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Abstract 

 

Introduction: Thoracic aortic aneurysm diameter determination is paramount for the 

decision-making process regarding surgical management. Studies focusing in 

asymptomatic patients have determined prevalence of 0.16 to 0.36% of TAAs in 

imaging studies. Several groups have proposed automated aortic measurement tools as 

propaedeutic and therapeutic instruments. In this study we developed and tested an 

automatic 3-dimensional (3D) segmentation method for the thoracic aorta, applicable on 

computed tomography angiography (CTA) acquired using low-dose and standard dose 

protocol, with and without contrast enhancement; and to accurately calculate the 3D 

diameter information of the arterial segments.  

Methods: a retrospective cohort of all CT scans acquired in our service between 2016 

and 2021 led to the selection of 587 CT exams including low and standard-dose 

radiation, with and without contrast enhancement. 527 exams were used for neural 

network training of an algorithm capable of aptly measuring the aortic diameters, using 

manual measurements performed by three medical specialists as a baseline. Sixty exams 

were used for validation. The algorithm was developed both for use with the support of 

PyRadiomics and for a self-made approach.  

Results: Aortic measurement using the algorithm supported by PyRadiomics resulted in 

mean absolute error values under 2mm. For the self-made approach, mean absolute 

error values were under 5mm.  

Conclusion: This study presents an effective automated solution for thoracic aortic 

measurement with good results in sets of standard or low-radiation exams, as well as 

those acquired with or without contrast enhancement; presenting a possibility for an 

auxiliary tool for automation of the process of measuring the diameter of the thoracic 

aorta. 

 

Keywords: aorta, thoracic; aneurysm; deep learning; automatic measuring; diagnosis. 
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1 Introduction 

 

Aneurysms of the thoracic aorta (TAA) represent one third of hospital 

admissions from aortic diseases in the United States1. Although they fall into the 

classical definition aneurysms –arterial dilations of at least 50% the adjacent healthy 

segments2,3, aneurysms in the thoracic aorta are associated with a natural history vastly 

diverging from that described for their more frequent abdominal counterparts: they 

present slower growth and higher association to congenital and degenerative diseases4. 

Several studies have attempted to assess the incidence of TAAs5. However, the 

key point for disease determination is dependent upon the average aortic size in a given 

population, which is broadly variable1,6,7. TAA diameter determination is also 

paramount for the decision-making process regarding surgical management8, with 

current guidelines proposing surgical treatment for dilations over 4cm in the ascending 

aorta and over 6cm in the descending segment, though these may vary according to 

comorbidities1. 

Although screening strategies have been deemed effective for reducing mortality 

of abdominal aortic aneurysms9, in the thoracic segment, general assessment of all 

asymptomatic patient is not recommended by the American Heart Association does not 

recommend, unless they present clear risk factors, such as collagen-specific diseases or 

first-degree relative family history1. Nevertheless, studies focusing in asymptomatic 

patients have determined prevalence of 0.16 to 0.36% of TAAs in imaging studies10–12. 

On the other hand, annual imaging screenings for lung-cancer are recommended, using 

low-dose chest computed tomography (CT) scans. This recommendation applies for 

patients over 50 years of age and with a present of past history of smoking13 – both risk 

factors for aortic aneurysms1. 

Several groups have proposed automated aortic measurement tools as 

propaedeutic and therapeutic instruments14–16. In particular, convolutional neural 

networks (CNNs) have achieved state-of-the-art results on a wide range of anatomical 

structures16. The present study aimed to develop and test an automatic 3-dimensional 

(3D) segmentation method for the thoracic aorta, applicable on computed tomography 

angiography (CTA) acquired using low-dose and standard dose protocol, with and 

without contrast enhancement; and to accurately calculate the 3D diameter information 

of the arterial segments, thus facilitating the estimation of aortic size in high-risk 
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patients subjected to screening for lung cancer. This automatic method was trained and 

validated against manual measurements performed by three specialists (one 

Radiologist and two Vascular Surgeons) in 587 exams. 

 

2 Methods 

 

This study is a retrospective cohort of all CT scans acquired between 2016 and 

2021, from the imaging dataset of our institution. This study was approved by the Ethics 

Committee under protocol number 44951021.8.0000.0071, through the report number 

4.710.910 of the 13th of May, 2021. 

