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Abstract1

Close contacts between individuals provide opportunities for the transmission of diseases, including COVID-2

19. Individuals take part in many different types of interactions, including those with classmates, co-workers,3

and household members; the conglomeration of all of these interactions produces a complex social contact4

network interconnecting individuals across the population. Thus, while an individual might decide their5

own risk tolerance in response to a threat of infection, the consequences of such decisions are rarely so6

confined, propagating far beyond any one person. We asses the effect of different population-level risk-7

tolerance regimes, population structure in the form of age and household-size distributions, and different8

types of interactions on epidemic spread in plausible human contact networks to gain insight into how9

contact network structure affects pathogen spread through a population. In particular, we find that changes10

in behaviour of vulnerable individuals in isolation is insufficient to reduce those individuals’ infection risk,11

that population structure can have varied and counter-acting effects on epidemic outcomes, and that, in12

general, interactions among co-workers have a greater contribution to disease spread than do interactions13

among children at school. Taken together, these results promote a nuanced understanding of disease spread14

on contact networks, with implications for public health strategies.15
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1 Introduction16

Many respiratory diseases, including influenza, tuberculosis, and COVID-19, are primarily transmitted17

through close contact between an infectious individual and a susceptible one, whether by direct physical18

contact or through expelling contaminated droplets via coughing, sneezing, or breathing [1]. While not all19

such interactions lead to a transmission event, the transmission network (i.e. the actual set of who infects20

whom in a population) is a subset of this wider contact network (i.e. the set of all interactions between21

individuals that could result in in disease transmission) [2].22

The importance of interpersonal contact for disease dynamics has been recognized for centuries, with23

isolation of infected individuals being recorded in fifteenth century Italy [3], and has become more formalized24

in recent decades [4, 5, 6]. Yet, detailing the specific ways in which the structure of contact networks relates25

to differences in disease spread between populations has been hampered by the size and complexity of human26

social networks, which are an agglomeration of many different kinds of interpersonal interactions [7]. A given27

person, for instance, will interact with some people at home (their family or housemates), others when they28

go to work (co-workers and colleagues), and yet others when they go to the local store for groceries (neighbors29

and strangers). Not only do the individuals involved in each of these sub-networks differ for any given person,30

but also the structure and intensity of interactions might likewise differ between contexts.31

Pathogens spread differently in different localities in part because of a difference in social contact network32

structure [8, 9, 10, 6], thus we might also expect disease dynamics to vary across social contexts: to spread33

differently at work than at school, through a home than through a neighbourhood. Yet, unlike the case of34

two distinct localities, these layers of interactions are also not independent from one another, linked by the35

individuals that take part in multiple layers. It is the combination of these layers into an integrated network36

detailing all possible infection pathways that affects the ultimate spread of disease through a population. But37

how much does each type of interaction contribute to this final disease spread? Can the layers be modified38

independently in order to alter a population’s risk in the face of disease spread?39

Operationalizing the connection between contact network structure and disease spread, public health40

interventions such as travel restrictions, business and school closures, and individual isolation and/or quar-41

antining seek to reduce disease spread through direct modification of the contact network [11, 12]. In short,42

such modifications seek to sever potential infection pathways through the contact network before they are43

realized, limiting the number of potential secondary cases available to a given infectious individual. These ap-44

proaches can range from hyper-local—only isolating individuals who have been confirmed to be infected—to45

society-wide—wholesale economic lockdowns and cordons sanitaire [13].46
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In their initial response to the COVID-19 pandemic, many countries imposed strict restrictions on social47

interactions—especially those within schools and workplaces [14]—with the goal of limiting disease spread48

through the mass fragmentation of societal contact networks [15]. While such efforts have, in general, been49

found to be effective both historically [16], and in the current pandemic [17, 18], they are nevertheless50

a blunt intervention. More restrained approaches, such as test-trace-quarantine can be more surgical in51

their application, but their efficacy tends to be limited by insufficient participation and high costs when52

cases are surging [4, 19, 20]. A middle ground could involve restricting certain types of interactions while53

leaving others unaffected, balancing disease mitigation and socio-economic hardship (e.g. closing schools, but54

leaving workplaces open, or vice versa). Finally, not all public health interventions seek to completely sever55

links in the contact network. Softer approaches, such as masking, increased attention to personal hygiene,56

improved ventilation, and physical distancing can be used to reduce the strength of interactions, i.e. reduce57

the transmission rate given interaction between two individuals, rather than eliminating the interaction58

altogether [21, 22].59

In addition to differences between types of interactions, which might be relatively consistent from one60

individual to another, there are also differences between individuals both in behaviour [23, 24] and in un-61

derlying health conditions that increase the likelihood of experiencing adverse health outcomes in the event62

