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ABSTRACT 
 
Background: On March 29, 2022, the United States (US) authorized the second booster dose of COVID-
19 vaccine for individuals aged 50 years and older. To date, the cost-effectiveness of the second booster 
strategy remains unassessed. 
 
Methods: We developed a decision-analytic SEIR-Markov model by five age groups (0-4yrs with 
18,827,338 individuals, 5-11yrs with 28,584,443 individuals, 12-17yrs with 26,154,652 individuals, 18-
49yrs with 138,769,369 individuals, and 50+yrs with 119,557,943 individuals) to evaluate the cost-
effectiveness of the second COVID-19 booster vaccination (administered 4 months after the first booster 
dose) over an evaluation period of 180 days in the US, from a healthcare system perspective.  
 
Results: Implementing the second booster strategy among individuals aged 50+ years would cost US$807 
million but reduce direct medical care costs by $1,128 million, corresponding to a benefit-cost ratio of 
1.40. This strategy would also result in a gain of 1,048 QALYs during the 180 days, indicating it was 
cost-saving. Probabilistic sensitivity analysis demonstrated that the probability of being cost-effective 
with the strategy was 68%. Further, vaccinating individuals aged 18-49 years with the second booster 
would result in an additional gain of $1,566 million and 2,276 QALYs. Expanding vaccination to 
individuals aged 12-17 years would result in an additional gain of $15 million and 89 QALYs. Coverage 
of the first booster vaccination in age groups under 12 was too low to consider the administration of the 
second booster. If the social interaction between all age groups was severed, vaccination expansion to 18-
49yrs and 12-17yrs would no longer be cost-effective. 
 
Conclusion: The second booster strategy was likely to be effective and cost-effective in reducing the 
disease burden of the COVID-19 pandemic. Expanding the second booster strategy to 18-49yrs and 12-17yrs 
remains cost-effective due to their social contacts with the older age group.  
 
Keywords: COVID-19; Second booster; Cost-effective analysis; SEIR-Markov model; Age groups 
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INTRODUCTION 
 
Although many countries have eased COVID-19-related restrictions, the pandemic is far from over. 
During September about half a million new COVID-19 cases occurred every day globally.1 By the end of 
September 2022, COVID-19 has infected many more than the 0.6 billion people who were officially 
diagnosed with it and claimed more than 6.5 million lives.1 In the United States (US), over 1.1 million 
people have died of COVID-19 and the death toll is still rising. Effective and timely vaccination against 

COVID-19 remains the best strategy for curbing the pandemic.

2-4  
 
A growing number of reports have raised concern that breakthrough infections are becoming increasingly 
prevalent.5,6 This is caused by both the emergence of new Omicron variants and the waning protection of 
COVID-19 vaccines over time.7 Booster shots increase the effectiveness of protection in fully vaccinated 
people and prevent breakthrough infections, severe conditions, or deaths due to COVID-19.8 As of 
October 1, 2022, about 100 million people or approximately one third of the US population, have 
received their first COVID-19 booster shots,9 and the number is increasing daily. This promising news, 
however, does not change the fact that the virus continues to mutate, and the protection provided by the 
booster shots continues to wane over time.10  
 
A recent study demonstrated that the second BNT162b2 booster vaccine was highly effective in reducing 
COVID-19-related hospitalizations and deaths among older adults in Israel.11 Based on the available 
evidence on March 29, 2022, the US Food and Drug Administration (FDA) authorized “a second booster 
dose of the Pfizer-BioNTech COVID-19 Vaccine or Moderna COVID-19 Vaccine to be administered to 
individuals 50 years of age and older at least 4 months after receipt of a first booster dose of any 
authorized or approved COVID-19 vaccine”.12 Since then, millions of US adults have received their 
second COVID-19 vaccine booster shot. There are, however, controversies about continuing to offer a 
second booster shot to those who have received their first booster shot. First, offering the second booster 
shot would take significant resources and further increase the already enormous healthcare costs caused 
by the pandemic.13 Further, the Omicron variant as well as other newly emerged variants are less likely to 
cause severe conditions compared with the original SARS-CoV-2 and the earlier Alpha and Delta variants. 
Thus, the magnitude of the benefit of continuous vaccination against COVID-19 in the US population 
remains uncertain.14  
 