This study was funded under portents of the Law 8.248, of the 23rd of October of 

1991.  

 

2.1 Data collection 

 

CT studies were performed following institutional protocol for thoracic exams and 

the exam indication, using collimation up to 1.3 mm. For contrasted exams, iodine-

based intravenous contrast medium (1–2 mL/kg of body weight) was delivered using a 

power injector, with variable injection rates (2.0–5.0 mL/s). Slice thickness of images 

was of up to 1.5 mm. Devices from different vendors were included (Siemens, General 

Electric and Canon). 

Acquisitions were included if they did not present artefacts due to movement or 

presence of metal devices. All exams with known previously treated aneurysms, 

presence of endografts, active aortic dissections and valve grafts were excluded.  

All data was prospectively entered into a dedicated anonymized database. After 

this step, the population characteristics were described by age, biological sex, weight, 

height, and the exam direction (head to feet or the opposite).  

 

2.2 Manual image segmentation 

 

The selected exams underwent a segmentation process by three expert doctors in 

the field: two vascular surgeons and one radiologist. A manual, slice-by-slice 

segmentation of each exam was done using the 3D Slicer software17, a free open-source 

software distributed under a BSD license style, using gold-standard segmentation 
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method “thresholding”. 

The totality of the thoracic aorta was highlighted, including the entire arterial wall 

visible in each slice, from just above the aortic valve to just above the diaphragm. 

Additionally, a centerline was marked using as reference points the center of aortic 

valve, the emergency of the brachiocephalic trunk, the emergency of the left subclavian 

artery and the diaphragmatic hiatus. 

In all cases in which identification of the aortic valve was not possible, an 

arbitrary point 2.5cm proximal to the brachiocephalic trunk was considered as the aortic 

origin. In all cases in which identification of the diaphragmatic hiatus was not possible, 

the diaphragmatic cupula was considered as the inferior limit of the thoracic aorta. 

A sample of exams was segmented in triplicate to be evaluated. These exams will 

be unified through the voting method and added to the other exams. The voting method 

consists of verifying whether at least two markings register at the same location, if not, 

the location is discarded. 

 

2.3 Manual image segmentation between-comparison 

 

The annotation of the aorta evaluation was performed by the three physicians and 

these measurements were compared using the Dice score coefficient metric. This metric 

aims to calculate the area overlap using the number of pixels in the image. A higher 

score coefficient indicates more overlapping images, and a more similar marking with 

regard to the determined gold-standard.  

 

2.4 Pre-processing 

 

To standardize the dataset, the patients’ positions were changed from FFS (feet 

first supine) to HFS (head first supine) and next step the intensity was adjusted by 

conversion of Hounsfield unit. 

The images were also cropped to exclude regions below the diaphragm, when 

present. Resampling steps were applied, and isomorphic resolutions were kept 

preserving the voxel dimensions. The “nearest-neighbour” approach was used for 

resampling and reshaping, in order to preserve image-binary segmentation relation. 

Finally, the window level and width were adjusted to get images of the same size. 
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2.5 Neural Network training 

 

The dataset was divided into training and validation datasets. For the training 

dataset, 90% of scans with their corresponding ground truth segmentations were 

randomly selected and used for neural network training (training dataset). For the 

validation dataset, the remaining 10% were used. Both sets included all exam types, as 

homogeneously distributed as possible.  

Models were trained using a 4-fold cross-validation. The models’ performance 

was evaluated by use of the loss function values, as well as the Dice Score Coefficient 

(DSC). The architectures DeepAAA18 and DeepVox were the basis for Convolution 

Neural Networking (CNN) training. The DeepVox architecture was developed by our 

team specifically for this project.  

The model conception was based on the Vox2Vox, a Conditional Generative 

Adversary Networking (cGAN)19, with variable z from DeepAAA. Other changes were 

added to increase performance, such as adding a VGG-11 based model to the 

discriminator. The losses were set like the Vox2Vox, except that hybrid focal loss was 

used instead of dice loss.  

