Page 1 of 17

Cannabis-Microbiome Interactions in Varied Clinical Contexts: A Comprehensive Systematic Review.

May Soe Thu^{1,2,3}, Thunnicha Ondee⁴, Szaye Rawicha Hall⁵, Tanawin Nopsopon^{4,6,7}, Ananya Jagota⁴, Nattiya Hirankarn², Joanne L. Fothergill⁸, Barry J. Campbell^{3*}, Krit Pongpirul^{4,9,10,*}.

1 Joint Chulalongkorn University - University of Liverpool Ph.D. Programme in Biomedical Sciences and Biotechnology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand

² Center of Excellence in Immunology and Immune-Mediated Diseases, Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand

³ Department of Infection Biology & Microbiomes, Faculty of Health and Life Science, University of Liverpool, Liverpool L69 3GE, UK

4 Center of Excellence in Preventive and Integrative Medicine and Department of Preventive and Social Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand

5 School of Life Sciences, Faculty of Health and Life Science, University of Liverpool, Liverpool L69 7ZB, UK 6 School of Global Health, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand

 $⁷$ Division of Allergy and Clinical Immunology, Department of Medicine, Brigham and Women's Hospital,</sup> Boston, MA 02115, USA

⁸ Department of Clinical Infection, Microbiology and Immunology, Institute of Infection, Veterinary & Ecological Sciences, University of Liverpool, Liverpool, L69 3GE, UK.

9 Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA

¹⁰ Clinical Research Center, Bumrungrad International Hospital, Bangkok, Thailand

Corresponding Authors: Krit Pongpirul (doctorkrit@gmail.com) and Barry J. Campbell

(bjcampbl@liverpool.ac.uk)

Emails

May Soe Thu, mst.maysoethu@gmail.com Thunnicha Ondee, thunnichaon@yahoo.com Szaye Rawicha Hall, szayehall01@outlook.com Tanawin Nopsopon, tnopsopon@gmail.com Ananya Jagota, ananyajagota@gmail.com Nattiya Hirankarn, nattiyap@gmail.com Joanne L. Fothergill, j.fothergill@liv.ac.uk Barry J. Campbell, bjcampbl@liverpool.ac.uk Krit Pongpirul. doctorkrit@gmail.com

Page 2 of 17

Short Summary

With the global expansion of cannabis legalization, understanding the effects of cannabis on the human body, particularly among individuals with diverse clinical conditions, is of paramount importance. Through a meticulous systematic review utilizing comprehensive data, our findings uncover that cannabis consumption in adults with varied clinical conditions leads to discernable alterations in the human microbiome. These noteworthy modifications necessitate careful consideration in future investigations exploring the potential beneficial or adverse effects of cannabis treatment on patients.

Abstract

Background: With cannabis legalization spreading to more countries for both medicinal and recreational use, grasping its effects on the human body is vital. The endocannabinoid system, governed by natural and external cannabinoid compounds, significantly impacts host metabolism. Working alongside the host's immunomodulation, it shapes the gut microbiota, yielding benefits for the GI and immune systems.

Objective: To assess the link between cannabis treatment and the gut/oral microbiome.

Methods: We extensively searched PubMed, Embase, and Cochrane Library's CENTRAL until December 9, 2023, for English studies involving adults with clinical abnormalities. Identified studies were analyzed, categorizing by different clinical aspects. Data was then qualitatively and quantitatively synthesized.

Result: The study involved 10 studies encompassing 2511 participants, comprising 2 clinical trials and 8 observational studies. The review provided a range of microbiota by the influence of cannabis usage within different clinical contexts: HIV infection, pain/inflammation, systemic aspergillosis, obesity, cognitive deficits, and oral diseases. Users with anhedonia and HIV infection showed lower α -diversity, but those with knee arthritis showed higher α-diversity. According to research, 21.4% of MJ cigarette users experienced adverse outcomes; however, these lessened once they stopped smoking.

Conclusion: These findings shed light on the complex effects of cannabis use on the human microbiota, underscoring the need for future research on the therapeutic potential of cannabis. This review provides valuable insights to guide future investigations in this field.

Registration ID: PROSPERO 2022 CRD42022354331

Keywords: Marijuana, Microbiome, Cannabis, THC, Endocannabinoids.

Page 3 of 17

Introduction

Marijuana (MJ), or *Cannabis sativa*, has a long history of use both for therapeutic and recreational purposes. It is known as cannabis and comprised of a complex mixture of natural cannabinoids. Cannabidiol (CBD), a non-psychoactive cannabinoid molecule, had its chemical structure first determined in 1963, and the psychoactive δ9-tetrahydrocannabinol (THC) was then discovered in 1964 (1). Cannabis is used in various forms, such as smoking, inhaling, and as cannabis extracts, and ranks as the third most commonly used psychoactive substance worldwide, following alcohol and cigarettes (2). In 2020, the global cannabis user population was over 4%, and nearly 6% among ages (3). Intriguingly, its consumption in population aged \geq 50 years has been elevated from 15.1% in 2014 to 23.6% in 2016 since legalization for medical use encouraged former non-users to start using it (4). With an expansion of legalized countries, more research studies are being explored on its potential therapeutic effects and adverse outcomes.

The effects of cannabis are mediated via the endocannabinoid system (ECS), which is composed of endogenous ligands such as anandamide (AEA) and 2-arachidonoylglycerol (2-AG), anabolic/catabolic enzymes such as fatty acid amide hydrolase (FAAH, for anandamide) and monoacylglycerol lipase (MAGL, for 2-AG), and endocannabinoid receptors (eg. CB1 and CB2). Although the ECS has been linked to immunological, metabolic, and nervous system homeostasis in addition to playing a regulatory role through the gut-brain axis, the precise physiological function is still being studied (5-8). Nonetheless, numerous active studies on cannabinoids are underway since there is evidence to support their potential efficacy in treating cardiovascular disease, cancer, and inflammation (9). In addition, it has been used for millennia to treat gastrointestinal (GI) tract inflammation and functional problems, such as cramps, nausea, vomiting, diarrhoea, and stomach pain (10, 11).

Even though people who use medical cannabis have more possible advantages than those who don't, there are still adverse effects (12). The serious adverse events are categorized into respiratory, thoracic, and mediastinal disorders, gastrointestinal (GI) disorders, nervous system disorders, cerebrovascular disorders, general disorders and administration-site conditions, renal and urinary disorders, neoplasm, psychiatric disorders and others. Furthermore, the most frequent physical health reasons are to manage pain (53%), sleep (46%), headaches/migraines (35%), appetite (22%), and nausea/vomiting (21%), while the most prevalent mental health reasons are anxiety (52%), depression (40%), and PTSD/trauma (17%) (13).

The diverse population of the gastrointestinal (GI) microbes engages in a mutually beneficial relationship with the host. These gut microbiota affects neurological, endocrine, and immunological networks through the gut-brain axis and the bilateral communication between the central and enteric nerve systems (14, 15). A mice model shown that the genus *Bifidobacterium* has an antidepressant effect that is partially mediated by microbiome regulation (16). According to a comprehensive analysis of the gut microbiota in anxiety disorders, several taxa and their modes of action may be connected to the pathophysiology of depression and anxiety by communicating with the brain through peripheral inflammation (17). *A. muciniphila* significantly regulates the gut barrier and processes roughly 3–5% of the gut microbiota in healthy humans (18). This demonstrates how closely the GI system and the brain are related.

