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Abstract

The COVID-19 (SARS-CoV-2) pandemic has led to a significant number of deaths globally and negative health 

consequences.  Accurate early diagnosis, surveillance, identification of cohorts, and prophylaxis are considered essential 

measures to reduce the spread of SARS-CoV-2. There is a need for a reliable, fast, high-throughput screening method that 

can identify sick patients. Since respiratory viruses are typically present in nasal and oral secretions, saliva would be a good 

target for testing. Polymerase chain reaction (PCR) remains the gold standard for sensitive detection of SARS-CoV-2 

infection in biological samples. Although PCR testing for COVID is sensitive (500 virions per ml) and widely used by 

hospitals, the method has a false-negative rate of 15–20% and is kit based. Saliva testing has slowly gained popularity in 

the diagnostic market for testing based on biomarkers and other constituents ranging from organic compounds (e.g., food 

additives), peptides, and even microorganisms. In this paper, we will show how the SpecID Mass Spectrometer can detect 

the presence of a virus in saliva at very low levels. The main goal of the study consisted of addressing the shortcomings of 

existing methodologies, by providing a reliable, high-throughput, rapid, modified mass spectrometer to detect viruses in 

saliva, including but not limited to SARS-CoV-2.
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1. Introduction

The COVID-19 (i.e., SARS-CoV-2) pandemic has been the biggest global health challenge since the Second World War 

[37], with 630,499,846 confirmed cases and over 6,573,283 mortalities worldwide (WHO report October, 2022) [1]. 

Accurate early diagnosis, monitoring, isolation, and prophylaxis are essential to slowing down the spread of SARS-CoV-2 

[1, 11, 49]. In order to achieve this, there is a need for a reliable high-throughput screening method [51]. A number of 

analytical laboratory-based methods have been investigated for fast, accurate detection of SARS-CoV-2 [1]. With detection 

and monitoring of SARS-CoV-2 in mind, Rehman et al. have explored spectroscopy [36], Connell et al. have developed a 

rapid, unsophisticated, and sturdy IgG-capture enzyme-linked immune-absorbent assay [19], Cabitza et al. have used blood 

test analyses and machine learning as an alternative to rRT-PCR [4], and Chan et al. have used TEM (transmission electron 

microscopy) to identify virus morphology [12]. Genome sequencing was also used to identify a particular virus, and 

sequence data proved useful in designing PCR probes as well as primers [12]. Attempts using data obtained from 

smartwatches (i.e., consumer wearable devices) such as a) time spent resting, b) number of daily steps walked and c) heart 

rate variations were tried for detecting coronavirus disease at a pre-symptomatic stage [22]. Most of these methods are not 

accurate, helpful, or cost-effective [36]. Even polymerase chain reaction (PCR), the gold standard technique for detecting 

SARS-CoV-2 infection in biological samples, has a false-negative rate of 15–20% [4, 7, 8, 9, 11, 25, 27, 30, 31, 48]. There 

is a considerable need for an alternative, accurate, quick, high-throughput screen for SARS-Cov-2 variants that can directly 

analyze body fluids (i.e., saliva, blood, urine) [5, 15, 28, 30, 39]. Samples can be readily collected from test subjects in 

different community settings [33, 36, 44]. Saliva is a reliable biofluid for detecting viral loads, particular for respiratory 

viruses like SARS-CoV-2 [27].