of infection [25]. While a decision might be made on a personal level (e.g. one person might decide to return63

to in-person work, while another might take advantage of a work-from-home option), the consequences of64

this decision have the potential to propagate far beyond a focal individual, with individuals serving as either65

bridge or firewall in a pathogen’s infection chain.66

In this work, we investigate the impact of plausible human contact network structure [26, 7, 13] on the67

spread of disease across three scales of network structure, using COVID-19 as an example. First, we consider68

differences in individual risk tolerance with respect to an individual’s contact with persons in the network69

who are at greater risk of adverse outcomes following infection (i.e. “vulnerable” individuals). Second, we70

consider the effect of wider population structure on the spread of disease, comparing two locales that differ in71

age- and household-size distributions. Finally, we add to these two considerations the relative contribution72

of two layers in the contact network (i.e. interactions between classmates at school and interactions between73

co-workers at work). We focus on these two layers in particular as they (along with household interactions)74

comprise the majority of potential transmission events in modern society [27], and have been the focus of75

prior research and public health interventions, better allowing us to contextualize any results [20, 14, 13,76

28]. Taken together, the results of this investigation provide a foundation for better understanding the77

2

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 3, 2023. ; https://doi.org/10.1101/2023.01.01.22284075doi: medRxiv preprint 

https://doi.org/10.1101/2023.01.01.22284075
http://creativecommons.org/licenses/by/4.0/


role of contact network structure on the spread of disease, and an avenue for better targeting public-health78

interventions to limit further disease spread.79

2 Methods80

2.1 Network construction81

We constructed human contact networks by sequentially adding interaction layers to a base network of82

individuals grouped into households according to United States (US) 2019 American Community Survey83

data on the distribution of household sizes [29]. Each individual was assigned an age (according to US84

2019 American Community Survey data [30]) and a binary “vulnerable” status. Vulnerability was assigned85

according to age-adjusted hospitalization rates [31]. School-age children were then assigned to classrooms86

(using an approximate classroom size of 20 students), and pre-retirement-age adults (accounting for US87

unemployment rates) to workplaces (according to a modified distribution of US business sizes). To make88

our networks more realistic, we additionally considered the effect of community spread of disease outside89

of the structured settings of work and school (e.g. spread at the grocery store or local shopping center).90

For this, we added a layer connecting all individuals in the network to all others at a low transmission rate91

(i.e. “background transmission”).92

Each of these four network layers is a collection of distinct, fully connected sub-networks that correspond93

to households, classrooms, workplaces, or the community as a whole. By layering these networks together,94

the isolated clusters from any one layer become intertwined through the connections in other layers. For95

example, a student might be connected to an unrelated, vulnerable adult through an interaction chain96

involving a classmate interaction with a friend, a household interaction between the friend and their parent,97

and a workplace interaction between the parent and an elderly co-worker. The strength of interaction in98

the co-worker and classmate interaction layers was varied systematically to explore the relative importance99

of each of these layers, while those in the household layer (as well as background transmission) were held100

constant.101

We considered two US states as case studies for comparing differences in local population structure. Using102

US 2019 American Community Survey data (see Supplementary Information section S1 for detailed data103

sources), we constructed synthetic networks with age- and household-size distributions matching those of104

either Florida—a US state with a relatively high average age and small average household size—or Texas—a105

US state with a relatively low average age and large average household size (section S2 and fig. S1). Each106
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Table 1: Summary statistics for networks generated for each of the two localities used in the main text.

Metric “Florida” mean (sd)1 “Texas” mean (sd)1

Number of individuals 3 001 3 000
Number school-age 503 (20.5) 648 (22.5)
Number employed 1 549 (27.4) 1 595 (27.5)
Number vulnerable 628 (22.2) 535 (20.9)

Number of households 1 212 1 056
Number households with children 462 (15.1) 517 (13.4)
Number of households with vulnerable 508 (16.3) 423 (14.9)

Total number of edges (no contact avoidance)2 24 961 (611.1) 28 411 (578.5)
Household edges 3 425 4 519
Classmate edges 5 890 (307.7) 7 744 (345.0)
co-worker edges 15 646 (593.2) 16 148 (560.5)

Edges when vulnerable individuals avoid work/school interactions 17 655 (564.1) 20 766 (570.6)
Edges when members of vulnerable households avoid interactions 7 857 (539.2) 8 605 (610.1)
1 Values are presented with both mean and standard deviation except when there was no variance, in which case the constant value

is presented.
2 “Background” transmission links are omitted from this (and other edge) count(s). Because they connect every individual to every

other, there are always N(N − 1)/2 such edges, where N is the number of individuals in the network.