To inform policymaking, this study assesses the cost-effectiveness of a second COVID-19 booster 
vaccination, which is predominately mRNA vaccines and administered 4 months after the first booster, 
among children, adults and older adults aged 50+ years in the US. Cost-effectiveness analysis provides 
important information on the trade-off between increased health benefits and increased costs associated 
with widely administering the second COVID-19 booster shots. Our previous study estimated the cost-
effectiveness of a first COVID-19 booster vaccination among older adults in the US and concluded that 
the first booster shots were cost-effective.15 Since then, new SARS-CoV-2 variants have emerged and the 
proportion of the population who have been vaccinated or recovered from COVID-19 infections has 
changed substantially. Information on the cost-effectiveness of a second COVID-19 booster vaccination 
would be important for public health officials and policymakers to prioritize limited healthcare resources 
for continuously combating the pandemic and informing future vaccination strategies.  
 
 
METHODS 
 
Study design 
We developed a decision-analytic SEIR-Markov model by five age groups (0-4yrs with 18,827,338 
individuals, 5-11yrs with 28,584,443 individuals, 12-17yrs with 26,154,652 individuals, 18-49yrs with 
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138,769,369 individuals, and 50+yrs with 119,557,943 individuals) to estimate the cost-effectiveness of 
the second COVID-19 booster vaccination (predominately mRNA vaccines, 4 months after a first booster 
dose) over an evaluation period of 180 days in the United States (US). The evaluation was conducted 
from a healthcare system perspective. The model was constructed using TreeAge Pro 2021 R1.1, and the 
analysis was conducted according to the Consolidated Health Economic Evaluation Reporting Standards 
2022 (CHEERS 2022) statement.16 
 
Model structure 
The decision-analytic SEIR-Markov model can better capture and simulate the transmission characteristic 
of infectious disease as well as disease progression than a single static model.17,18 Existing evidence 
indicated that the vaccine efficacy (VE) of a first booster dose against the Omicron variant would 
gradually wane after four months.12,19-21 Thus, we defined the VE from 2 weeks to 4 months after a 
booster dose as a 'short-term booster VE', whereas the VE 4 months beyond the booster dose as a 'long-
term booster VE'. 
 
Our model, in each age group, consisted of 13 health states including 6 uninfected states depicting varied 
vaccination status and 7 infected states depicting varied disease progression of COVID-19 (Figure 1). 
People with various vaccination statuses have different risks of being infected by the Omicron strain, 
which was related to VEs and measured by the force of infection (λi,t, i represents different age groups). 
The λi,t in each age group was dependent on the basic transmission coefficient and contact metrics 
between age groups, more details were shown in Appendix 1.1. The infected individuals first had to 

experience an incubation period and 31% of them would spontaneously recover without any symptoms.22 
The remaining might first exhibit 'mild/moderate' symptoms. They might then 'recover' or deteriorate to a 
'severe' state. A patient in the 'severe' state might 'recover' or progress to the 'critical' state. Similarly, a 
patient in the 'critical' state might 'recover' or 'die'. Transition probabilities between states were estimated 
using the formula � � 1 � ���, where r denoted daily transition rate.23 The basic model cycle length was 
1 day, with a half-cycle correction applied.  
 
Booster vaccine efficacy estimation 
To estimate the real-world booster VE for Omicron infection and severe progression, we relied on the 
existing scientific literature reporting real population incidence and vaccination status data from an 
ongoing systematic review conducted by The International Vaccine Access Center.24 We obtained 99 
relevant papers regarding the mRNA-based booster VE against Omicron using the version of 10th Nov 
2022 in this database. We screened all the studies and excluded 81 of them, of which 27 included no 
original data, 22 used non-unvaccinated as a reference, 10 focused on special populations, 19 studies for 
BA.1 Omicron, and 3 cohort studies which are not enough to produce a meta-analysis. After the exclusion of 
ineligible literature, we finally included 18 studies and extracted the original case data from individual 
studies. Then we used random-effects meta-analysis to generate the overall odds ratio (OR) and calculate 
the corresponding booster VE (Appendix 1.2).  
 