1.1. Benefits of using saliva 

Saliva is a biofluid that is regularly secreted by the salivary glands [41]. It fulfills several functions, including providing a 

protective coating for the buccal cavity with antimicrobial properties  and assisting digestion [37]. Respiratory viruses can 

easily spread through nasal and oral secretions [34], from the buccal cavity by salivary gland infection, with subsequent 

release of particles in saliva via salivary ducts [40, 41]. Saliva can preserve high-quality DNA and viral material at room 

temperature for transport and analysis [33]. Swabs used in nasopharyngeal sampling are invasive and can be distressing to 

some patients [37], as it might cause sneezing [29], and in some cases bleeding [29, 35, 37]. Saliva is a readily accessible, 

easily sampled [9, 13, 15, 23, 37, 42, 45] diagnostic bodily fluid [42, 46, 47], that can contain infectious agents [6]. It is 

ideal for investigating viral outbreaks [9, 36], including COVID-19 [28]. The practicality and applicability of using 

nasopharyngeal swabs and saliva to detect viruses has been studied and is an established method [24, 29, 30, 35, 38]. The 

importance of using a less invasive [25], quick [24] and safe collection [44] of salivary secretion as a substrate for molecular 

diagnosis is that it won’t require the assistance [33, 35, 38] of trained medical personnel or health care professionals [7, 37]. 

Supervised saliva collection is advised [10, 37] when blood and/or urine collection [18] cannot be obtained from  newborns, 

infants [10, 32, 39] and patients with hemorrhagic syndromes [5]. Patients can self-collect saliva (> 0.5 mL) without 

generating aerosols [28], thus greatly minimizing the risk of nosocomial virus transmission to healthcare personnel [31, 40, 

41] (excluding participants in dental practice [26]). Saliva as a diagnostic biofluid has a high consistency rate of greater than 

90% [37]. Saliva testing may be a suitable alternative first-line screening test in several field environments, including low 

resource community settings [25] or in remote places where medical facilities are lacking all together [10]. Although it has 
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been neglected in the past [23], the diagnostic value of saliva, aided by current technological development is expected to 

increase [45].

1.2. What can be detected in saliva ?

Saliva has gradually gained wide-spread acceptance as a veritable solvent of biomarkers and other constituents ranging from 

organic compounds, peptides, and even microorganisms (i.e., bacteria and viruses) [37]. Viruses such as SARS-CoV-2 [29, 

31, 33, 40], other respiratory viruses [24], SARS [30], dengue virus [2, 5, 13], chikungunya virus [2, 3], Epstein-Barr virus 

[6], HIV [19, 23, 45], arthropod-borne oropouche virus (OROV) [20], Hepatitis A virus (HAV) [9], Hepatitis C virus (HCV) 

[8], congenital cytomegalovirus [18], feline leukemia virus (from cats) [7], or the Zika virus [10, 14, 16], can all be detected 

in saliva [15] after the onset of symptoms, suggesting its potential use for monitoring viral clearance [31]. Saliva contains 

a variety of constituents (i.e., salivary glucose and serum glucose [43]) that can be used for the diagnosis of diabetes mellitus 

[43]. Other constituents, such as controlled substances, sets of unique peptides [48], secretory immunoglobulin (Ig) [19, 

42], proteomic biomarkers [47, 48], and breast / lung cancer-specific organic chemical signatures embedded in saliva 

metabolites [23], have also been detected in saliva [45].

1.3 Using mass spectrometry to detect viruses

While RT-qPCR is presently the method of choice to detect SARS-CoV-2, due to its high degree of sensitivity, the scope 

of application of the RT-qPCR assay is restricted [11]. Specifically, RT-qPCR detection of viruses requires operation in a 

certified lab [4], trained personnel to operate the equipment, costly kit-based reagents, and is time-consuming [17, 36, 48]. 