 The endocannabinoidome (eCBome), which encompasses a more extensive network of lipid signaling molecules and receptors related to endocannabinoid function, plays a significant role in the relationship, primarily through CB1 and TRPV1 channels in myenteric and vagal fibres, as well as PPAR-a and GPR119

Page 4 of 17

receptors in enteroendocrine epithelial cells of the small intestine (19). These receptors influence the release of GI neuropeptides, the activity of myenteric neurons, and the function of the vagal and sympathetic nervous systems, all of which may modify the ECS (19). A study highlighted that N-acyl amide synthase genes in gastrointestinal bacteria produce lipids interacting with GPCRs that regulate GI physiology, and these bacterial GPR119 agonists impact metabolic hormones and glucose regulation similarly to human ligands (20). Significant changes in the level and/or composition of the gut microbiota, as observed in germ-free or antibiotictreated mice, have been demonstrated to impact the messenger RNA (mRNA) expression of eCBome receptors and enzymes as well as the concentrations of eCBome mediators in the gut through still-yet-unknown pathways (21). Additionally, a study discovered that the small intestines of mice given antibiotics had lower levels of Noleoyl and N-arachidonoyl-serotonin, indicating an interaction that may have an impact on the gut-brain axis.

While examining the effectiveness of THC therapies, *Ruminococcus gnavus*, a good bacterium, was discovered to be more prevalent and pathogenic *A. muciniphila* in the gut and lungs was decreased along with the enrichment of propionic acid (22). Another study found that combining THC and CBD reduced the signs of experimental autoimmune encephalomyelitis (EAE), which was characterized by an increase in antiinflammatory cytokine production, a decline in pro-inflammatory cytokines, a reduction in mucin-degrading *A. muciniphila*, and a reversal of the high level of lipid polysaccharides (23). Collectively, these findings indicate that cannabis affects the gut microbiome.

The current body of literature lacks a comprehensive and systematic synthesis of research on the intricate relationship between cannabis and the microbiome across diverse clinical contexts. Existing studies have explored aspects of this interaction, but there is a notable absence of a unified and rigorous analysis that integrates findings from different clinical scenarios. A systematic review can identify gaps in the coverage of clinical conditions and highlight areas where more research is needed to understand the cannabis-microbiome interaction comprehensively. To promote more in-depth research, this review will be the first to assess the microbiome of multiple observational studies and clinical trials including cannabis/MJ use in humans with a variety of disorders.

Materials and Methods

Protocol and registration

The systematic review was registered on PROSPERO ID 2022 CRD42022354331.

Literature search, study selection and data extraction

In compliance with the PRISMA declaration standards, the review was conducted (24). The studies, which were published up until December 9, 2023, were imported from the databases of PubMed, Embase, and CENTRAL. The search was specifically limited to studies that addressed microbiomes and cannabinoids, as well as the impacts of cannabis treatment and how it affects the microbiome.

Interventions examining the effects of any cannabis treatment and its influence on microbiome change, with or without active or placebo controls, are reflected in the inclusion criteria. Animal studies, in vitro research, procedures, reviews, opinions, letters, comments, and guidelines were not included. Data extraction was done after two reviewers independently determined whether the papers met the eligibility requirements based on the abstract and full text screening. Consensus was used by authors to settle any disputes.

Page 5 of 17

The following is how the data extraction procedure was carried out: 1) research attributes include the names of the authors, the year of publication, the type of study, the nation, the sample size, and the age range; The data extraction process involved a thorough examination of pertinent text, tables, and figures. 2) Baseline characteristics, including participant information, study region, and clinical conditions reported by both patients and controls; 3) subgroup evidence, such as microbial profile and diversity, classified by specific diagnostic health problems; and 4) adverse reactions associated with MJ consumption.

Risk of bias

Using the ROB2 method, the risk of bias (ROB) in the extracted intervention study (25) was assessed. The non-randomized clinical trial (26) utilised the ROBINS-I (Risk Of Bias In Non-randomized Studies - of Interventions), and the cohort and case-control studies (27-34) employed the Newcastle-Ottawa Quality Assessment Scale (NOS).

Statistical analysis

The prevalence of the characteristics was described by total number and percentage. The overall mean age of included studies was calculated using combined mean and standard deviation (SD) techniques.

Results

Study selection

In the initial literature search, 5,000 articles were identified across various databases. Following the removal of 1,533 duplicates and the analysis of the titles and abstracts of the remaining 3,467 studies, 3,428 publications were excluded based on predetermined criteria, leaving 39 articles to undergo full-text screening. Ultimately, the systematic review included 10 studies that met the eligibility criteria (Figure 1).

Page 6 of 17

Figure 1: Flow diagram for identifying studies in the systematic literature review.

Study characteristics

The included studies were one case-control (31), seven cohort (27-30, 32-34), and two clinical trials (25, 26), at which it involved 2,511 participants ranging from 1983 to 2023 (Table 1). The studies were conducted at four different countries: the United States of America (USA), the Islamic Republic of Iran (Iran), the State of Israel, and the United Kingdom (UK).

Table 1. Baseline characteristics of the included studies

Subject characteristics

The table 2 outlines the demographic and clinical characteristics of participants in a study, distinguishing between patients and controls. Notably, the patient group, constituting 43% of the total participants, exhibits a broader age range and a higher mean age (57.6 years) compared to the control group, which skews younger with a mean age of 28.4 years. Furthermore, there is a distinct gender imbalance, with a higher percentage of females in both groups. Geographically, the majority of patients are from the UK (76.9%), while controls predominantly hail from the USA (95.2%). Clinically, patients present with diverse conditions, with cognitive deficits being notably prevalent (72.7%).

Page 7 of 17

Analysis for Risk of bias

Among 7 observational studies (27-33), the study by Minichino et al. displayed a high risk due to the absence of a description of the non-exposed cohort, the inability to blind the outcome assessors, and a lack of follow-up information (Figure 2A). Similarly, previous cohort studies by Newman et al., and Vallejo et al. also exhibited biases due to challenges in outcome assessment blinding and the absence of a follow-up timeline description. In the study by Kagen et al., a significant bias was identified due to a lack of statements regarding case and control selection and exposure. Furthermore, in the reported results of the RCT conducted by Payahoo et al., there was evidence of selection bias as they did not include the specified lipid profile analysis mentioned in their protocol (Figure 2B) while the non-RCT study by Habib et al. demonstrated a well-performed risk assessment (Figure 2C).

Risk of Bias using NOS Assessment

Page 8 of 17

Figure 2. Assessment of risk of bias. **2A**, Using NOS for cohort and case-control studies; **2B**, Using RoB2 for randomized controlled trials; **2C**, Using ROBINS-I for non-randomized studies of interventions. Note: The Newcastle-Ottawa Scale (NOS), version 2 of the Cochrane risk-of-bias tool for randomized trials (RoB 2), Risk Of Bias In Non-randomized Studies of Interventions (ROBINS-I)

Microbiota alteration by different cannabis usage

After consuming MJ/medical cannabis or its constituents, patients with a range of clinical diseases had their microbiological changes evaluated (Figure 3), and the qualitative synthesis of the microbial diversity and related parameters was conducted (Table 3). Three categories of cannabis use were identified in this review: THC, endocannabinoids, and MJ.