network was further populated with classmate and co-worker interaction layers, as detailed above, using the107

same algorithm and parameters for both localities. Networks were generated to have approximately the same108

number of individuals (3 000), which necessitates a different number of households in each network due to109

the aforementioned differences in average household size.110

Finally, we modified the above networks according to three risk-tolerance scenarios, generalizing be-111

haviours to all individuals in the population. First, we considered a population in which all individuals,112

regardless of inherent vulnerability, behave identically, fully participating in their co-worker and classmate113

interactions. Second, we considered a case where vulnerable individuals avoid those interactions (i.e. do not114

go to work/school and therefore have no co-worker or classmate interactions) in order to reduce their own115

exposure risk. Finally, we considered a case where all members of any household containing at least one116

vulnerable individual avoid co-worker and classmate interactions in an effort to reduce exposure to their117

vulnerable housemates. Table 1 details differences between the networks constructed for each of the two118

locales and under different risk-tolerance scenarios.119

2.2 Disease simulation120

Pathogen spread through the population was simulated according to modified SEIR dynamics, using a121

discrete-time, chain binomial model [32]. Specifically, individuals (nodes) in the network fell into one of122
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six classes at each timestep: susceptible to infection (S), exposed but not yet infectious (E), infectious123

and symptomatic (Is), infectious and asymptomatic (Ia), recovered and immune to future infection (R), or124

a victim of disease-induced mortality (D). Transitions between classes were governed by rate parameters125

(table 2) that, when appropriate, could take two discrete values based on an individuals’ inherent vulnerability126

to severe disease.127

Explicitly, susceptible nodes can be infected at each timestep depending on their network connections:128

S
βj,i
x−−→ E.

Where βj,i
x is the rate of transmission between two nodes, one infectious (i) and one susceptible (j),129

connected by interaction type x. A susceptible individual will have the chance to be infected by each of130

their infectious interaction partners on each timestep. We considered three alternative rates of background131

transmission (table 2), but only present figures corresponding to a value of βbackground = 0.001/N (where132

N is the number of nodes in the network) in the main text. See Supplementary Information section S3 for133

figures corresponding to values of 0 and 0.1/N .134

Exposed individuals’ experience disease progression at a constant rate:135

E
σ∗ρ−−→ Is, E

σ∗(1−ρ)−−−−−→ Ia.

Where σ represents the disease progression rate (the inverse of the time between becoming infected and136

becoming infectious) and ρ is the proportion of infected individuals that develop symptoms. Infectious137

individuals recover or die at constant rates (depending on their symptomaticity and inherent vulnerability):138

Is
(1− 2

3 δ(i))γ−−−−−−−→ R, Ia
(1− 2

3 δ(i))γ−−−−−−−→ R, Is
µ+δ(i)ν−−−−−→ D

Where δ(i) is an indicator function that returns 1 if an individual is vulnerable, and 0 otherwise, γ139

represents the rate of recovery, which is (approximately three times) longer for vulnerable individuals [33,140

34], µ represents a baseline mortality rate, and ν represents additional mortality experienced by vulnerable141

individuals. All disease parameters were set to literature values approximated for the initial wave (original142

Wuhan strain) of COVID-19 (table 2).143

Note that we assume: 1) per-contact transmission rates are independent of the symptomaticity of the144

infectious interaction partner, 2) all mortality is disease induced, and 3) that only symptomatic individuals145

suffer disease-induced mortality.146
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Table 2: Estimates and description of parameters for the SARS-CoV-2 model used in this work.

Parameter Description Point Estimate∗ Reference(s)
βbackground The transmission rate for community interac-

tions
0, 0.001/N , or 0.1/N

βhousehold The transmission rate for interactions between
household members

0.13
Rosenberg et al. [35],

Bar-On et al. [36]

βclassmate The transmission rate for interactions between
classmates

none†

βco−worker The transmission rate for interactions between
co-workers

none†

σ The incubation period (the inverse of the av-
erage latent period duration)

1/5.5 Bar-On et al. [36]

ρ Proportion of new infectious individuals that
are symptomatic

0.35‡ Wang et al. [37],
Bar-On et al. [36]

γ The recovery rate (the inverse of the average
duration of the infectious period)

1/4.5 Bar-On et al. [36]

µ Baseline mortality rate for symptomatic, non-
vulnerable individuals

1/27 000
The World Bank [38],

Ugarte et al. [39]

ν Additional mortality due to vulnerability 1/1 000 Bar-On et al. [36]
∗ Units are days−1 unless otherwise noted; N signifies the number of individuals in the network.
† values sampled from 10[−3,−0.5] (one for each transmission rate per simulation), where [a, b] represents a range from a to b