Attempts have been made to identify SARS-CoV-2 proteins [51] from gargle solution samples of SARS-CoV-2 patients 

[50] using mass spectrometry [44]. With medical screening in mind, cancer-specific signatures, embedded in saliva 

metabolites [46, 51] have been detected using mass spectrometry. The mass spectrometric approach is based on a 

conventional, not portable, MALDI-TOF MS instrument and requires almost an hour of sample preparation to detect the 

presence of a virus from nasal or salivary secretions [48, 49]. Hernandez et al. have employed a mass spectrometric method 

to determine the presence of SARS-CoV-2 in human saliva [44]. Tomita et al. used capillary electrophoresis time-of-flight 

mass spectrometry [46]. Gel electrophoresis combined with MS was the platform to carry out salivary proteome separation, 

quantification, and identification [47]. None of these studies can analyze viruses directly in saliva without sample 

preparation. Moreover, the methods described in these papers use expensive, lab based, non-portable equipment to carry 

out these studies [49]. The main goal of our study is to highlight a portable, high-throughput, real-time, mass spectrometric 

method called SpecID for directly detecting SARS-CoV-2 variants in saliva at PCR detection levels.

2. Materials and Methods

2.1. Instrumentation

The instrument is a SpecID technology, modified, patented, portable mass spectrometer (CMS) supplied by Advion, Inc. 

(Ithaca, NY, www.advion.com/products/expression-cms/). The base Advion mass spectrometer is an atmospheric pressure 

ionization portable mass spectrometer. The SpecID instrument modification has previously been described by Alusta et al. 
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[56]. In brief, with the addition of a built-in – high voltage power supply, the CMS was modified (Fig. 1a) so that it would 

deliver continuous sparks at around 2.3 keV (2,335V ± 112 V) using a discharge needle in an argon gas atmosphere, in the 

ionization chamber of the instrument (Fig. 1b). The SpecID patented system [53, 54, 55] has been shown to ionize organic 

chemicals, as well as microorganisms such as bacteria and viruses. Sample ionization occurs when noble gas plasma sparks 

continuously strike analytes (e.g., bodily fluid samples) which are deposited onto ready-made depressions (i.e., indentations) 

of stainless-steel wire mesh sample holders (Fig. 2), that are electrically grounded. This type of ionization was previously 

described in detail in a patent [53] and four publications [52, 53, 54, 55]. The SpecID method produces mass spectra with 

rich spectral information content compared to spectra acquired on an off-the-shelf Advion CMS or any other atmospheric 

pressure ionization instrument (i.e., AccuTOF by JEOL USA, Inc.) [52].

2.2. General procedure

The screening procedure, also known as the SpecID workflow for virus detection in saliva (Fig. 4), consists of the following 

steps. Saliva is collected (average is 0.4 to 0.5 ml for most people) under supervision from hospital personnel or similar into 

a 1.5 mL microcentrifuge tube. Microcentrifuge tubes containing saliva are vigorously vortexed for 10 – 15s to ensure 

homogeneity (regardless of viral load). As many as four (4) 2-μL samples of saliva can be transferred by pipette to a sample 

holder. Once the samples are dry, sample holders (Fig. 2) are inserted into the ionization chamber of the CMS using a probe 

(Fig. 1a) where they are spark ionized. During this process, which lasts approx. 8 - 10 s per sample, mass spectra are 

collected (ranging from 151 to 500 amu) and stored using the CMS software (vers. 6.4.13.4), supplied by the manufacturer. 

Several replicate mass spectra of all the samples on the sample holder are acquired to ensure spectra reproducibility. 

Replicate mass spectra are later extracted using the CMS data processing software (vers. 6.4.13.4, Fig. 11) from their 

respective total ion chromatogram (TIC). Spectral analysis of the spectra can detect the presence or absence of a virus in 

the saliva sample. The unique viral spectral silhouette can be analyzed using pattern recognition software such as PCA (Fig. 

6) or automated using an artificial neural network (ANN). 

2.3. Spectra processing

Extracted raw spectra data files are large in size (i.e., require extensive storage space (ca. 2 MB ea.) on electronic media) 

and thus, are unsuitable for high-throughput screening. For this reason, the raw spectra files are binned to reduce their file 

size. (Fig. 5a). When acquired, mass spectra contain a nominal amount of background noise, a natural occurrence during 

spectra acquisition of biological samples or organic compounds (e.g., imiquimod). This background noise level can 

negatively impact spectra reproducibility and data analysis. Therefore, the binned spectra are divided by their respective 

relative standard deviation (RSD) to reduce noise (Fig. 5b). This RSD can be calculated from a set of spectral replicates for 

a sample on a peak by peak basis. Spectra are then normalized between 0 and 1 (Fig. 5c) to facilitate the use of the spectra 

for data analysis.