The deep learning models were trained using cross-validation and 100 epochs per 

fold. Images were compressed in the z-axis with a fixed voxel depth of 3 mm, instead of 

forcing a z shape of 128, while the x and y axes were downsampled by resampling and 

cropping, not reshaping, granting uniformity for all the exams, in all dimensions. The 

variable z-axis enables the model to receive both thoracic and thoracoabdominal exams, 

identifying where the thoracic aorta ends and not proceeding with the segmentation to 

the abdominal region. 

 

2.6 Thoracic aorta diameter measurements 

 

To assess the created automatic measurement system outcomes, four different 

methods of measuring the thoracic aorta were used. Those methods are: (i) manual 

measuring, (ii) semi-automatic measuring, (iii) automatic measuring based on a made-

to-measure algorithm and (iv) automatic measuring based on PyRadiomics20. 

  

2.6.1 Manual measuring 
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The first method is manual measurement, the diameters of specific positions and 

the length of the ascending and descending aorta were measured manually using the 

Horus® software, an open-source tool developed by bq, and released to the community 

under GPLv2.  

 

2.6.2 Semi-automatic measuring 

 

Images were segmented using the 3DSlicer, for semi-automatic aortic 

measurement. Diameters were measured using the VMTKSlicer Module, an add-on 

open source for 3DSlicer. This extension was also used to build a centerline to measure 

the thoracic aorta's diameter. To manually construct the centerline was required for the 

user to centralize the starting and ending positions to serve as centerline's reference 

points along the segmented aorta. 

 

2.6.3. Automatic measuring 

 

Automatic measures of the aortic diameter were done by two techniques: 

PyRadiomics 3.0.1 and a made-to-measure algorithm (Supplementary Figure 1). The 

first approach uses an open-source python package to extract Radiomics features from 

medical imaging to obtain the diameter, whilst also calculating the smallest axis length. 

In the second method, an algorithm was developed to compare the greatest segment of 

the aorta with the regions declared healthy. The algorithm took the patient mask as input 

and the output was a list of average aortic diameter automatically measured. This 

algorithm obtained a centerline based on the skeletonizing method. The occasional 

errors created by the skeletonizing method were corrected using a graph-based pruning 

function, and then the algorithm determined each point of the centerline. A normalized 

vector x was calculated using the current point and the next point in the centerline. As a 

next step, the P orthogonal plane to ||x|| was calculated as well as the intersection of P 

with the aorta masks. Then, the Euclidian distance was calculated between the current 

point and all other points in the intersection. The pseudo-code of the algorithm is 

presented in (Supplementary Figure 1). 

 

2.7 Aortic diameter comparison and statistical analysis 
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The mean size, standard deviation, and maximum value obtained from each 

measurement method of the thoracic aorta for all exams were extracted. The mean 

absolute error metric was used to compare the mean size between each measurement 

method. This metric consists of calculating the difference between all measurements 

from different ways for each patient and then averaging the absolute value of errors.  

The dataset composition, according to exam type by modality and aneurysm 

presence, is shown in Figure 1. 

The original database was 796 exams, from which we excluded 210 based on our 

exclusion criteria. From the remaining 587 exams performed, 527 were used for data 

training and 60 for model validation (Figure 1).  

Population characteristics are described in Table 1. 

 
 

3 Results  

 

3.1 Manual segmentation and segmentation evaluation 

 

A sample of 16 low-dose exams was selected to evaluate the marking of the aorta 

region in exams among physicians. The Dice Score Coefficient metric was used to 

assess markup quality (Supplementary Table 1). 

The voting methodology was evaluated to unify the exam triplicates of this 

experiment. For this, two datasets were separated, a set with voting and another without 

voting. A DeepAAA model was trained with 50 epochs and compared the result of the 

average Dice Score Coefficient of these two datasets (Supplementary Table 2). 

All exams were segmented, 527 masks, including triplicate segmented images 

submitted to the voting method.  

 

 

3.2 Pre-processing 

 

The processing of these exams was performed from the following steps, 

application of the adjustment of the conversion of the Hounsfield unit on each exam. In 

addition, windowing is applied to width 400, resampling of x-axis = 2mm, y-axis = 

2mm, and z-axis = 3mm and cropping at 128x128xZ, where Z maintains its original 
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exam value, per exam slice. 

 

 

3.4 Training segmentation models 

 

The average Dice Score for the DeepVox model, which required about 50 hours 

and 100 epochs of training, was 0.8708, while the average Dice Score for the DeepAAA 

model, which required about 113 hours and 100 epochs of training, was 0.87 

(Supplementary Table 3). 