(inclusive) from which values were uniformly randomly sampled.
‡ this value is unit-less

Populations were seeded with a single infected individual and simulations were allowed to run until147

no further infections were possible. A total of 10 000 unique combinations of classmate (βclassmate) and co-148

worker (βco−worker) transmission rates were sampled using a Latin-Hypercube approach [40], each parameter149

combination was run for each of the two localities and three risk-tolerance regimes, leading to a total of 60 000150

simulated epidemics.151

2.3 Epidemic outcome quantification152

Epidemic spread was quantified using the total number of individuals infected, the total number of vul-153

nerable individuals infected, the average number of individuals concurrently infectious, the total number of154

individuals that died, the maximum number of concurrently infectious individuals, the number of timesteps155

to reach that peak, and the number of timesteps that passed before the first vulnerable individual was156

infected.157

All simulations were conducted in C++ version 8.1.0, with data manipulation and plotting done in R158

version 4.2.0 [41]. For specific packages used, see Supplementary Information section S4. Code to replicate all159

aspects of these analyses is available online: https://github.com/mjsmith037/Layered_Interactions_160
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COVID_Model.161

3 Results & discussion162

3.1 Quantifying the effect of differential risk-tolerance behaviour163

As expected, increasing the transmission rate for classmates or co-workers increased the number of infectious164

individuals, the number of vulnerable people infected and the total number of individuals that died (fig. 1).165

Yet, this effect was modulated by behaviour: in particular, we found that the actions of vulnerable individuals166

in isolation did little to reduce the total disease burden on the population in terms of number of cases167

and deaths, except when transmission rates were already low. However, there was a substantial reduction168

in these values when household members likewise avoided work/school interactions themselves from other169

individuals in the network (fig. 1). This trend was consistent across metrics of epidemic outcome, such170

as the peak infection prevalence, the number of vulnerable individuals infected, and the total number of171

deaths. Likewise, we saw consistency across a range of transmission rates between classmates and between172

co-workers, though if both rates were sufficiently low (bottom left corner of each panel in fig. 1), the extent173

of disease spread was minimal. Importantly, if background transmission rates are high enough, classmate174

and co-worker transmission is rendered irrelevant, precluding any differences between behaviour treatments175

(Supplementary Information fig. S5). We emphasize that these effects are not simply a result of reducing176

the number of interactions in the network. Repeating the above simulations (i.e. removing the same number177

of edges from each interaction layer in the network as above), but choosing which links within each layer178

to remove at random (i.e. irrespective of an individuals (contact with) vulnerable individuals), yields no179

qualitative difference between link-removal treatments (section S5 and fig. S8). Finally, these patterns were180

also consistent across local population structures (i.e. Texas or Florida), so we aggregated results across181

locales for figs. 1, S2, S5 and S8.182

The absence of reduced disease burden when only vulnerable individuals change their behaviour can183

be attributed, at least in part, to the high-interaction strength expected for within-household interactions,184

limiting the efficacy of contact-reduction for vulnerable individuals sharing households with less vulnerable185

individuals. Unless the whole household takes actions to reduce their exposure, we see limited benefits186

of reducing a particular individuals exposure in isolation. This is true even if we only look at the rates187

of infection in the vulnerable individuals themselves. Moreover, because the vast majority of deaths from188

COVID-19 are individuals with underlying health conditions that provide an inherent vulnerability to adverse189
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Figure 1: Relative epidemic outcome (columns), quantified as the peak number of individuals infected (left),
the number of vulnerable individuals infected (middle), or the total number of individuals that died (right)
over the course of the simulation. Individuals in the network either (rows): did not change behaviour
in response to (contact with individuals with) vulnerability status (top), changed behaviour if they were
vulnerable themselves (middle), or changed behaviour when a member of their household was vulnerable
(bottom). Multiple points within each hexagon were averaged to produce the plotted value. Mean values
were then log-scaled and normalized for each epidemic outcome such that the maximum value is 1 (yellow)
and the minimum value is 0 (purple). Each panel consists of a heatmap showing the relative epidemic
outcome of simulations spanning various levels of co-worker (vertical axis) and classmate (horizontal axis)
transmission. Maximum disease burden in all cases occurs when the transmission rates are both high (top
right corners of each panel), while the disease tends to die out with minimal cases and death when both rates
are low (bottom left of each panel). Results here are aggregated across local population structures, which
were qualitatively similar. See Supplementary Information (section S3 and figs. S2 and S5) for analogous
figures under different background transmission rates.
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outcomes [42], reducing the number of vulnerable individuals infected has a direct effect of reducing mortality190

as well.191

It is important to also note that not all interaction decisions are the product of (or even align with)192

a particular individual’s risk tolerance, but rather are the combined product of individual decisions and193

systemic social and workplace structures that constrain individual behaviour. This is a critical consideration194

in the construction of policy, especially when such policies tend to be focused on individuals themselves195

and (occasionally) those directly under their care, rather than a consideration of potential interactions with196

