00
Pantoea agglomerans	5	39.31	78.68
Pantoea ananatis	2	504.24	322.46
Parabacteroides distasonis (Bacteroides	79	269.11	630.70
distasonis)			
Parabacteroides goldsteinii	11	111.63	126.15
Parabacteroides johnsonii	1	54.45	0.00
Parabacteroides merdae (Bacteroides merdae)	23	267.04	826.60
Paraburkholderia fungorum	5	89.73	76.53
Paracoccus sanguinis	1	22.70	0.00
Paracoccus yeei	3	295.83	977.73
Parvimonas micra	38	265.51	1,536.56
Pasteurella multocida	9	261.01	4,081.62
Pediococcus acidilactici	8	484.76	1,576.94
Pediococcus pentosaceus	2	4,312.04	3,956.29
Penicillium roqueforti	4	131.69	88.00

Peptoniphilus duerdenii	1	193.15	0.00
Peptoniphilus harei	6	299.73	356.95
Peptoniphilus lacrimalis	3	3,704.81	1,953.46
Peptoniphilus rhinitidis	2	148.36	1.24
Peptostreptococcus anaerobius	8	743.25	997.75
Peptostreptococcus stomatis	10	310.75	1,377.27
Pichia kudriavzevii (Candida krusei)	11	284.86	604.41
Plasmodium ovale	1	8,863.02	0.00
Pluralibacter gergoviae	7	117.42	271.47
Pneumocystis jirovecii	258	2,452.78	18,084.89
Porphyromonas asaccharolytica	7	599.60	4,976.40
Porphyromonas gingivalis	27	527.97	2,360.78
Prevotella bivia	32	280.98	2,186.43
Prevotella buccae	12	202.19	235.67
Prevotella buccalis	2	432.39	338.45
Prevotella corporis	2	1,306.48	81.36
Prevotella denticola	49	321.99	646.21
Prevotella disiens	3	780.31	652.28
Prevotella intermedia	20	204.43	633.69
Prevotella loescheii	20	68.05	194.86
Prevotella melaninogenica	509	208.52	545.66
Prevotella nigrescens	26	124.86	309.78
Prevotella oralis	6	510.28	1,443.13

Prevotella oris	170	517.78	2,094.07
Primate bocaparvovirus 1	10	374.61	1,544.80
Primate bocaparvovirus 2	7	149.59	145.24
Primate tetraparvovirus 1 (human PARV-4)	1	264.41	0.00
Propionibacterium acidifaciens	7	81.74	112.48
Propionibacterium granulosum	4	77.79	49.63
Propionibacterium namnetense	8	236.38	505.49
Propionibacterium propionicum	5	39.72	35.85
Proteus mirabilis	50	366.80	1,256.61
Providencia alcalifaciens	2	41.88	12.50
Providencia stuartii	1	77.22	0.00
Pseudomonas aeruginosa	817	1,005.18	6,874.18
Pseudomonas alcaligenes	1	20,990.23	0.00
Pseudomonas citronellolis	9	89.74	52.47
Pseudomonas fluorescens	14	104.27	80.13
Pseudomonas luteola	5	34.43	28.69
Pseudomonas mendocina	17	65.14	56.50
Pseudomonas mosselii	3	257.67	312.30
Pseudomonas oryzihabitans	4	158.89	308.30
Pseudomonas protegens	5	98.79	116.08
Pseudomonas pseudoalcaligenes	50	85.61	106.20
Pseudomonas putida	8	105.42	160.56

Pseudopropionibacterium propionicum	5	114.00	151.83
(Propionibacterium propionicum)			
Pseudoramibacter alactolyticus	1	72.02	0.00
Psychrobacter cryohalolentis	1	161.69	0.00
Rahnella aquatilis	6	84.27	129.68
Raoultella ornithinolytica	7	259.17	11,029.63
Raoultella planticola	1	29.14	0.00
Rhizomucor miehei	7	783.55	37,761.37
Rhizomucor pusillus	39	1,324.54	19,190.65
Rhizopus delemar	23	2,464.98	8,837.62
Rhizopus microsporus	33	1,205.05	5,120.17
Rhizopus oryzae	47	745.33	5,266.62
Rhodococcus fascians	1	43.24	0.00
Rhodococcus hoagii (Rhodococcus equi)	1	98.24	0.00
Rickettsia felis	4	455.07	122,406.01
Rickettsia rickettsii	10	907.26	15,614.55
Rickettsia typhi	30	1,987.46	5,347.61
Robinsoniella peoriensis	3	4,572.89	5,006.42
Roseomonas gilardii	2	75.33	5.30
Roseomonas mucosa	3	95.21	418.92
Rothia aeria	9	454.35	441.59
Rothia dentocariosa	110	117.02	256.72
Rothia mucilaginosa	454	177.53	369.36