 

 

3.5 Aorta diameter measuring 

 

 The largest measurement came from the "Aneurysm" dataset (8.87 cm) and the 

smallest from "Std-Dose" dataset (4.33 cm). Largest mean also came from "Aneurysm" 

dataset (4.95cm [std ±1.2]) but the smallest mean is from "Low-Dose" dataset (3.3 cm 

[std ±0.74]). 

Table 3 displays the Maximum values and Mean Absolute Error (MAE) values 

achieved using automatic measuring technique and PyRadiomic. 

The table shows that the PyRadiomics presented lower MAE values, all of which 

were less than 2mm. For the self-made algorithm approach, the absolute maximum 

values are greater than 10 mm, while for the PyRadiomics, they are less than 5 mm. 

 

 

4 Discussion  

 

In the present work we developed, applied, and evaluated a fully automated 

algorithm for the measurement of the thoracic aorta which delivered good results, when 

compared to manual aortic measurements.  

Our Dice Score Coefficient results are very similar to results previously presented 

in the literature. Lu et al, 2019 exhibited a Dice Score Coefficient of 0.90 by training the 

DeepAAA model on 321 exams (223 unique patients), where 48% were contrast-

enhanced and 77% containing abdominal aortic aneurysm, and validating on 57 unique 

exams, where 51% were contrast-enhanced and 51% contained abdominal aortic 
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aneurysm. Comelli et al., 2020 performed a 5-fold cross-validation with 72 patients, 

using contrast-enhanced ECG-gated CT exams. 

 The measurements obtained by 3DSlicer are on average near manual 

measurement, while the self-made algorithm and PyRadiomics have little difference in 

how demonstrated by MAE value. This difference is similar to the results shown by 

Macruz et al21. But the maximum value by the self-made algorithm is showing must 

higher than PyRadiomiocs, we can infer that our measurement algorithm tends to 

underestimate the maximum diameter of the aorta. In addition, we consider that 

qualitatively the error of the measurement algorithm should be below 5 mm as shown in 

the literature. 

From a clinical standpoint, our work addresses relevant issues. The development 

of an accurate automated measuring of the aorta, applicable even to low-radiation and 

non-contrasted exams, represents the possibility of increasing aneurysm diagnostic, 

which may, in turn, have a positive impact in mortality and rupture rates.  

A MAE under 5mm, in clinical terms, is very accurate. The threshold for 

indicating surgical treatment in the thoracic aorta is usually over 4 to 6cm1, whereas 

clinical observation of aneurysms look for a yearly growth of over 1cm1.   

Limitations to this tool are mostly related to fact that the aortic segmentation 

presents an imbalance issue, where the volume of interest is considerably smaller than 

the background. Although the Dice Score Coefficient is an established metric to assess 

the model performance, when the loss version (Dice loss, defined by 1-Dice Score 

Coefficient) is applied to class imbalanced problems, it often exhibits high precision, 

but low recall. Several approaches which aim to improve the imbalanced performance 

were evaluated, where the optimal function selected was the Hybrid Focal Loss (HFL)22 

a combination of the Focal Tversky Loss and the Focal Loss. 

These limitations notwithstanding, the results of our applied models indicate that 

the developed algorithm is able to accurately perform an automatic measurement of the 

thoracic aortic diameters in several exams automatically segmented, including sets 

acquired with low radiation dosage, the presence of aneurysms and non-contrasted 

exams. 

Whilst current commercial solutions always require manual input, which 

introduces inter-operator variability, the tool proposed in this study delivers an 

objective, fully repeatable and systematic framework. The proposed solution also 

shortens the processing time, making it compatible with the clinical routine, and 
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applicable to large series of exams for research purposes. 