 

3. Results

3.1. Proof of concept
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In order to perform a proof of concept experiment for detecting a virus in a complex matrix such as human saliva using 

SpecID, a preliminary experiment was designed and commenced. Human saliva – obtained from a consenting volunteer 

subject – was spiked in vivo with a cucumber leaf spot virus (CLSV, Fig. 3a, provided by Dr. Sherman, Dept. of 

Biochemistry & Molecular Biology, Univ. of Texas Medical Branch at Galveston, TX) at a concentration which corresponds 

to that of a virus-infected patient, approximately 106 viral particles / mL of saliva. Replicate spectra of 1) CLSV only, 2) 

saliva only, and 3) CLSV-treated saliva were acquired and plotted as respective spheres within a hypothetical 3D principal 

component analysis (PCA) plot (Fig. 6). The clustering of spheres within each group clearly demonstrates that replicate 

samples obtained from CLSV-treated saliva (Fig. 7) can be reliably identified and distinguished from the replicate samples  

(Fig. 7a) obtained from human saliva of a healthy individual (Fig. 6).

3.2. Limit of detection (LOD)

In order to determine the lower limit of detection, CLSV suspensions were diluted ranging from 0 to 2 M viral particles / 

mL. Mass spectra of human saliva spiked with CLSV at various concentrations (Fig. 7), ranging from 0 to 2.0 × 106 viral 

particles / mL were acquired on a modified CMS and processed as described above. The LOD resides at around 0.5 × 106 

virons / mL of saliva. Later experiments showed that the LOD was even lower (i.e., 104 virions / mL, data not shown). 

Concentrations below 104 / mL will yield mass spectra that become indistinguishable from spectra acquired from saliva 

only samples.

3.3. Distinction of coronaviruses

At the beginning of the Covid-19 pandemic, we were able to acquire mass spectra of various heat-inactivated coronaviruses, 

namely 1) a canine COV viral suspension in HEPES (1.5 mM Na2HPO4 · 2H2O aqueous solution) buffer, 2) a HCOV OC43 

(Fig. 3c) viral suspension in buffer, 3) a HCOV NL63 viral suspension in buffer, as well as a BCOV sample (Fig. 3b), 

(courtesy of Dr. Azevedo). The HEPES buffer solution served as a control. A side-by-side visual comparison of the mass 

spectra acquired from canine COV (Fig. 8a), HCOV OC43 (Fig. 8b), HCOV NL63 (Fig 8c) and HEPES buffer solution 

(Fig. 8d) allowed identification of distinctive spectral features. Through ArrayTrack™ PCA software, we were able to show 

distinctive clustering of replicate spectra (data not shown). This demonstrated the SpecID platform was suitable for 

distinguishing various coronaviruses.

3.4. Distinction of SARS-CoV-2 variants

The next logical step consisted of distinguishing SARS-CoV-2 variants of clinical importance. The heat inactivated viruses 

used in this experiment were obtained from bei RESOURCES (www.beiresources.org). These included NR-56128, SARS-

CoV-2 hCoV-19, B.1.617.2, delta variant, and NR-56495, SARS-CoV-2 hCoV-19, B.1.1.529, omicron variant. A 

comparison of the spectra of human saliva only and human saliva spiked with delta / omicron SARS-CoV-2 variants is 

shown in (Fig. 9a-e). Reproducible prominent peaks of break down products from the spark ionization  (arrows) aid in 

visually distinguishing the samples. Furthermore, 3D PCA (software used: ArrayTrack™ accessible at www.fda.gov) of 

mass spectra acquired from human saliva, compared to processed mass spectra acquired of human saliva spiked with a 