(A)

Page 9 of 17

Figure 3. Positive and negative associations of microbiome profiles in varied clinical conditions, examining the impact of different forms of cannabis use

*: positive association; #: negative association; THC: tetrahydrocannabinol.

Author	Clinical	Study	Cannabis	Sample and detection	Microbial diversity and other findings	Ref.
(Year)	background	gender	type			
Fulcher et	$HIV-1$	37 males	Marijuana	16s rDNA sequencing	- MJ use was the critical driver of	(29)
al. (2018)	infection		(MJ)	using rectal swab	microbiome variation $[R^2=0.01, p=0.14]$.	
					- Individuals' microbiomes remained	
					mostly unchanged over the six months	
					between visits.	
Vallejo et	HIV patients	1380	Marijuana	Affirm Vaginal Pathogens	- MJ use in reproductive-age women	(32)
al. (2021)	with vaginal	females	(MJ)	DNA Direct Probe using	increases the odds of developing	
	discharge			vaginal discharge	recurrent BV by two-fold (aOR=2.05),	
					adjusting for confounders like age,	
					ethnicity, cannabis use, insurance type,	
					and asthma.	
Morgan et	$HIV-1$	42 males	Marijuana	16s rDNA sequencing	-Problematic cannabis use was	(34)
al. (2023)	infection		(MJ)	using rectal swab	significantly inversely associated with	
					microbial community richness and	
					Shannon diversity.	
Kagen et al.	Systemic	12 males	Marijuana	Culture from sputum, skin	- MJ smoking can enhance fungal	(31)
(1983)	aspergillosis	and 16	(MJ)	pustules, urine, nasal	sensitivity, which raises the risk of	
		females	cigarettes	secretion, and lung biopsy	exposure to and illness from fungal	
					sources.	

Table 3. Qualitative analysis of microbial changes on the use of cannabis

Page 10 of 17

Abbreviation: 16s rDNA = 16S ribosomal deoxyribonucleic acid; 2-AG = 2-arachidonoylglycerol; AEA = anandamide; aOR = adjusted odds ratio; CHO = carbohydrate; eCBs = endocannabinoids; qRT-PCR = real-time quantitative reverse transcription PCR; HIV = human immunodeficiency virus; OEA = oleoyl ethanolamide; PBMC = peripheral blood mononuclear cell; PEA = palmitoylethanolamide; SCFA = short-chain fatty acid; THC = tetrahydrocannabinol.

Adverse events

Six patients (21.4%) reported symptoms, including coughing, and wheezing after using MJ cigarettes, while one (3.5%) suffered drowsiness, night sweats, systemic aspergillosis, and coughing bouts. Steven et al. reported these negative consequences, which went away quickly after quitting smoking MJ (31).

Page 11 of 17

Discussion

 $\begin{array}{c} \begin{array}{c} \begin{array}{c} \text{if } \\ \$ In this systematic review, the study encompassed patients with oral disease, obesity, systemic aspergillosis, pain/inflammation, and HIV infection, employing MJ through substance use, oral capsules, or cigarette smoking. There exists an ongoing debate regarding the efficacy of probiotic treatments in altering microbiota composition (35). The limitations of the 16S rRNA sequencing method, often considered less sensitive to minor microbiota alterations, contribute to this uncertainty. However, it is crucial to emphasize that significant changes in gut microbiota composition may not be an exclusive prerequisite for substances to confer health benefits. Rather, health benefits can manifest through the production of metabolites and intricate interactions with the host's metabolism and immune system, even in the context of various disease states. In light of these considerations, a comprehensive systematic review on the interaction between cannabis and the microbiome is imperative to provide a nuanced understanding of the potential health implications stemming from this intricate relationship.

Microbial alteration in HIV patients using MJ

A study by Fulcher et al., which focused on HIV-positive men who have sex with men (HIV+ MSM) (29), showed that the patients' rectal swab samples had a high relative abundance of *Prevotella*. Additionally, there was a positive correlation between MJ use in HIV patients and elevated levels of *Fusobacterium* and *Anaerotruncus*, coupled with a negative association with *Dorea*, as describe in Figure 3. Evidence has shown that intestinal dysbiosis, marked by a decrease in *Bacteroides* and an increase in *Prevotella*, is linked to HIV infection (36, 37). According to recent research, elevated *Prevotella* in HIV may be a contributing factor to the gut's ongoing inflammation, which can cause mucosal dysfunction and systemic inflammation (38, 39). Marijuana usage in HIV+ MSM was linked to lower *Prevotella* abundance when propensity score analysis was used to account for several covariates (29).

There is evidence that HIV patients also had decreased levels of *Lactobacillus* and other beneficial microbes, as well as an increase of potentially opportunistic infections (37). Additionally, MJ users among HIV patients have been verified by Vallejo et al. to engage in higher-risk sexual behaviour, which can result in bacterial vaginosis (BV), which is characterised by an overgrowth of facultative anaerobic organisms and the absence of *Lactobacilli* (32). The prevalence of trichomonas infection in rectal samples decreased from 14% to 5% over a half-year (*p*=0.08), while gonorrhea and syphilis infections increased from 8% to 11% (*p*=0.66) and 0% to 5% (*p*=0.16), respectively (29). Intriguingly, MJ users were over six times more likely to test positive for *T. vaginalis* (aOR=6.2, *p*=0.0003), indicating a potential association with sexually transmitted diseases (40). The analysis demonstrating a significant association between MJ use and recurrent BV also presented an adjusted odds ratio of 2.05 (32), as outlined in Table 3. Despite these findings, additional clinical studies are warranted to address the ongoing controversy surrounding the relationship between MJ use and changes in sexually transmitted infections.

Interestingly, Fulcher et al. also noted that 28.4% of MJ users had a history of asthma, contrasting with 18.3% of non-users $(p<0.01)$ (29). Despite the bronchodilator effect of cannabis on the airway, suggesting potential benefits for asthma patients, there are acknowledged detrimental effects on the lungs (41). This dual impact prompts consideration of cannabis use for medicinal or recreational purposes, especially considering reported improvements in asthma symptoms.

Page 12 of 17

 i i ϵ i l Additionally, a study group (34) found a substantial adverse relationship between shannon diversity and microbial community richness and problematic cannabis usage. These findings collectively highlight the intricate associations between cannabis use, microbiota alterations, and various health outcomes in HIV patients, emphasizing the need for further research to elucidate the underlying mechanisms and potential therapeutic implications.