(and consequent transmission risk to) other vulnerable individuals [43]. For instance, those with underlying197

health conditions might be able to apply for remote work with a note from a medical provider, however,198

they are less likely to be granted accommodation if their housemate is the vulnerable individual. Relatedly,199

such policies have historically been applicable only after an individual is infected, rather than allow for the200

reduction of transmission prophylactically. More effective protection of vulnerable individuals would require201

facilitating household-wide action to reduce exposures [44, 45].202

3.2 Quantifying the effect of population structure203

Beyond individual risk-management, we found intrinsic differences in epidemic dynamics between populations204

that differed in their age or household size distributions. Comparing a “Florida-like” population to a “Texas-205

like” population (just “Florida” and “Texas”, hereafter), we find consistent, slight differences in the peak206

proportion of the population infectious at a given time (“Maximum Infectious”) and in the proportion of207

vulnerable individuals in the network that are infected over the course of the epidemic (fig. 2). Note that208

while vulnerable individuals make up a larger proportion of the population, on average, in Florida, we see209

a higher proportion of vulnerable individuals getting infected in the Texas population. This is a result of210

the higher rate of spread (also indicated by the higher peak proportion infectious) in the latter population,211

due in part to the larger average household size, and consequent higher number of strong within-household212

interactions.213

It is noteworthy that these small differences in peak proportion of the population concurrently infectious214

and proportion of vulnerable individuals infected were insufficient to fully counter the greater intrinsic215

mortality risk of the Florida population. This could be due, in part to the counter-acting effects of age216

and household size distributions. In short, the household size distribution of Texas tends to lead to larger217

outbreaks, but the larger proportion of vulnerable individuals in Florida means that a similar number of218

individuals die despite fewer total people being infected.219
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Figure 2: Comparing the difference in peak proportion infectious, overall prevalence among vulnerable in-
dividuals, and overall mortality between simulations of epidemics in two possible population structures, as
characterized by age- and household-size distributions (see Supplementary Information and table 1). Florida
has an (on average) older age distribution than Texas, while Texas has (on average) larger households. Each
point represents a single simulated epidemic, conducted across a range of classmate- and co-worker transmis-
sion rates. Only simulations with no difference in behaviour based on vulnerability and only outcomes from
epidemics resulting in greater than 5% of the total population being infected are shown (5 778 simulations
for Florida, 6 297 for Texas). n.b. each panel has independent vertical axes limits. See Supplementary
Information (section S3 and figs. S3 and S6) for analogous figures under different background transmission
rates.
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These results point to the importance of understanding trade-offs and nuances in population structure220

when implementing public health interventions. For instance, when distributing effort to minimize lives-lost,221

one must consider both properties of individuals in the population (e.g. what proportion of the population222

is at increased vulnerability to adverse outcomes?) and properties of the social contact network that in-223

terconnects those individuals (e.g. what are the most likely infection pathways by which those vulnerable224

people can become infected?). The efficacy and cost efficiency of any public health efforts will depend on225

understanding these nuances and their interaction. For instance, it may be more effective to isolate young226

family members of vulnerable individuals than vulnerable individuals themselves, since the latter tend to be227

older and have fewer social interactions to begin with [27].228

Of course, the social and economic consequences of any intervention (which may be related to the total229

number of interactions removed under intervention) must likewise be taken into consideration [46]. Criti-230

cally, the effects of public policies have unequal effects across a population: school closure most negatively231

affects less-educated families [47], wealthier individuals are more able to tolerate (and comply with) travel232

restrictions [48, 46], and already marginalized communities often bear the brunt of adverse medical out-233

comes [49]. Likewise, the distribution of underlying medical conditions is not distributed uniformly across234

the population, often correlating with race and socio-economic status [50, 51]. Thus, an intervention focused235

on (families of) vulnerable individuals, will necessarily also have disparate social and financial impact on236

these already marginalized individuals. In short, while this study focuses on generic effects of contact net-237

work structure on disease spread, real-world applications must additionally consider the specifics of which238

individuals are affected by a policy decision.239

3.3 Quantifying effects of interaction types240

While it is difficult to disentangle the web of interactions that make up modern societies, we used linear241

models to investigate the effects of a given change in interaction strength in one layer on the rate or extent242

of disease spread in the population.243

We found that a change in the co-worker transmission rate consistently resulted in a larger change in244

epidemic outcome than a similarly sized change in the classmate transmission rate (fig. 3). For example, an245

increase in co-worker transmission rate will have approximately twice the effect on peak proportion infectious,246

total death burden, and time to that peak than will a similar increase in classmate transmission. When247

considering the scenario of no change in behaviour based on vulnerability, this ratio climbs to approximately248