SARS-CoV-2 variant (i.e., delta and omicron variants) clearly demonstrates that the two variants – delta and omicron – 

could be distinguished (Fig. 10). The spatial clustering of each group of replicate spectra (i.e., saliva only, saliva treated 
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with coronavirus / delta variant, and saliva treated with coronavirus / omicron variant), demonstrated that spectra produced 

by SpecID are reproducible and unique enough to distinguish SARS-Cov-2 variants. This was possible using the RSD 

processing algorithm developed ‘in-house’. For comparison, the CMS manufacturer spectrum library tool cannot perform 

this distinction.

4. Discussion

The SpecID technology was discovered serendipitously while working with bacteria. The ensuing work on bacterial 

pathogens with SpecID showed the argon plasma spark ionization produced reproducible patterns of different strains of 

bacteria, specifically Salmonella serovars (Supplemental materials S1). Spectra that could be databased and catalogued, and 

easily identified with pattern recognition [54].  Our lab used the platform to perform chemical analysis and identify 

adulterated drugs, including creams and gel medications, with no sample preparation [56]. As part of a collaboration with 

Western Kentucky University, we used SpecID to identify antibiotics in porcine waste (Supplemental materials S2), with 

minimal sample handling (data not shown). Since the technology could directly be used for all these applications, our lab 

considered using the platform to detect Covid-19 once the pandemic was in full swing. Since Covid-19 is a respiratory virus, 

and saliva is a route of transmission, saliva was a logical matrix for analysis using SpecID. The initial SpecID work using 

CLSV virus in saliva, as a surrogate for Covid, showed: 1) the saliva spectra are reproducible, 2) saliva containing virus 

could easily be distinguished from saliva only samples, and 3) viral load in the saliva could easily be tracked. We performed 

limit of detection experiments that showed the SpecID sensitivity for detection of viruses in saliva outperforms PCR, both 

in terms of sensitivity and time to result (SpecID – 8s, PCR – hours). For the initial work, artificial saliva (Pickering 

Laboratories, Mountain View, CA) was tested as a surrogate to human saliva. Artificial saliva is a mixture of chemicals that 

approximate the viscosity and some of the physical characteristics of saliva. It did not work as a saliva surrogate for SpecID 

since it produces significant spectral variability between replicate spectra (data not shown). Having obtained FDA IRB 

approval, the saliva used in this study was collected from consenting healthy human volunteers and used to prepare the 

various viral suspensions analyzed. Volunteers at our facility, who agreed to participate in our study, provided saliva in 1.5 

mL microcentrifuge tubes at least 60 min after the most recently ingested meal, in some instances, after teeth brushing. 

Volunteers were made aware that  consumed products can  affect saliva quality, including recent consumption of food, 

drinking soft/alcoholic beverages, smoking, vaping, smokeless tobacco products, chewing bubble gum, and presence of 

controlled substances (Schedules I-V) in trace amounts. The SpecID technology is so sensitive that it can “see” all  these 

adulterants in saliva. Similarly, several health conditions will affect saliva. Similarly, several health conditions will have an 

effect on saliva. These include dehydration, reflux disease, poor hygiene, and other medical conditions such as decaying 

teeth, tonsillitis, bronchitis, benign lymphoepithelial lesions [60], and diabetes. This suggests the platform could be used to 

diagnose different diseases in saliva and other body fluids. It also suggests that food, drugs, other chemicals, disease states, 

and other adulterants can be identified and entered in a database as part of normal, virus free saliva. Enabling viruses to 

easily be identified on top of these conditions. Identifying a particular virus in saliva during high-throughput screening of 

the general population can be challenging, as people will most likely exhibit some variability in their saliva. However, the 