Impact of MJ on microbiota regarding pain or inflammation

The ability of AEA and THC to raise the levels of AMPs and SCFAs in mouse models of inflammation has been confirmed by numerous studies (42, 43). The main SCFAs implicated in host-bacterial contacts are butyrate, generated by Firmicutes, and acetate and propionate, produced by Bacteroidetes (44). It's interesting to recall that dendritic cells and adipose tissue macrophages express GPCRs like GPR109A and GPR43. Colon cancer cells undergo apoptosis when GPR109A is activated in a butyrate-dependent manner (45). Moreover, these receptor/ligand complexes prevent the activation of nuclear factor-kappaB in mice's colons. HDAC inhibition produced by butyrate inhibited the production of pro-inflammatory cytokines like IL-6 and IL-12 that are stimulated by lipopolysaccharides (46). Numerous studies have demonstrated that SCFAs are the primary mediator between the gut microbiome and host immunological homeostasis. A study conducted by Vijay et al. (27) revealed a positive association between changes in AEA and butyrate while elevations in AEA and palmitoylethanolamide (PEA) were correlated with a decline in TNF-α and IL-6. They also revealed that AEA and OEA at baseline were associated with a higher α -diversity ($p = 0.002$ and $p < 0.001$, respectively). This suggests the involvement of the ECS in the anti-inflammatory actions of SCFAs, indicating the potential role of additional pathways in the regulation of the immune system by the gut microbiota.

Musculoskeletal pain, a prevalent cause of chronic non-cancer pain, has led patients to perceive cannabis as beneficial for pain relief with minor adverse effects and an improvement in psychological wellbeing (47). In another trial utilizing medical cannabis, notable changes were observed in the microbial composition. Specifically, there was an elevation of *S. mutans* and *Lactobacilli* in the fourth week, despite being low in the initial week (26). The overall impact of cannabis on these bacteria appeared to exhibit both favorable and unfavorable effects. These findings underscore the intricate relationship between cannabis use, microbial alterations, and the complex interplay with pain perception.

Different expression of microbiota in oral diseases after the use of MJ

Newman et al. found that genera earlier shown to be enriched on head and neck squamous cell carcinoma (HNSCC) mucosa, such as *Capnocytophaga*, *Fusobacterium*, and *Porphyromonas*, were at low levels at the tongue site in MJ users, while *Rothia*, which is found at depressed levels on HNSCC mucosa, was high (33). At the oral pharynx site, differences in bacteria were distinct, with higher levels of *Selenomonas* and lower levels of *Streptococcus*, as seen in HNSCC. In samples taken from the lateral border of the tongue and the oral pharynx, it indicated that daily/almost daily inhalation of MJ over the previous month correlates with differently abundant taxa of the oral microbiome. Even though the use of MJ is associated with microbial changes, it is hard to conclude that it is the cause of how normal tissue develops into disease and then SCC. Furthermore, these changes were not consistent with malignancy.

Gut microbiota in cognitive deficits with the use of MJ

Moreover, using MJ is associated with alterations in gut microbiota and mitochondrial function, leading to cognitive deficits (28), as well as lower fruit and vegetable intake and greater animal-based food

Page 13 of 17

 $\begin{bmatrix} 1 \ 1 \ 1 \end{bmatrix}$ consumption. It also found that a more extensive lifetime MJ use was associated with a lower *Prevotella: Bacteriodes* ratio, as indicated in Table 3. Overall, the authors suggested that MJ use and associated dietary change like low dietary intake of antioxidants and fibers, contribute to the dysbiosis.

Effect of cannabinoids in obesity in terms of microbiome

Obesity is an excessive buildup of fat and cause an inflammatory response. Currently, herbal remedies like *Cannabis sativa* derivatives are gaining popularity in the treatment of obesity and its co-morbidities. The trial discovered that OEA supplement use significantly decreased the energy, fat, protein and carbohydrate intake of obese participants (*p*<0.001) (25). *A. muciniphila* increased considerably compared to the placebo group, suggesting that OEA could be used as a supplement for obese people (47).

Dysbiosis in cognitive deficits using MJ

Panee et al. (28) revealed that mitochondrial function correlated positively with Fluid Cognition and Flanker Inhibitory Control and Attention scores in MJ users but not in non-users (interaction *p*=0.0018–0.08). So, both mt dysfunction and gut dysbiosis also affect cognition.

Conclusion

In conclusion, the systematic review on the cannabis-microbiome interaction in varied clinical contexts is crucial for consolidating existing knowledge and identifying key research gaps. By critically analyzing the available literature, this review aims to provide a comprehensive understanding of how cannabis influences the microbiome across different clinical scenarios. Moreover, the identification of methodological variations in current studies will allow for recommendations on standardized approaches. In contrast, it is critical to recognise the several flaws in the review. To begin with, there were just two intervention studies at which one was nonrandomized. As a result, the study was limited to assessing the impact of cannabis therapy. Second, this was merely a data presentation in the current study because the adverse event data were only discovered through a study. Finally, while the study addressed a variety of clinical circumstances, only the qualitative evaluation could be completed. Despite the limited literature dedicated to these interactions, this should be anticipated for further work in this exciting research field. The systematic review will serve as a valuable resource for researchers, healthcare professionals, and policymakers, offering insights into the potential therapeutic implications of the cannabis-microbiome interaction and informing the development of targeted interventions across a spectrum of clinical conditions.

Abbreviations

CENTRAL: Cochrane Central Register of Controlled Trials; CIs: Confidence intervals; GRADE: Grading of Recommendation Assessment, Development and Evaluation; NOS: Newcastle - Ottawa Quality Assessment Scale; PRISMA-P: Preferred Reporting Items for Systematic review and Meta-analysis Protocols; RCTs: Randomized controlled trials; ROBINS-I: Risk Of Bias In Non-randomized Studies - of Interventions; US: United States.

Acknowledgements

None

Authors' contributions

MT and SR contributed to the analysis and writing of the manuscript. MT, TO, TN, SR and KP contributed to the conception and design. MT, SR, and BC conducted the data curation. MT, BC, JF, NH, and KP contributed

Page 14 of 17

to the critical revision of the manuscript. All authors read and approved the final manuscript. KP is the guarantor of the review.

Funding

t (J I S I M.T. was supported by the Graduate Scholarship Programme for ASEAN or Non-ASEAN Countries, and the Second Century Fund (C2F), Chulalongkorn University. T.O. and K.P. were funded by the Second Century Fund (C2F), Chulalongkorn University.

Availability of data and materials

Data will be available as supplementary files.

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Patient and Public Involvement

Patients or the public were not involved in the design, or conduct, or reporting, or dissemination plans of our research.

Competing interests

The authors declare that they have no competing interests.

Page 15 of 17

References

 $1.$

】 / / / / / 【 () 1. S163-71.

2. UN Office on Drugs and Crime. World drug report 2021: United Nations publication, Sales

No. E.21.XI.8; 2021.