3. Consistent with results in fig. 1, we saw smaller slopes (and reduced differences between the effects of249
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different network layers)for total number of deaths when households containing vulnerable individuals limited250

exposure. Consistent with fig. 2, we saw that changes in transmission rates tended to have a larger effect251

(i.e. model coefficient magnitude) on epidemic size in Texas, and on mortality in Florida (driven mostly by252

workplace interactions).253

This is driven in part by the difference in the number of interactions in the network associated with each254

layer of the network. Because there are more individuals of working age than of school age, and because255

workplaces can potentially be much larger than classrooms, there tends to be more co-worker interactions256

in a given network than classmate interactions. While this is dependent upon the assumptions underlying257

construction of these simulated contact networks, it is also generically true of the real human contact net-258

works that inspired our approach. In most real-world societies, there are more working-age individuals than259

children, and workplaces can potentially be orders of magnitude larger than school classrooms. The fact260

that these results seem to be robust to imbalance in interaction strength suggests that network structure261

(broadly construed) may have a larger role to play than pairwise interaction strength, at least for a highly262

transmissible disease like COVID-19.263

While the surface-level implication of these results is that efforts should be focused on workplaces, rather264

than classrooms (and this is reinforced by evidence that, at least for early strains of SARS-CoV-2, trans-265

mission to, from, and among children may be less than that among adults; [35, 52, 53, 54]), schools still266

contribute meaningfully to disease spread, especially when considering some of the more recent (and more267

transmissible) strains of SARS-CoV-2 [55]. Importantly, these results are based on simulations where the268

internal networks for workplaces are very highly connected. Compartmentalizing workers, improving per-269

sonal hygiene, ensuring adequate ventilation and air filtration, and supporting personal protective equipment270

usage can all alter the number and strength of interactions within the network. Such interventions would271

reduce the overall impact of workplace interactions on disease spread.272
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Figure 3: Quantifying the effect of changes in transmission rates on epidemic outcomes. The vertical axis
indicates the value of the best-fitting coefficient for each transmission rate in a linear model of the form
y ∼ m1log(βclassmate)+m2log(βco−worker)+b, where y indicates an epidemic outcome measure, mn is a fitted
slope coefficient, βx represents a transmission rate for interaction type x, and b is a fitted intercept coefficient.
The horizontal axis distinguishes between the two coefficients (m1: “classmate”, or m2: “co-worker”). Facets
distinguish between epidemic outcome measures, point shapes distinguish risk-tolerance regimes (i.e. rows
in fig. 1), and point colours distinguish age and household size distribution locales (as in fig. 2). Vertical
lines extending beyond the point extents indicate 95% confidence intervals for the slope estimates (most
confidence intervals are obscured by the points). To ease interpretation, lines connect coefficient values
across interaction types for results from models of the same risk-tolerance regime and locale. Points are
slightly offset horizontally to reduce overlap. Note that a more positive slope in the left and center facets
indicates a greater number of individuals infectious or died, respectively, while a more negative slope in the
right facet indicates a faster rate of infection (less time to reach peak infectiousness). Only outcomes from
epidemics resulting in greater than 5% of the total population being infected were included in the linear
models (13 182 simulations for Florida, 14 844 for Texas). n.b. each panel has independent vertical axes
limits. See Supplementary Information (section S3 and figs. S4 and S7) for analogous figures under different
background transmission rates.
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4 Limitations & future directions273

While the networks used in this study are inspired by empirical human contact networks, there were nonethe-274

less many assumptions built into their construction that are necessarily unrealistic. Future studies could,275

for example, consider differences in fine-scale network structure between interaction types, add additional276

explicit interaction layers, and increase network size to better reflect a whole urban area. In particular,277

one might nest individual classrooms within a less-strongly connected collection to represent a school, where278

interactions can likewise occur in public spaces such as the cafeteria or library [26, 56]. Such interactions279

are increasingly likely as schools relax their physical distancing requirements. Similarly, there might be280

differences in between- and within-classroom structure for differently aged students. Within workplaces,281

there might be a hierarchical network structure, where some peoples (e.g. managers) might interact with a282

collection of individuals that otherwise have little interaction with one another. Finally, we focused on only283

two types of interactions: those between classmates and those between co-workers. Clearly, there are myriad284

other ways in which individuals interact with one another, each of which might be structured in unique ways.285