Saccharomyces cerevisiae	86	193.62	395.44
Salmonella enterica	24	265.52	1,156.82
Scardovia wiggsiae	2	87.25	7.15
Scedosporium apiospermum	8	190.34	146.48
Scedosporium boydii	5	106.65	424.87
Scedosporium dehoogii	1	381.08	0.00
Schaalia meyeri (Actinomyces meyeri)	2	234.76	82.00
Schaalia odontolytica (Actinomyces	19	190.44	282.48
odontolyticus)			
Schistosoma mansoni	1	277.44	0.00
Serratia fonticola	2	62,730.17	62,354.35
Serratia liquefaciens	3	9,877.18	1,221,938.81
Serratia marcescens	99	492.72	2,956.54
Serratia rubidaea	1	549.62	0.00
Serratia ureilytica	3	5,444.11	5,242.95
Shigella dysenteriae	1	173.68	0.00
Shigella flexneri	4	711.85	1,964.50
Simian adenovirus 18	1	36.28	0.00
Slackia exigua	4	598.89	72,838.71
Sneathia amnii (Leptotrichia amnionii)	1	341.06	0.00
Solobacterium moorei	10	333.44	828.61
Staphylococcus argenteus	3	25,682.94	283,628.41
Staphylococcus arlettae	3	58.20	58.11

Staphylococcus aureus	561	838.21	5,665.43
Staphylococcus auricularis	1	86.31	0.00
Staphylococcus capitis	38	149.01	541.53
Staphylococcus caprae	6	236.48	130.57
Staphylococcus cohnii	11	76.82	130.69
Staphylococcus epidermidis	716	579.58	2,689.68
Staphylococcus haemolyticus	92	1,137.08	5,450.01
Staphylococcus hominis	54	141.13	154.11
Staphylococcus lugdunensis	10	254.58	283.24
Staphylococcus pasteuri	6	159.69	270.05
Staphylococcus pettenkoferi	6	122.64	126.34
Staphylococcus pseudintermedius	1	145.56	0.00
Staphylococcus saprophyticus	6	194.65	143.45
Staphylococcus simulans	2	154.46	55.44
Staphylococcus succinus	1	759.00	0.00
Staphylococcus vitulinus	1	615.92	0.00
Staphylococcus warneri	9	193.36	103.19
Stenotrophomonas acidaminiphila	2	40.38	4.36
Stenotrophomonas maltophilia	169	1,983.18	11,864.14
Streptobacillus moniliformis	6	202.09	238.18
Streptococcus agalactiae	71	1,683.20	8,449.36
Streptococcus anginosus	52	312.50	628.82
Streptococcus canis	2	465.07	256.92

Streptococcus constellatus	29	468.43	852.02
Streptococcus cristatus	3	444.40	211.52
Streptococcus dentisani	2	155.06	78.75
Streptococcus dysgalactiae	22	406.07	1,255.37
Streptococcus equi	2	6,266.23	5,506.19
Streptococcus gallolyticus	3	22,946.94	41,268.98
Streptococcus gordonii	20	180.63	491.75
Streptococcus infantarius	16	171.27	355.90
Streptococcus infantis	28	99.88	223.43
Streptococcus intermedius	100	354.95	1,048.47
Streptococcus lutetiensis	3	213.22	370.59
Streptococcus macedonicus	3	339.48	277.02
Streptococcus massiliensis	2	2,225.28	1,102.37
Streptococcus mitis	356	226.15	897.48
Streptococcus mutans	8	948.77	4,349.85
Streptococcus oralis	140	235.54	730.42
Streptococcus oralis subsp. Dentisani	2	54,008.79	53,104.88
(Streptococcus dentisani)			
Streptococcus oralis subsp. tigurinus	14	141.23	673.16
(Streptococcus tigurinus)			
Streptococcus parasanguinis	186	152.35	298.03
Streptococcus pasteurianus	9	2,240.75	2,414.70
Streptococcus peroris	20	106.46	245.34