3. United Nations Office on Drugs and Crime. World drug report 2022 2022 [updated 2022;

cited 2. UN
No. E.21.XI.
3. Uni
cited 2022.
<u>analysis/wo</u>
4. Suk
alcohol amo
5. Acł 2. United Nations Office on Drugs and Crime. World drug report 2022 2022 [updated 2022;
2. United Nations Office on Drugs and Crime. World drug report 2022 2022 [updated 2022;
2. Cited 2022. Available from: <u>https://www.un</u> 3. United National
3. United National
cited 2022. Available
analysis/wdr2022_a
4. Subbaramar
alcohol among older
5. Acharya N, F
Endocannabinoid sy
S A. 2017;114(19):50 cited 2022. Available from: <u>https://www.unodc.org/unodc/en/data-and-</u>
<u>analysis/wdr2022_annex.html</u>.
4. Subbaraman MS, Kerr WC. Cannabis use frequency, route of administration, and co-use v
alcohol among older adults in W

analysis/
A. Subbaraman MS, Kerr V
alcohol among older adults in V
5. Acharya N, Penukonda
Endocannabinoid system acts a
S A. 2017;114(19):5005-10.
6. Kendall DA, Yudowski G
Signaling and Roles in Disease. I
7. Sharkey KA,

alcohol among older adults in Washington state. J Cannabis Res. 2021;3(1):17.
5. Acharya N, Penukonda S, Shcheglova T, Hagymasi AT, Basu S, Srivastava PK.
Endocannabinoid system acts as a regulator of immune homeostasis in 5. Acharya N, Penukonda S, Shcheglova T, Hagymasi AT, Basu S, Srivastava
Endocannabinoid system acts as a regulator of immune homeostasis in the gut
S A. 2017;114(19):5005-10.
6. Kendall DA, Yudowski GA. Cannabinoid Recept Endocannabinoid system acts as a regulator of immune homeostasis in the gut. Proc
S. A. 2017;114(19):5005-10.
6. Kendall DA, Yudowski GA. Cannabinoid Receptors in the Central Nervous Sys
Signaling and Roles in Disease. Fro

S. A. 2017;114(19):5005-10.

E. Kendall DA, Yudowski GA. Cannabinoid Receptors in the Central Nervous System: Their

Signaling and Roles in Disease. Front Cell Neurosci. 2016;10:294.

7. Sharkey KA, Wiley JW. The Role of t S A. 2017;114(19):5005-10.

Signaling and Roles in Disease. Front Cell Neurosci. 2016;10:294.
7. Sharkey KA, Wiley JW. The Role of the Endocannabinoid System in the Brain-Gut Axis. Signaling and Roles in Disease. Front Cell Neurosci. 2016;10:294.

7. Sharkey KA, Wiley JW. The Role of the Endocannabinoid System in the Brain-Gut Axis.

Gastroenterology. 2016;151(2):252-66.

8. Silvestri C, Di Marzo V. Signaling and Roles in Black Cell MetaDaximalism of Sharkey KA, Wiley JW. The Role of the Endocannabinoid S

Signalization Cell Neurosci. Silvestri C, Di Marzo V. The endocannabinoid system in etiopathology of metabolic di

Gastroenterology. 2016;151(2):252-66.

8. Silvestri C, Di Marzo V. The endocannabinoid system in energy homeostasis and the

etiopathology of metabolic disorders. Cell Metab. 2013;17(4):475-90.

9. Zuardi AW. Cannabidiol:

Sally Silvestri C, Di Marzo V. The ender
Etiopathology of metabolic disorders. C.
2016. 2017. 2016. 20 etiopathology of metabolic disorders. Cell Metab. 2013;17(4):475-90.
9. Zuardi AW. Cannabidiol: from an inactive cannabinoid to a drug with wide spectrum
action. Braz J Psychiatry. 2008;30(3):271-80.
10. Uranga JA, Vera G,

Etion. Braz J Psychiatry. 2008;30(3):271-80.

action. Braz J Psychiatry. 2008;30(3):271-80.

10. Uranga JA, Vera G, Abalo R. Cannabinoid pharmacology and the

Biochem Pharmacol. 2018;157:134-47.

11. Sharkey KA, Darmani NA 9. 2008) and the specifical state of a dragged and therapy in gut disorders.

10. Uranga JA, Vera G, Abalo R. Cannabinoid pharmacology and therapy in gut disorders.

Biochem Pharmacol. 2018;157:134-47.

11. Sharkey KA, Dar 10. Uranga JA, Vera G, Abalo R. Cannabir
Biochem Pharmacol. 2018;157:134-47.
11. Sharkey KA, Darmani NA, Parker LA. I
the endocannabinoid system. Eur J Pharmaco
12. Matson TE, Carrell DS, Bobb JF, Cronl
Cannabis Use and As Biochem Pharmacol. 2018;157:134-47.
11. Sharkey KA, Darmani NA, Parker LA. Regulation of nausea and vomiting by cannabinoi
12. Matson TE, Carrell DS, Bobb JF, Cronkite DJ, Oliver MM, Luce C, et al. Prevalence of M
12. Mats 11. Sharkey KA, Darmani NA, Parke
the endocannabinoid system. Eur J Pha
12. Matson TE, Carrell DS, Bobb JF,
Cannabis Use and Associated Health Co
Primary Care Patients in Washington St
13. Leung J, Chan G, Stjepanovic D,
r the endocannabinoid system. Eur J Pharmacol. 2014;722:134-46.
12. Matson TE, Carrell DS, Bobb JF, Cronkite DJ, Oliver MM, Luce C, et al. Prevalence of Medical
Cannabis Use and Associated Health Conditions Documented in Ele 12. Matson TE, Carrell DS, Bobb JF, Cronkite DJ, Oliver MM, LI
Cannabis Use and Associated Health Conditions Documented in E
Primary Care Patients in Washington State. JAMA Netw Open. 202
13. Leung J, Chan G, Stjepanovic D

Cannabis Use and Associated Health Conditions Documented in Electronic Health Records Among
Primary Care Patients in Washington State. JAMA Netw Open. 2021;4(5):e219375.
13. Leung J, Chan G, Stjepanovic D, Chung JYC, Hall Primary Care Patients in Washington State. JAMA Netw Open. 2021;4(5):e219375.
13. Leung J, Chan G, Stjepanovic D, Chung JYC, Hall W, Hammond D. Prevalence and self-
reported reasons of cannabis use for medical purposes in Primary Care Patients in Primary Care Primary, Leongly, Channel 13.

13. Leung J, Chan G, Stjepanovic D, Chung JYC, Hall W, Hammond D. Prevalence

reported reasons of cannabis use for medical purposes in USA and Canada. Ps

hydroxytryptophan synthesis regulation alleviates the symptom of depression and related
microbiota dysbiosis. J Nutr Biochem. 2019;66:43-51. reasons of Gerl). 2022;239(5):1509-19.

14. Lu J, Hou W, Gao S, Zhang Y, Zong Y. The Role of Gut Microbiota-Gut-Brain Axis in

2014. Lu J, Hou W, Gao S, Zhang Y, Zong Y. The Role of Gut Microbiota-Gut-Brain Axis in

2015. (Berly, 2022), 2022, 2022, 2023
14. Lu J, Hou W, Gao S, Z
Perioperative Neurocognitive
15. Carabotti M, Scirocco
enteric microbiota, central ar
16. Tian P, Wang G, Zhac
hydroxytryptophan synthesis
microbiota dysbiosis. J N Perioperative Neurocognitive Dysfunction. Front Pharmacol. 2022;13:879745.
15. Carabotti M, Scirocco A, Maselli MA, Severi C. The gut-brain axis: interactions bety
enteric microbiota, central and enteric nervous systems. A Carabotti M, Scirocco A, Maselli MA, Severi C. The gut-brain axis: intera
enteric microbiota, central and enteric nervous systems. Ann Gastroenterol. 20
16. Tian P, Wang G, Zhao J, Zhang H, Chen W. Bifidobacterium with the enteric microbiota, central and enteric nervous systems. Ann Gastroenterol. 2015;28(2):203-9.
16. Tian P, Wang G, Zhao J, Zhang H, Chen W. Bifidobacterium with the role of 5-
hydroxytryptophan synthesis regulation Frame P. Wang G, Zhao J, Zhang H, Chen W. Bifidobacterium with the role of 5-
hydroxytryptophan synthesis regulation alleviates the symptom of depression and related
microbiota dysbiosis. J Nutr Biochem. 2019;66:43-51.
17.