This study was in part limited by available data sources. While national-level data is readily available286

for most elements of our network generation, the same data for localities (even at the level of US states) is287

less accessible. An additional consideration is covariance between different aspects of population structure,288

where most data sources are segmented. For instance, one might assume that larger households have a lower289

average age (i.e. more children), yet age and household-size distributions are only available independently290

through the US Census American Community Survey.291

In our disease model, we utilized disease parameters corresponding to the initial wave of COVID-19,292

despite substantial strain evolution since that time. Because our focus in this work is not on any one disease293

in particular, we opted to use an older strain for the increased availability and reliability of parameter294

estimates. These literature-based parameters additionally result in mortality being almost exclusively among295

vulnerable individuals—a trait we treated as binary and assigned based on post hoc empirical hospitalization296

rates. A more robust approach would be to consider the distribution of specific underlying health conditions297

within the population and their relative contribution to adverse outcomes. Critically, this approach also298

assumes constant mortality rates, disregarding a known relationship in which increased hospital occupancy299

results in worse disease outcomes [57].300
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5 A note on generality301

In the midst of an ongoing pandemic of COVID-19, much of the inspiration for this work, and literature302

referenced herein has considered this one disease in particular. Nevertheless, the results presented here stem303

from a disease model that could be applied to many transmissible diseases with minimal modification. Even in304

the consideration of SARS-CoV-2, as new strains arise, resulting in altered rates of transmission, progression,305

recovery, and/or mortality, we expect the fundamental effects of network structure on disease spread to306

persist. For instance, as COVID-19 mortality rates have sequentially declined over the past two years,307

focus has shifted from mortality to hospitalization. As the drivers behind hospitalization and mortality are308

largely equivalent [58, 59], one could apply this same framework in the context of hospitalization. Likewise,309

vaccination (depending on efficacy) can be thought of as equivalent to either removing interactions (as in310

isolation) or reducing interaction strength (as in increased mask usage). Thus, omitting consideration of the311

additional benefits of reduced disease severity on the vaccinated individual, vaccination strategy could mirror312

consideration of physical distancing recommendations in this work. Importantly, when reduction of disease313

severity is additionally considered, previous work has suggested that prioritizing vulnerable individuals is314

most efficacious [60].315

6 Conclusion316

Our simulations reinforce the consequences of our highly connected, modern society on disease spread. In317

short, we find that decisions are rarely “personal” when it comes to public health, and the policies and health318

decisions of a population can have dramatic effects of the spread of disease. Action by vulnerable individuals319

in isolation does little to reduce their disease burden, suggesting that policies should additionally consider320

the potential for next-order transmission to vulnerable individuals from the less-vulnerable individuals that321

interact with them. Additionally, a population’s composition and social contact network structure can322

have marked effects on disease prevalence and mortality, though in our analysis these relationships were323

slight and sometimes resulted in counter-intuitive results whereby rapid disease spread can counteract the324

benefit of an otherwise less-vulnerable population. Finally, the structure of workplaces potentially provides325

greater avenues for disease spread than do schools, but these effects are highly dependent on both how326

workplaces/schools are structured, as well as the utilization and efficacy of non-pharmaceutical interventions327

in each of these contexts.328

While over-interpretation of specific values should be avoided in purely simulation-based studies such as329
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these, comparisons between different simulations can nevertheless provide insight into the relative importance330

of different components of a contact network on the rate and extent of disease spread. By comparing331

simulations across constrained axes of variation, such as types of interactions, differences in personal risk332

tolerance (or systemic structures and policies), and different population structures, we glean insights into333

how the different layers of social contact networks can have different levels of importance when it comes334

to containing epidemic spread. We can use this nuanced understanding to better inform and differentiate335

between public health strategies.336
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S1 Network data sources528

To construct our plausible human contact networks, we relied on a range of publicly available data sources.529

For household sizes, we used state-specific data for Florida [S1] and Texas [S2], for the latter, we were530

only able to obtain accurate numbers for households with three or fewer occupants, so higher values were531

extrapolated from the overall average occupancy [S3]. Individual vulnerability was assigned based on age-532

specific COVID-19 induced mortality rates [S4]. To construct the underlying age distribution, we used533

United States American Community Survey data from 2019, specifically publications DP05: Demographic534

and Housing Estimates [S5]. Each individual in the network was probabilistically assigned into one of thirteen535

(less than 5 years old, 5-9, 10-14, 15-19, 20-24, 25-34, 35-44, 45-54, 55-59, 60-64, 65-74, 75-84, or greater536

than 84 years old) age classes based on state-specific age distributions. The distribution of ages across the537

network was modified from an initial random allocation to prevent the occurrence of households in which all538

