Abstract
Intensive care medicine is complex and resource-demanding. A critical and common challenge lies in inferring the underlying physiological state of a patient from partially observed data. Specifically for the cardiovascular system, clinicians use observables such as heart rate, arterial and venous blood pressures, as well as findings from the physical examination and ancillary tests to formulate a mental model and estimate hidden variables such as cardiac output, vascular resistance, filling pressures and volumes, and autonomic tone. Then, they use this mental model to derive the causes for instability and choose appropriate interventions. Not only this is a very hard problem due to the nature of the signals, but it also requires expertise and a clinician’s ongoing presence at the bedside. Clinical decision support tools based on mechanistic dynamical models offer an appealing solution due to their inherent explainability, corollaries to the clinical mental process, and predictive power. With a translational motivation in mind, we developed iCVS: a simple, with high explanatory power, dynamical mechanistic model to infer hidden cardiovascular states. Full model estimation requires no prior assumptions on physiological parameters except age and weight, and the only inputs are arterial and venous pressure waveforms. iCVS also considers autonomic and non-autonomic modulations. To gain more information without increasing model complexity, both slow and fast timescales of the blood pressure traces are exploited, while the main inference and dynamic evolution are at the longer, clinically relevant, timescale of minutes. iCVS is designed to allow bedside deployment at pediatric and adult intensive care units and for retrospective investigation of cardiovascular mechanisms underlying instability. In this paper, we describe iCVS and inference system in detail, and using a dataset of critically-ill children, we demonstrate its use and power to identify bleeding, distributive states, and cardiac dysfunction, in isolation and in combination.
Author summary A common challenge clinicians face across different disciplines is estimating the hidden physiological state of a patient based on partially observed data. Here we describe iCVS (inferring Cardio-Vascular States): a dynamical mechanistic model of the cardiovascular system. We developed iCVS with a translational goal in mind, showing high explanatory power, its inference relies only on routinely available signals, and enables the identification of various clinically important shock states. We demonstrate the use of the model on a dataset that was collected in a pediatric intensive care unit.
Competing Interest Statement
The authors have declared no competing interest.
Funding Statement
This study was funded by grants from the ISF and VATA (the council for higher education in Israel)
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
The details of the IRB/oversight body that provided approval or exemption for the research described are given below:
Ethics committee/IRB of The Hospital of Sick Children (Toronto, Canada) ethical approval for this work
I confirm that all necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived, and that any patient/participant/sample identifiers included were not known to anyone (e.g., hospital staff, patients or participants themselves) outside the research group so cannot be used to identify individuals.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.
Yes
Footnotes
↵* Danny.eytan{at}technion.ac.il
1 The work in this paper was done prior to joining Amazon Web Services.
Data Availability
All data produced in the present study are available upon reasonable request to the authors