Model calibration 
We refined the model inputs of transmission coefficient and vaccination rates by age groups automatically 
with TreeAge Pro’s calibration tool to adjust inputs until the model results match observed COVID-19-
related deaths and vaccination data in the US. First, we collected the COVID-19 new deaths and 
vaccination data by age groups reported by the US Centres for Disease Control and Prevention (CDC).9,25 
Then, we set the target values of the calibration as the proportion of five vaccination statuses and the 
accumulative deaths (day 30, 60, 90, 120, 150, 180, the simulation was started on 29th March when the 
US approved the 2nd booster) by age groups. Finally, with the input of other model parameters (Table S1), 
we used the expanded sum of square differences to measure the model goodness of fit and produced the 
optimal calibration results.26 The calibration results were shown in Appendix 1.3. 
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Other model parameters 
Based on the varied booster VE both for Omicron infection and for severe progression, we developed a 
mathematical model to estimate the distributions of clinical outcomes after being infected by Omicron in 
vaccinated individuals, compared to that in unvaccinated ones (Appendix 1.4). We collected the costs of 
booster vaccination, PCR tests and rapid antigen self-test for COVID-19 infection. In addition, we 
collected the cost per outpatient visit, general hospitalization and ICU admission. Then, we calculated the 
total direct medical cost of a COVID-19 case with varied severity by multiplying the unit cost of the 
medical services by the duration of each disease stage (Appendix 1.5). Health utility scores for COVID-
19 patients were derived from the disutility weights of severe lower respiratory tract infection and the 
estimates of pricing models for COVID-19 treatments published by the Institute for Clinical and 
Economic Review (Appendix 1.6). 
 
Definition of scenarios 
We defined five scenarios: Scenario 1: this counterfactual scenario assumed there was no second booster 
vaccination implemented in the US after first booster dose; Scenario 2: status quo, current scenario 
represented the actual situation of second booster vaccination for aged 50+yrs in the US, achieving 
coverage of 20.0% (23,927,842/119,557,943) by 24th September 2022; Scenario 3: this scenario assumed 
all aged 50+yrs old would receive a second booster if they are eligible (4 month after first booster), this 
would vaccinate 23.5% more for a second booster in aged 50+yrs by 24th September 2022; Scenario 4: 
this scenario assumed the second booster would expand for age 18-49yrs and all aged 18+yrs old would 
receive a second booster if they are eligible, this would achieve the coverage of 43.5% in aged 50+yrs and 
26.8% in aged 18-49yrs by 24th September 2022; Scenario 5: this scenario assumed the second booster 
would expand for age 12-49yrs and all aged 12+yrs old would receive a second booster if they are eligible, 
this would achieve the coverage of 43.5% in aged 50+yrs, 26.8% in aged 18-49yrs and 14.5% in aged 12-
17yrs by 24th September 2022. Given the vaccination coverage of the first booster in 0-4yrs and 5-11yrs 
was very low (0% and 4.8%, respectively), we did not include them in our scenarios for the second 
boosters. The presence of these two lower age groups would still facilitate the transmission of SARS-
CoV-2 via social interactions.  
 
Model outputs 
We assumed a discount rate of 3% (0-6%) annually for both cost and quality-adjusted life-years 
(QALYs).27 We calculated the costs and QALYs for the second booster vaccination strategies in each 
scenario and compared incremental benefits between every two consecutive scenarios of all five scenarios 
(scenario 2 vs. scenario 1, scenario 3 vs. scenario 2, etc.). The incremental cost-effectiveness ratio (ICER) 
was defined as the incremental cost per QALY gained. We used a willingness-to-pay (WTP) threshold of 
ICER<US$50,000.28,29 We also calculated the benefit-cost ratio, net monetary benefit (NMB) and 
cost/death saved. 
 
Sensitivity analysis 
We conducted a univariate sensitivity analysis to examine the impact of model parameters within their 
respective ranges on the ICER to identify the most sensitive parameters and visualised the results using 
tornado diagrams. In addition, we conducted a probabilistic sensitivity analysis (PSA) based on 100,000 
simulations to determine the probability of the booster strategy being cost-effective across a range of cost-
effectiveness thresholds. The distributions of all model parameters were provided in Appendix 1.7.  
 
To examine the impact of the contact matrix on the findings, we assumed all age groups interact only with 
their peers. We re-calibrated the model to the number of death cases and obtain a new contact matrix to 
perform sensitivity analysis (details were provided in Appendix 1.8). 
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RESULTS 
 
The second booster strategy for those aged 50+yrs is cost-effective in the US 
Compared with no second booster, vaccinating the US population aged 50+yrs with a second booster 
would reduce costs and increase QALYs over a period of 180 days (Table 1). Overall, the second booster 
strategy would incur a cost of $807 million but reduce the direct medical cost by $1,128 million, 
corresponding to a benefit-cost ratio of 1.40. Further, the strategy would result in a gain of 1,048 QALYs 
and a net monetary benefit (NMB) of $373 million over 180 days, suggesting the second booster strategy 
would be a cost-saving one.  
 