Streptococcus pneumoniae	214	975.48	11,933.10
Streptococcus pseudopneumoniae	15	766.78	9,286.51
Streptococcus pyogenes	95	1,064.08	9,773.54
Streptococcus salivarius	104	253.73	799.10
Streptococcus sanguinis	27	269.26	1,348.95
Streptococcus sobrinus	3	96.96	173.72
Streptococcus suis	2	145.34	89.41
Streptococcus thermophilus	184	190.84	339.33
Streptococcus tigurinus	17	144.78	1,095.78
Streptococcus vestibularis	10	202.38	422.82
Streptomyces cattleya	16	114.74	55.64
Strongyloides stercoralis	4	1,512.96	9,478.02
Sutterella wadsworthensis	31	565.51	1,227.99
Syncephalastrum monosporum	2	568.75	6.29
Tannerella forsythia	5	473.15	207.68
Tannerella forsythia (Bacteroides forsythus)	6	174.58	2,910.62
Tatlockia micdadei (Legionella micdadei)	5	3,688.83	2,863.47
Terrisporobacter othiniensis	1	100.14	0.00
Thermothelomyces thermophilus	1	7,097.68	0.00
(Myceliophthora thermophila)			
Thielavia terrestris	1	4,992.52	0.00
Torque teno virus	135	484.19	1,935.97
Torque teno virus 1	7	236.02	200.42

Torque teno virus 10	19	427.60	963.21
Torque teno virus 12	9	289.68	1,425.06
Torque teno virus 15	48	354.03	808.26
Torque teno virus 16	69	314.22	883.45
Torque teno virus 19	8	150.95	221.08
Torque teno virus 27	5	580.18	395.77
Torque teno virus 28	13	501.20	1,455.28
Torque teno virus 3	6	1,069.93	1,952.05
Torque teno virus 6	25	235.89	1,976.02
Torque teno virus 7	4	313.65	39,910.86
Torque teno virus 8	3	141.72	75.53
Toxoplasma gondii	39	5,412.46	104,051.17
Treponema pallidum	9	8,026.35	18,627.59
Trichoderma atroviride	2	360.84	334.43
Trichoderma gamsii	1	20.36	0.00
Trichoderma harzianum	1	1,179.46	0.00
Trichoderma longibrachiatum	6	618.09	545.78
Trichodysplasia spinulosa-associated	34	321.17	2,290.78
polyomavirus			
Trichomonas vaginalis	5	676.48	10,184.71
Trichosporon asahii	14	488.22	1,544.34
Trichosporon faecale	1	38.11	0.00
Tropheryma whipplei	2	412.51	353.73

Trypanosoma cruzi	2	20,291.83	19,786.23
Tsukamurella pulmonis	1	34,399.13	0.00
Ureaplasma parvum	28	490.84	1,927.18
Ureaplasma urealyticum	14	256.95	6,202.13
Varicella-zoster virus (VZV)	48	1,856.17	7,412.46
Veillonella dispar	162	140.88	269.85
Veillonella parvula	256	202.30	476.57
Verruconis gallopava (Ochroconis gallopava)	1	228.74	0.00
Vittaforma corneae	1	147.95	0.00
Wallemia mellicola	2	79.97	13.00
Weeksella virosa	1	7,762.15	0.00
Weissella confusa	9	127.19	416.59
Wickerhamomyces anomalus (Pichia anomala)	2	1,656.22	12.29
Winkia neuii (Actinomyces neuii)	2	279.78	169.83
WU Polyomavirus	19	333.12	1,721.87

Supplemental Table 2. Reports with co-detections of Legionella spp., Nocardia spp., and

Mycobacterium spp., April 2018–September 2021.