SpecID system is so sensitive that it can deconvolute the background noise and isolate the virus. Saliva is generally accepted 

as a source for biological indicators ranging from alterations in nucleic acids, proteins, and microflora biochemicals [59], 

and for this reason it has a good potential, compared to other biological fluids, for use in the detection of respiratory viruses 
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using SpecID. In addition to detecting and identifying a particular virus of interest in human saliva, the spectral data can be 

used to isolate the spectral fingerprint of a virus from the spectrum acquired from virus-infected human saliva. This is a way 

to avoid confusion with ingested or consumed substances and medical conditions. This can be achieved using an “in house” 

developed software which automatically extracts spectra from the total ion chromatogram, then processes the spectra for 

convenient spectra comparison. The method appears to work well to determine if one’s saliva contains viruses of any type.

5. Conclusions

Compared to other bodily fluids (e.g., blood), collection and testing of saliva is painless and enables rapid screening of 

infected individuals. Compared to sampling of other bodily fluids such as blood and urine, the SpecID workflow for saliva 

is easy to perform. There is no sample preparation and saliva samples can be introduced by a trained hospital worker directly  

into the mass spectrometer’s ionization chamber using a sample holder. Replicate spectra are acquired in less than a minute 

and with software automation, the spectra could be extracted, RSD-processed, and analyzed in seconds. Virus identification, 

down to the variant-level, can be completed using automated software, which will sift through a large spectral library 

containing viruses of clinical importance, including SARS-CoV-2. In this study, we were first able to detect and identify 

cucumber leaf spot virus (CLSV) in saliva vs. saliva only, with a LOD of 104 virions / mL, distinguish various coronaviruses 

in saliva vs. control, and most importantly distinguish and identify SARS-CoV-2 variants (delta and omicron) in human 

saliva samples. The SpecID “in house” RSD processing and analysis software was necessary to produce the results. The 

commercial CMS Spectrum Library software provided by the mass spectrometer manufacturer did not yield reliable results. 

The use of SpecID platform as discussed in this manuscript implies 1) the instrument modifications that produces argon 

plasma spark ionization, and 2) the complementary replicate-based RSD processing software. This system could be extended 

to the rapid and reliable detection and identification of other clinically significant viruses such as Zika, dengue, influenza, 

hepatitis B and C [10, 57, 58], human immunodeficiency virus (HIV), and many others including newly emerging viruses. 

For this reason, the SpecID platform could be extremely useful in clinical settings. In addition to clinical testing of saliva 

and other body fluids for viruses, the platform can be used for environmental testing for viruses in public places including 

airports, subway train stations, product testing labs in regulatory environments, quality control departments in industrial 

production facilities, to name a few. Numerous sampling methods can be used with SpecID. Since the SpecID system is 

robust, it can analyze samples ‘as is’, meaning no sample prep. This includes solids, gels, creams, liquids, biofluids, and 

many other matrices.  The SpecID platform has many other uses, and our plan is to highlight those applications in future 

publications.
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11. Figures

Figure 1a: The SpecID modified ionization chamber of the Advion CMS mass spectrometer. The sample holder (dark 

gray rod and yellow aggregate) is depicted being inserted in the chamber. All CAD drawings reproduced in this study 

were made by the authors using SketchUp vers. 14.

Figure 1b: Cut-through view of the modified ionization chamber of the CMS. The tip of the discharge needle (D) is 

located right above the ion inlet orifice (I) – top of the cone.

Figure 2: Low-magnification SEM micrograph of the stainless-steel wire mesh “sample holder”. The up-side-down 

indentation which can hold up to 5 μL of saliva ready to be ionized.

Figure 3a: TEM micrograph (magnification: 40,000 ×) of cucumber leaf spot virus (CLSV) virions. The average diameter 

of a CLSV virion is ~30 nm.

Figure 3b: TEM micrograph (magnification: 25,000 ×) of bovine coronavirus (BCOV). The average diameter of BCOV 

virus is ~90 nm.