23

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 3, 2023. ; https://doi.org/10.1101/2023.01.01.22284075doi: medRxiv preprint 

https://doi.org/10.1101/2023.01.01.22284075
http://creativecommons.org/licenses/by/4.0/


individuals were children.539

The school layer was constructed by taking all school-age individuals (5-9, 10-14, or 15-19 years old) and540

assigning them into age-class-specific classrooms of approximately 20 students per classroom [S6]. Within541

each classroom, networks were fully connected: all students had the same interaction strength with all other542

students in the classroom.543

The workplace layer similarly considered all working-age adults (20-24, 25-34, 35-44, 45-54, 55-59, or544

60-64 years old), subtracted a percentage (10%) based on unemployment rates in the spring-summer of 2020545

[S7], and assigned the remainder to workplaces whose size was loosely based on the distribution of workplace546

sizes in the United States [S8]. This latter distribution was modified to remove especially small (less than 5547

workers) and large (greater than 100 workers) work places. Within workplaces, as with classrooms, networks548

are fully connected: all workers have an equal level of contact with all other workers at the same workplace.549

S2 Locality network structure comparison550

* * * *
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Figure S1: Household size (left) and age (right) distributions for each of the two locales used in the main
text. n.b. left and right plots have different vertical axis limits. While Florida tends to have older citizens,
Texas tends to have larger families (and consequently more within-household interactions; see also table 1).
Asterisks denote values for Texas household size that were inferred to match an overall mean household size
in the absence of precise data.
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S3 Alternative background transmission551

S3.1 No background transmission (βbackground = 0)552
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Figure S2: As fig. 1 in the main text, but with no background transmission. Relative epidemic outcome,
quantified as the peak number of individuals infected (left), the number of vulnerable individuals infected
(middle), or the total number of individuals that died (right) over the course of the simulation. Individuals
in the network either: did not change behaviour in response to (contact with individuals with) vulnerability
status (top), changed behaviour if they were vulnerable themselves (middle), or changed behaviour when a
member of their household was vulnerable (bottom). Multiple points within each hexagon were averaged
to produce the plotted value. Mean values were then log-scaled and normalized for each epidemic outcome
such that the maximum value is 1 (yellow) and the minimum value is 0 (purple). Each panel consists of a
heatmap showing the relative epidemic outcome of simulations spanning various levels of co-worker (vertical
axis) and classmate (horizontal axis) transmission.
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Figure S3: As fig. 2 in the main text, but with no background transmission. Comparing the difference in
peak proportion infectious, overall prevalence among vulnerable individuals, and overall mortality between
simulations of epidemics in two possible population structures, as characterized by age- and household-size
distributions. Only simulations with no difference in behaviour based on vulnerability and only outcomes
from epidemics resulting in greater than 5% of the total population being infected are shown.
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Figure S4: As fig. 3 in the main text, but with no background transmission. The vertical axis indicates the
value of the best-fitting coefficient for each transmission rate in a linear model fit to simulation output. Facets
distinguish between epidemic outcome measures, point shapes distinguish risk-tolerance regimes (i.e. rows
in fig. 1), and point colours distinguish age and household size distribution locales (as in fig. 2). Vertical
lines extending beyond the point extents indicate 95% confidence intervals for the slope estimates (some
confidence intervals are obscured by the points). To ease interpretation, lines connect coefficient values
across interaction types for results from models of the same risk-tolerance regime and locale. Points are
slightly offset horizontally to reduce overlap. Only outcomes from epidemics resulting in greater than 5% of
the total population being infected were included in the linear models.
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S3.2 High background transmission (βbackground = 0.1)553
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Figure S5: As figs. 1 and S2, but with background transmission set to βbackground = 0.1/N .
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Figure S6: As figs. 2 and S3, but with background transmission set to βbackground = 0.1/N .
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Figure S7: As figs. 3 and S4, but with background transmission set to βbackground = 0.1/N .
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S4 Simulation code accessibility details554

All simulations were conducted in C++ version 8.1.0, with data manipulation and plotting done in R version555

4.2.0 [S9], with the use of R packages: assertthat [S10], ggbeeswarm [S11], kableExtra [S12], patchwork [S13],556

Rcpp [S14, S15, S16], tidygraph [S17], tidyverse [S18], and scales [S19].557

An application for visualizing our synthetic community network structure and simulating disease spread558

(including the manipulation of disease parameters) is available online: https://z.umn.edu/LINCS [S20].559

Code to replicate all aspects of these analyses is available online: https://github.com/mjsmith037/560

Layered_Interactions_COVID_Model.561
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S5 Link removal irrespective of (proximate) vulnerability562
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Figure S8: As fig. 1 in the main text, but rather than removing links in association with an individual’s con-
tact with vulnerable individuals, the same number of links were removed randomly from the same interaction
types as in fig. 1.
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