Sample number	Genus	Taxa name	MPM
1	Legionella spp.	L. brunensis	401
		L. hackeliae	270
		Epstein-Barr virus (EBV)	1,405
2	Legionella spp.	L. feeleii	78,508
		L. tunisiensis	76,445
		Aspergillus fumigatus	594
		Encephalitozoon hellem	739
3	Nocardia spp.	N. alba	222
		N. caishijiensis	334
		N. coubleae	495
		N. ignorata	182
		N. thailandica	171
		Human adenovirus D	747
		Prevotella melaninogenica	283
4	Nocardia spp.	N. exalbida	17,384
		N. gamkensis	22,906
5	Nocardia spp.	N. exalbida	2,153
		N. gamkensis	1,871
6	Nocardia spp.	N. exalbida	182
		N. gamkensis	242

		BK polyomavirus	81
		Pseudomonas aeruginosa	498
7	Nocardia spp.	N. elegans	131
		N. nova	440
		Actinomyces oris	150
		Bacteroides vulgatus	215
		Corynebacterium striatum	1,590
		Enterococcus faecalis	296
		Lactobacillus fermentum	117
		Lomentospora prolificans	215
		Prevotella buccae	138
		Prevotella oralis	209
		Rothia mucilaginosa	874
		Staphylococcus aureus	364
		Streptococcus salivarius	1,032
		Veillonella parvula	122
8	Nocardia spp.	N. africana	1,745
		N. elegans	6,314
		N. nova	3,945
		Cytomegalovirus (CMV)	12,597
9	Nocardia spp.	N. abscessus	619
		N. arthritidis	317
		N. asiatica	303

10	Nocardia spp.	N. elegans	1,556
		N. nova	2,720
11	Nocardia spp.	N. elegans	1,652
		N. nova	1,572
12	Nocardia spp.	N. exalbida	16,286
		N. gamkensis	14,660
		JC polyomavirus	337
13	Nocardia spp.	N. coubleae	220
		N. ignorata	264
		N. thailandica	151
		Cytomegalovirus (CMV)	81
		Human adenovirus D	692
14	Nocardia spp.	N. aobensis	1,122
		N. kruczakiae	3,074
		N. violaceofusca	1,514
		Aspergillus fumigatus	4,204
		BK polyomavirus	2,260
		Epstein-Barr virus (EBV)	49
		JC polyomavirus	61
15	Mycobacterium spp.	M. brisbanense	20
		M. mucogenicum	21
		M. obuense	28
		Stenotrophomonas acidaminiphila	36

16	Mycobacterium spp.	M. chubuense	61
		M. elephantis	124
		M. flavescens	112
		M. goodii	54
		M. holsaticum	108
		M. phlei	100
		Neisseria meningitidis	62
17	Mycobacterium spp.	M. avium complex (MAC)	441
		M. celatum	135
		M. kyorinense	194
		Epstein-Barr virus (EBV)	155
		Prevotella melaninogenica	398
		Rothia mucilaginosa	913
		Veillonella dispar	236
		Veillonella parvula	122
18	Mycobacterium spp.	M. avium complex (MAC)	8,039
		M. chimaera	2,410
19	Mycobacterium spp.	M. avium complex (MAC)	104
		M. chimaera	104
20	Mycobacterium spp.	M. complex (MAC)	36,867
		M. chimaera	36,862

Fig. 1. Number of detections by the Karius test of the different super groups of taxa, Apr 2018–Sept 2021, N=22,792: bacteria, 16,221; viruses, 4,737; fungi, 1,758; parasites, 70. Percentages reflect proportion of total number of detections.

Fig. 2. Number of detected taxa counts per report for all positive reports, Apr 2018–Sept 2021. Percentages reflect the proportion of all positive reports (N=10,752).

Fig. 4. Frequency distribution of Nocardia spp. detections, n=76 (< 1% bacterial detections, N=16,203). *Indicates species more frequently isolated from clinical specimens (69). †Indicates species-specific susceptibility patterns (54).

Fig. 5. Frequency distribution of *Mycobacterium* spp. detections, n=156 (1% of all bacterial detections, N=16,203). *Indicates slowly growing mycobacteria of established clinical significance (70). †Indicates rapidly growing mycobacteria considered common human pathogens. ‡Indicates rapidly growing mycobacteria considered less common or rare human pathogens (71).

Fig. 6. Frequency distribution of zoonotic and vector borne bacteria detections, n=247 (2%of all bacterial detections, N=16,203). *Indicates bacteria causing a nationally notifiable infectious disease (72).

Fig. 7. Frequency distribution of *Candida* spp. detections, n=648 (36% of all fungal detections, N=1,776).

Fig 9. Frequency distribution of detections in the order Mucorales, n=196 (11% of all fungal detections, N=1,776). *Indicates taxa implicated in human mucormycosis (73).

Fig 10. Frequency distribution of detections of systemic dimorphic fungi, n=78 (4% of all fungal detections, N=1,776).