hydroxytryptophan synthesis regulation alleviates the symptom of depression and re
microbiota dysbiosis. J Nutr Biochem. 2019;66:43-51.
17. Simpson CA, Diaz-Arteche C, Eliby D, Schwartz OS, Simmons JG, Cowan CSM.
microbiot microbiota dysbiosis. J Nutr Biochem. 2019;66:43-51.
17. Simpson CA, Diaz-Arteche C, Eliby D, Schwartz OS, Simmons JG, Cowan CSM. The g
microbiota in anxiety and depression - A systematic review. Clin Psychol Rev. 2021;83: microbiota in anxiety and depression - A systematic responsion anxiety and depression - A systematic responsive different M, Vaughan EE, Plugge CM, de Vos W
nov., a human intestinal mucin-degrading bacterium.
76.
19. Storr microbiota in anxiety and depression - A systematic review. Clin Psychol Rev. 2021;83:101943
18. Derrien M, Vaughan EE, Plugge CM, de Vos WM. Akkermansia muciniphila gen. nov.,
nov., a human intestinal mucin-degradin Derrien M, Vaughan EE, Plugge CM, de Vos WM. Akkermansia muciniphila gen. nov., sp
nov., a human intestinal mucin-degrading bacterium. Int J Syst Evol Microbiol. 2004;54(Pt 5):14
76.
Storr MA, Sharkey KA. The endocannabino

18. nov., a human intestinal mucin-degrading bacterium. Int J Syst Evol Microbiol. 2004;54(Pt 5):146
19. Storr MA, Sharkey KA. The endocannabinoid system and gut-brain signalling. Curr Opin
Pharmacol. 2007;7(6):575-82.
20. nov., a human interational system and gut-brain signalling. Curr Opin
19. Storr MA, Sharkey KA. The endocannabinoid system and gut-brain signalling. Curr Opin
20. Schen LJ, Esterhazy D, Kim SH, Lemetre C, Aguilar RR, Gordo . - .
19.
Pha
20. mal
21. exh
J Li p 20. Cohen LJ, Esterhazy D, Kim SH, Lemetre C, Aguilar RR, Gordon EA, et al. Commensal backer GPCR ligands that mimic human signalling molecules. Nature. 2017;549(7670):48-53.
21. Manca C, Boubertakh B, Leblanc N, Deschênes 20. Cohen LJ, Esterhazy D,
make GPCR ligands that mimic
21. Manca C, Boubertakh
exhibit profound gut microbiot
J Lipid Res. 2020;61(1):70-85. make GPCR ligands that mimic human signalling molecules. Nature. 2017;549(7670):48-53.
21. Manca C, Boubertakh B, Leblanc N, Deschênes T, Lacroix S, Martin C, et al. Germ-free mice
exhibit profound gut microbiota-dependent 21. Manca C, Boubertakh B, Leblanc N, Deschênes T, Lacroix S, Martin C, et al. Germ-fre
exhibit profound gut microbiota-dependent alterations of intestinal endocannabinoidome s
J Lipid Res. 2020;61(1):70-85.
The Manca Step 22. Manches C, Bourgaine, C, Bourgaine, C, Bourgaine, C, Martin C, Manches, C, Lean Community, Martin C, Andrea Merchannic C, Andrea exhibit profound gut microbiota-dependent alterations of intestinal endocannabinoidome si exhibit profound gut microbiota-dependent alterations of international endocannability of international endoca
Lipid Res. 2020;61(1):70-85. $J = \frac{1}{2}$

Page 16 of 17

 $22.$

- 4 C C ic - 4 C effects of Delta(9) -tetrahydrocannabinol against enterotoxin-induced acute respiratory distress
syndrome are mediated by modulation of microbiota. Br J Pharmacol. 2020;177(22):5078-95.
23. Al-Ghezi ZZ, Busbee PB, Alghetaa syndrome are mediated by modulation of microbiota. Br J Pharmacol. 2020;177(22):5078-95.
23. Al-Ghezi ZZ, Busbee PB, Alghetaa H, Nagarkatti PS, Nagarkatti M. Combination of
cannabinoids, delta-9-tetrahydrocannabinol (THC) syndrometrical are mediated by Magarkatti PS, Nagarkatti M. Combination of
cannabinoids, delta-9-tetrahydrocannabinol (THC) and cannabidiol (CBD), mitigates experimer
autoimmune encephalomyelitis (EAE) by altering the gut cannabinoids, delta-9-tetrahydrocannabinol (THC) and cannabidiol (CBD), mitigates experient autoimmune encephalomyelitis (EAE) by altering the gut microbiome. Brain Behav Immur
2019;82:25-35.
24. Page MJ, McKenzie JE, Boss

autoimmune encephalomyelitis (EAE) by altering the gut microbiome. Brain Behav Immun.
2019;82:25-35.
24. Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. The PRISM.
2020 statement: an updated gui 2019;82:25-35.
2019;82:25-35.
24. Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. The
2020 statement: an updated guideline for reporting systematic reviews. Bmj. 2021;372:n71
25. Payahoo L, Khaj 24. Page M.
2020 statement
25. Payahoo
A. Investigation
Akkermansia mu
clinical trial. App
Sciences, Marag
Medical Genetio 2020 statement: an updated guideline for reporting systematic reviews. Bmj. 2021;372:n71.
25. Payahoo L, Khajebishak Y, Alivand MR, Soleimanzade H, Alipour S, Barzegari A, Ostadrahimi
A. Investigation the effect of oleoyle 25. Payahoo L, Khajebishak Y, Alivand MR, Soleimanzade H, Alipour S, Barzegari A, Ostad
A. Investigation the effect of oleoylethanolamide supplementation on the abundance of
Akkermansia muciniphila bacterium and the dietar A. Investigation the effect of oleoylethanolamide supplementation on the abundance of
Akkermansia muciniphila bacterium and the dietary intakes in people with obesity: A randomized
clinical trial. Appetite. 2019;141((Payah Akkermansia muciniphila bacterium and the dietary intakes in people with obesity: A ranclinical trial. Appetite. 2019;141((Payahoo L.; Khajebishak Y.) Assistant Professor of Nutri
Sciences, Maragheh University of Medical S Clinical trial. Appetite. 2019;141((Payahoo L.; Khajebishak Y.) Assistant Professor of Nutrition
Sciences, Maragheh University of Medical Sciences, Maragheh, Iran(Alivand M.R.) Department of
Medical Genetics, Faculty of Me Sciences, Maragheh University of Medical Sciences, Maragheh, Iran(Alivand M.R.) Departmer
Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran(Sole
26. Habib G, Steinberg D, Jabb Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran(Soleima
26. Habib G, Steinberg D, Jabbour A. The impact of medical cannabis consumption on the ora
flora and saliva. PLoS O

Medical Canadis Consumption on the oral

Medical General General General General General General Flora and saliva. PLoS One. 2021;16(2):e0247044.