Figure 3c: TEM micrograph (magnification: 25,000 ×) of HCOV OC43 virions. The average diameter of a HCOV OC43 

virus is ~95 nm.

Figure 4: SpecID workflow (general procedure): i) supervised collection of saliva from a human volunteer into a 1.5 mL 

microcentrifuge tube, ii) deposition of two or more 2-μL drops of saliva on stainless-steel sample holders, iii) loading sample 

holder into the ionization chamber of the CMS, iv) acquisition and storage of several replicate mass spectra, v) extraction 
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of replicate mass spectra from chromatogram, vi) analysis of presence or absence of a particular virus using spectra analysis 

software.

Figure 5a: Spectral binning: Illustration of binning mass spectra stored as Cartesian coordinates arranged in a spreadsheet. 

Individual spectra data points are binned at a resolution of 1 amu. Only the maximum value (red dotted line) found within 

each bin is adopted for each bin (red arrows). Analysis of binned spectra is much quicker due to the file size, when compared 

to raw data. 

Figure 5b: Noise reduction: Division by Relative Standard Deviation (RSD) to reduce background noise. Each spectral 

data point is divided by the relative standard deviation spectrum (calculated from the respective sample replicates).

Figure 5c: Spectral normalization:  To facilitate spectral analysis, the amplitudes of each spectrum are shifted between 

0.000 and 1.000, as calculated by their minima and maxima (see bottom of table shown in Fig. 5c).

Figure 6 3D PCA Plot: Software used: ArrayTrack™ (www.fda.gov/science-research/bioinformatics-tools/arraytracktm-

hca-pca-standalone-package-powerful-data-exploring-tools). Notice the clusters of each replicate spectra group (saline 

solution, saliva only, CLSV only, and saliva treated with CLSV. This demonstrates that spectra processing with RSD can 

easily distinguish the samples.

Figure 7: Spectra comparison of human saliva spiked with CLSV at various concentrations. From top to bottom: saliva 

only (Fig. 7a), saliva only (Fig. 7b), 0.5 M viral particles per mL of saliva (Fig. 7c), 1.0 M viral particles per mL of saliva 

(Fig. 7d), 2.0 M viral particles per mL of saliva, and finally CLSV only (Fig. 7e).

Figure 8: Comparison of mass spectra acquired of canine COV (Fig. 8a), HCOV NL63 (Fig. 8b), HCOV OC43 (Fig 8c), 

and HEPES buffer solution (Fig. 8d). Distinctive spectral features can be easily identified by means of visual inspection.

Figure 9: Spectra of human saliva spiked with the SARS-CoV-2 variants delta and omicron. From top to bottom: human 

saliva only (Fig. 9a); NR-56128, heat-inactivated SARS-CoV-2, hCoV-19, B.1.617.2, delta variant, 104 virons suspended 

in 1 mL of PBS (Fig. 9b); NR-56128, heat-inactivated SARS-CoV-2, hCoV-19, B.1.617.2, delta variant, 104 viral particles 

suspended in 1 mL of human saliva (Fig. 9c); NR-56495, heat-inactivated SARS-CoV-2, hCoV-19, B.1.1.529, omicron 

variant, 104 viral particles suspended in 1 mL of PBS (Fig. 9d); NR-56495, heat-inactivated SARS-CoV-2, hCoV-19, 

B.1.1.529, omicron variant, 104 viral particles suspended in 1 mL of human saliva (Fig. 9e). The arrows point to peaks of 

metabolites that aid visual confirmation.

Figure 10: 3D PCA of spectra of human saliva only, and spectra of saliva spiked with 500 virions of delta and omicron 

variants. Notice the spatial clustering of each group, demonstrating that spectral distinction of these variants can be achieved 

with SpecID at this low level of virus in saliva. 

Fig. 8d
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Figure 11: Screenshot of the Advion CMS analysis software.
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