 

5 Conclusion 

 

 This study presents an effective automated solution for thoracic aortic 

measurement; the MAE values obtained for the measurement algorithm were under 

5mm, with good results in sets of standard and low-radiation exams, as well as those 

acquired with or without contrast enhancement and those in which aneurysms were 

present. This solution thus presents a possibility for an auxiliary automation tool for the 

process of diameter measuring for the thoracic aorta, instrumental for diagnosis and 

management of several circulatory conditions. 
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Table 1 – Descriptive statistics 

 
Low-Dose  
(n = 135) 

Std-Dose 
(n=135) 

CTA  
(n=135) 

Aneurys
m (n=107) 

Aneurys
m NC 

(n=15) 
  N (%) N (%) N (%) N (%) N (%) 

Patient 

Position     

FFS 
150 

(27.5%) 

130 

(23.8%) 

137 

(25.1%) 

113 

(20.7%) 
16 (2.9%) 

HFS 0 (0%) 
20 

(48.8%) 

13 

(31.7%) 
6 (14.6%) 2 (4.9%) 

Sex 

Male 
72 

(20.6%) 

96 

(27.4%) 

89 

(25.4%) 

80 

(22.9%) 
13 (3.7%) 

Female 
78 

(32.9%) 
54 (22.8) 61 (25.7) 

39 

(16.5%) 
5 (2.1%) 

Measure

ments 

Average 

±Standard 

deviation 

Average  
±Standard 

deviation 

Average  
±Standard 

deviation 

Average  
±Standard 

deviation 

Average  
±Standard 

deviation 

Age 
60.93 

±4.64 

43.01 

±18.37 

55.89 

±14.98 

65.76 

±12.96 

69.72 

±17.63 

Height 1.67 ±0.09 1.71 ±0.09 1.70 ±0.10 1.70 ±0.09 1.73 ±0.9 

Weight 
73.60 

±15.90 

72.73 

±16.92 

74.82 

±15.42 

77.27 

±17.70 

83.71 

±17.95 

 

 

 

Table 2 – Comparison results of different methods of measuring the thoracic aorta 

 Low-Dose (n = 

135) 

Std-Dose 

(n=135) 

CTA (n=135) Aneurysm 

(n=122) 

m

etrics 

M

ean ±std 

m

ax 

M

ean ±std 

m

ax 

M

ean ±std 

m

ax 

M

ean ±std 

m

ax 

M

anual 

2.

82 ±0.43 

3.

38 
- - - - - - 

3

DSlicer 

3.

30 ±0.74 

4.

92 

3.

70 ±0.36 

4.

33 

3.

40 ±0.54 

4.

77 

4.

95 ±1.20 

8

.87 

 

 

Table 3 – Comparison results of different methods of measuring the thoracic aorta 

 Low-Dose (n = 

135) 

Std-Dose 

(n=135) 

CTA (n=135) Aneurysm 

(n=122) 

metr

ics 

M

AE ±std 

m

ax 

M

AE ±std 

m

ax 

M

AE ±std 

m

ax 

M

AE ±std 

m

ax 

Self-

made 

algorithm 

0.

96 ±1.29 

6.

67 

1.

06 ±0.56 

4.

74 

0.

92 ±0.80 

3.

77 

2.

04 ±3.60 

1

7.78 

PyRa

diomics 

0.

83 ±0.76 

3.

87 

0.

98 ±0.55 

2.

20 

0.

95 ±0.51 

1.

97 

1.

46 ±1.20 

6.

11 
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Legend for Figures: 

 

Figure 1: Dataset composition: A training dataset; B: validation dataset  

(Figure does not need to be coloured in print)  
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Supplementary material 

 

 

Supplementary Table 1: Dice Score Coefficient comparison between doctors 

 1 vs 2 1 vs 3 2 vs 3 Average 

Dice 0.88 0.83 0.80 0.84 

 

. 

 

Supplementary Table 2: Voting experiment 

Scenario with voting without voting 

Avg. Dice 0.88 0.81 

 

  

Supplementary Table 3: Models comparison of cross-validation results. All 

models trained with the whole dataset. 

 DeepAAA DeepVox 

 

Dice 
Score 

Coefficient(test 
dataset) 

Time per 
Epoch (min) 

Dice 
Score 

Coefficient (test 
dataset) 

Time per 
Epoch (min) 

Fold 1  0.89 

17.00 

0.88 

7.5 

Fold 2  0.87 0.88 

Fold 3  0.86 0.86 

Fold 4  0.85 0.86 

Average 0.87 0.87 
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Legend for Supplementary Figures: 

 

Supplementary Figure 2: Algorythm coding for section plane diameter 
calculation 

(Figure does not need to be coloured in print) 
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