27. Vijay A, Kouraki A, Gohir S, Turnbull J, Kelly A, Chapman V, et al. The 12. Habib G, Steinberg 2021, 16, 2024, 2024, 2024, 2024, 2014.

27. Vijay A, Kouraki A, Gohir S, Turnbull J, Kelly A, Chapman V, et al. The anti-inflammatory effection of bacterial short chain fatty acids is partially medi 27. Vijay A, Kouraki A, Gohir S, Turnbull J, Kell
of bacterial short chain fatty acids is partially med
2021;13(1):1997559.
28. Panee J, Gerschenson M, Chang L. Associa
Function, and Cognition in Chronic Marijuana Use
29.

of bacterial short chain fatty acids is partially mediated by endocannabinoids. Gut Microbes.
2021;13(1):1997559.
28. Panee J, Gerschenson M, Chang L. Associations Between Microbiota, Mitochondrial
Function, and Cognition 2021;13(1):1997559.

28. Panee J, Gerschenson M, Chang L. Associations Between Microbiota, Mitochondrial

Function, and Cognition in Chronic Marijuana Users. J Neuroimmune Pharmacol. 2018;13(1):

29. Fulcher JA, Hussain SK

2022-2022
28. Panee J, Gers
Function, and Cognition
29. Fulcher JA, Ht
29. Minichino A, Sex Practices on the II
70. Minichino A, Endocannabinoid systemhedonia/amotivation Function, and Cognition in Chronic Marijuana Users. J Neuroimmune Pharmacol. 2018;13(1)
29. Fulcher JA, Hussain SK, Cook R, Li F, Tobin NH, Ragsdale A, et al. Effects of Substance
Sex Practices on the Intestinal Microb Fulcher JA, Hussain SK, Cook R, Li F, Tobin NH, Ragsdale A, et al. Effects of Substance Use and
Sex Practices on the Intestinal Microbiome During HIV-1 Infection. J Infect Dis. 2018;218(10):1560-
70.
Minichino A, Jackson M 29. Fulcher Journal Microbiome During HIV-1 Infection. J Infect Dis. 2018;218(10):1560-
29. Minichino A, Jackson MA, Francesconi M, Steves CJ, Menni C, Burnet PWJ, Lennox BR.
29. Minichino A, Jackson MA, Francesconi M, Ste So. Minichino A, Jackson MA, Francesconi M, Steves CJ, Menni C, Burnet PWJ, Lennox BR.
Endocannabinoid system mediates the association between gut-microbial diversity and
anhedonia/amotivation in a general population cohor 30.
End
anh
31.
Clin
32.
recu 30. Minichino A, Jackson MA, Francesconi M, Steves CJ, Menni C, Burnet PWJ, Lennox BR.

anhedonia/amotivation in a general population cohort. Mol Psychiatry. 2021;26(11):626

31. Kagen SL, Kurup VP, Sohnle PG, Fink JN. Marijuana smoking and fungal sensitiza:

Clin Immunol. 1983;71(4):389-93.

32. Vallejo V, S

81. Kagen SL, Kurup VP, Sohnle PG, Fink JN. Marijuana smoking and fungal sensitization. J
Clin Immunol. 1983;71(4):389-93.
32. Vallejo V, Shan W, Ilagan JG, Goldberg GL. Marijuana use in women of reproductive ag
recurrent 32. Vallejo V, Shan W, Ilagan JG, Goldberg GL. Marijuana use in women of reproductive age and
32. Vallejo V, Shan W, Ilagan JG, Goldberg GL. Marijuana use in women of reproductive age and
33. Newman T, Krishnan LP, Lee J, 32. Vallejo V, Shan W, Ilagan J
recurrent bacterial Vaginosis. Jour
33. Newman T, Krishnan LP, Le
mucosa sites with marijuana usage
34. Morgan E, Manuzak JA, Br
Cannabis Use Is Associated with Re
Pilot Sample of Young Sexu recurrent bacterial Vaginosis. Journal of Reproductive Medicine. 2021;66(9-10):256-62.
33. Newman T, Krishnan LP, Lee J, Adami GR. Microbiomic differences at cancer-prone oral
mucosa sites with marijuana usage. Sci Rep. 20

Recurrent Bacterial Christian Inc. Nucrobiomic differences at cancer-promucosa sites with marijuana usage. Sci Rep. 2019;9(1):12697.
24. Morgan E, Manuzak JA, Broedlow C, Hudson H, D'Aquila R, Carrico AW, et al. Production mucosa sites with marijuana usage. Sci Rep. 2019;9(1):12697.
34. Morgan E, Manuzak JA, Broedlow C, Hudson H, D'Aquila R, Carrico AW, et al. Problemat
Cannabis Use Is Associated with Reduced Rectal Microbial Species Richnes mucosa Salam Morgan E, Manuzak JA, Broedlow C, Hudson H, D'Aqui
Cannabis Use Is Associated with Reduced Rectal Microbial Spe
Pilot Sample of Young Sexual and Gender Minorities. AIDS Res
35. Ng QX, Lim YL, Yaow CYL, Ng WK, 34. Morgan E, Manuzak JA, Broedlow C, Hudson H, D'Aquila R, Carrico AW, et al. Problematic
Cannabis Use Is Associated with Reduced Rectal Microbial Species Richness and Diversity Among a
Pilot Sample of Young Sexual and Ge Pilot Sample of Young Sexual and Gender Minorities. AIDS Res Hum Retroviruses. 2023.

2013. Ng QX, Lim YL, Yaow CYL, Ng WK, Thumboo J, Liew TM. Effect of Probiotic Supplementation

2023;15(6).

2023;15(6).

2023;15(6).

20 Pilot Sample of J. Liew TM. Effect of Probiotic Suppl
on Gut Microbiota in Patients with Major Depressive Disorders: A Systematic Review. Nu
2023;15(6).
36. Mutlu EA, Keshavarzian A, Losurdo J, Swanson G, Siewe B, Forsyth

35. Ng Capital in Patients with Major Depressive Disorders: A Systematic Review. Nutrients.
2023;15(6).
36. Mutlu EA, Keshavarzian A, Losurdo J, Swanson G, Siewe B, Forsyth C, et al. A compositional
look at the human gastr 2023;15(6).
2023;15(6).
36. Mutlu EA, Keshavarzian A, Losurdo J, Swanson G, Siewe B, Forsyth C, et al. A composition
look at the human gastrointestinal microbiome and immune activation parameters in HIV infecte
subjects. P 36. Mut

look at the h

subjects. PL

37. Yang

is associated

29. Dillo

microbiome

36. Mutleman pastrointestinal microbiome and immune activation parameters in HIV infected
subjects. PLoS Pathog. 2014;10(2):e1003829.
37. Yang L, Poles MA, Fisch GS, Ma Y, Nossa C, Phelan JA, Pei Z. HIV-induced immunosuppr subjects. PLoS Pathog. 2014;10(2):e1003829.

37. Yang L, Poles MA, Fisch GS, Ma Y, Nossa C, Phelan JA, Pei Z. HIV-induced immunosuppressions associated with colonization of the proximal gut by environmental bacteria. Aids. 37. Yang L, Poles MA, Fisch GS, Ma Y, Nos
is associated with colonization of the proxima
29. Dillon SM, Lee EJ, Kotter CV, Austin G
microbiome in HIV-1 infection is associated w
endotoxemia. Mucosal Immunol. 2014;7(4):98

38. Sasociated with colonization of the proximal gut by environmental bacteria. Aids. 2016;30(1):19-
29. Dillon SM, Lee EJ, Kotter CV, Austin GL, Dong Z, Hecht DK, et al. An altered intestinal mucosal
microbiome in HIV-1 i is associated with colonization of the proximal gut by environmental bacteria. And 29 ; 29 .
38. Dillon SM, Lee EJ, Kotter CV, Austin GL, Dong Z, Hecht DK, et al. An altered intestinal mucos
microbiome in HIV-1 infection 38.
mic
end 38. Dillon SM, Lee EJ, Kotter CV, Austin GL, Dong Z, Hecht DK, et al. An altered intestinal mucosal endotoxemia. Mucosal Immunol. 2014;7(4):983-94.

The system is a systemic immune activation and systemic immune activation and systemic immune endotoxemia. Mucosal Immunol. 2014;7(4):983-94.

Page 17 of 17

ミノドノー 39.

Altered metabolism of gut microbiota contributes to chronic immune activation in HIV-infected
individuals. Mucosal Immunol. 2015;8(4):760-72.
40. Crosby R, DiClemente RJ, Wingood GM, Harrington K, Davies SL, Hook EW, 3rd, individuals. Mucosal Immunol. 2015;8(4):760-72.
40. Crosby R, DiClemente RJ, Wingood GM, Harrington K, Davies SL, Hook EW, 3rd, Oh MK.
Predictors of infection with Trichomonas vaginalis: a prospective study of low

AD. Crosby R, DiClemente RJ, Wingood GM, H
Predictors of infection with Trichomonas vaginalis
American adolescent females. Sex Transm Infect.
41. Jarjou'i A, Izbicki G. Medical Cannabis in A
5.
Anandamide Attenuates Acute Predictors of infection with Trichomonas vaginalis: a prospective study of low income African-
American adolescent females. Sex Transm Infect. 2002;78(5):360-4.
41. Jarjou'i A, Izbicki G. Medical Cannabis in Asthmatic Pati 41. Jarjou'i A, Izbicki G. Medical Cannabis in Asthmatic Patients. Isr Med Assoc J. 2020;22(4):232-5.
5.
42. Sultan M, Wilson K, Abdulla OA, Busbee PB, Hall A, Carter T, et al. Endocannabinoid
Anandamide Attenuates Acute R

Association with Signalling Pathways in Inflammation, Glucose and Lipid Metabolism. International
Journal of Molecular Sciences. 2020;21(17):6356. American adolescent females. Constant minimi metallican additional data additional data and a set Sultan M, Wilson K, Abdulla OA, Busbee PB, Hall A, Carter T, Anandamide Attenuates Acute Respiratory Distress Syndrome throu - 42
42
hth
43
As
Jo
44
Co the Gut-Lung Axis. Cells. 2021;10(12).
43. He J, Zhang P, Shen L, Niu L, Tan Y, Chen L, et al. Short-Chain Fatty Acids and Their
Association with Signalling Pathways in Inflammation, Glucose and Lipid Metabolism. Internati

Anandamide Attenuates Acute Respiratory Distress Syndrome through Modulation of Micro
the Gut-Lung Axis. Cells. 2021;10(12).
43. He J, Zhang P, Shen L, Niu L, Tan Y, Chen L, et al. Short-Chain Fatty Acids and Their
Associa 43. He J, Zhang P, Shen L, Niu L, Ta
Association with Signalling Pathways in
Journal of Molecular Sciences. 2020;2:
44. Hosseinkhani F, Heinken A, Th
contribution of gut bacterial metabolit
communicable diseases. Gut Micro Association with Signalling Pathways in Inflammation, Glucose and Lipid Metabolism. Inter
Journal of Molecular Sciences. 2020;21(17):6356.
44. Hosseinkhani F, Heinken A, Thiele I, Lindenburg PW, Harms AC, Hankemeier T. The 44. Hosseinkhani F, Heinken A, Thiele I, Linder
contribution of gut bacterial metabolites in the hu
communicable diseases. Gut Microbes. 2021;13(1
45. Thangaraju M, Cresci GA, Liu K, Ananth S,
is a G-protein-coupled recept

Journal of Molecular Sciences. 2020;21(17):6356.
44. Hosseinkhani F, Heinken A, Thiele I, Lindenburg PW, Harms AC, Hankemeier T. The
contribution of gut bacterial metabolites in the human immune signaling pathway of non-
c contribution of gut bacterial metabolites in the human immune signaling pathway of non-
communicable diseases. Gut Microbes. 2021;13(1):1-22.
45. Thangaraju M, Cresci GA, Liu K, Ananth S, Gnanaprakasam JP, Browning DD, et 45. Thangaraju M, Cresci GA, Liu K, Ananth S, Gnanar
is a G-protein-coupled receptor for the bacterial ferment
tumor suppressor in colon. Cancer Res. 2009;69(7):2826-
46. Chang PV, Hao L, Offermanns S, Medzhitov R. The
int

is a G-protein-coupled receptor for the bacterial fermentation product butyrate and functions as a
tumor suppressor in colon. Cancer Res. 2009;69(7):2826-32.
46. Chang PV, Hao L, Offermanns S, Medzhitov R. The microbial me is a G-protein-colon Cancer Res. 2009;69(7):2826-32.

46. Chang PV, Hao L, Offermanns S, Medzhitov R. The microbial metabolite butyrate regulates

intestinal macrophage function via histone deacety lase inhibition. Proc Na the coloner of the U. Offermanns S, Medzhitov R. The mintestinal macrophage function via histone deacetylase inhib
intestinal macrophage function via histone deacetylase inhib
2014;111(6):2247-52.
47. Furrer D, Kroger E, M

47. Furrer D, Kroger E, Marcotte M, Jauvin N, Belanger R, Ware M, et al. Cannabis against
chronic musculoskeletal pain: a scoping review on users and their perceptions. J Cannabis Res. intestinal macrophage function via histone deacetylase inhibition. Proc Natl Acad Sci U S A.
2014;111(6):2247-52.
47. Furrer D, Kroger E, Marcotte M, Jauvin N, Belanger R, Ware M, et al. Cannabis against
chronic musculoske 2014;111(6):2247-52.
47. Furrer D, Kroger E, Marcotte M, Jauvin N, Belanger R, Ware M, et al. Cannabis again
chronic musculoskeletal pain: a scoping review on users and their perceptions. J Cannabis R
2021;3(1):41. 2021;3(1):2247-712-71
47. Furrer D, Krog
chronic musculoskelet
2021;3(1):41. chronic musculoskeletal pain: a scoping review on users and their perceptions. J Cannabis Res.
2021;3(1):41.
. $\begin{equation} 2021;3(1):41. \end{equation}$ 2021;3(1):41.