Second booster vaccination would prevent 848,584 new COVID-19 infections (62% in the 50+yrs group, 
29% in the 18-49yrs group), 41,806 hospitalizations (95% in 50+yrs group, 3% in the 18-49yrs group), 
7,267 ICU-admissions (94% in 50+yrs group, 4% in 18-49yrs group), 5,249 COVID deaths (99% in 
50+yrs group, 1% in 18-49yrs group), indicating a requirement of $153,673 to prevent one COVID death 
(Figure 2).  
 
Univariate sensitivity analysis showed that varying most of the model parameters individually would not 
alter the conclusion of the cost-effectiveness of the second booster. The top three most sensitive 
parameters on ICER were transmissibility of the Omicron variant, direct medical cost and vaccination 
cost, and VE for Omicron infection (Figure 3A). Probabilistic sensitivity analysis (PSA) based on 
100,000 simulations demonstrated the probability of being cost-effective with the second booster strategy 
was 67.58% (Figure 4A).  
 
Incremental benefits of the second booster expansion to all eligible 50+yrs individuals  
Compared with the status quo, vaccinating all eligible 50+yrs with a second booster (second booster 
50+yrs all scenario) would further result in a reduced cost of $2,708 million, consisting of the increased 
vaccination cost of $932 million and reduced direct medical care cost of $3,641 million. This 
corresponded to a benefit-cost ratio of 3.91. Further, the strategy would result in a gain of 4,002 QALYs 
and an NMB of $2,908 million during the 180 days (Table 1). Moreover, the strategy would reduce 3.3 
million infections (48% in the 50+yrs group, 31% in the 18-49yrs group), 131,517 hospitalizations (90% 
in the 50+yrs group, 5% in 18-49yrs group), 22,821 ICU-admissions (90% in 50+yrs group, 5% in 18-
49yrs group), 15,843 COVID deaths (98% in 50+yrs group, 2% in 18-49yrs group), indicating a cost of 
$58,818 to prevent one COVID death (Figure 2). The univariate sensitivity analysis showed that varying 
any individual model parameter at one time would not change the conclusion of the cost-effectiveness of 
the strategy (Figure 3B). The probabilistic sensitivity analysis demonstrated a very high probability 
(99.42%) of this strategy being cost-effective (Figure 4B). 
 
Incremental benefits of expanding the second booster for all eligible 18-49yrs age group  
Compared with the second booster 50+yrs all scenario, vaccinating all eligible 18+yrs individuals (second 
booster 18+ all scenario) would further result in a reduced cost of $1,566 million (1,200 million increased 
vaccination cost and 2,768 million reduced direct medical cost) and a gain of 2,276 QALYs, 
corresponding to a benefit-cost ratio of 2.31 and an NMB of $1,680 million (Table 1). Likewise, the 
strategy would reduce 3.3 million infections and most of the prevented infections (63%) are in the 18-
49yrs age group. Surprisingly, most of the prevented hospitalizations (84%), ICU admissions (82%), and 
deaths (94%) of this strategy are aged 50+yrs. This indicates most of the incremental benefits of this 
strategy were attributed to the decreased burden in those aged 50+ years (Figure 2). The sensitivity 
analyses also showed stable results for this strategy to be cost-effective (Figure 3C, 4C). 
 
Incremental benefits of expanding the second booster for all eligible 12-17yrs age group  
Compared with the second booster 18+yrs all scenario, vaccinating all eligible 12+yrs individuals would 
further result in a reduced cost of $15 million (109 million increased vaccination cost and 125 million 
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reduced direct medical cost) and a gain of 89 QALYs, corresponding to a benefit-cost ratio of 1.14 and an 
NMB of $20 million (Table 1). Similarly, most of the prevented hospitalizations (77%), ICU admissions 
(76%), and deaths (94%) of this strategy are in the 50+ years age group (Figure 2). The univariate 
sensitivity analysis showed that varying most individual model parameters at one time could not change 
the conclusion of the cost-effectiveness of the strategy (Figure 3D). The probabilistic sensitivity analysis 
demonstrated a probability of 55.37% for this strategy to be cost-effective (Figure 4D). 
 
Impact of social contacts between age groups on second booster cost-effectiveness 
To examine the impact of the contact matrix on the study findings, we arbitrarily severed all social 
contacts between different age groups and re-calibrated the model (Appendix 1.8). In this scenario, 
providing a second booster shot to those aged 50+yrs (status quo and second booster 50+ all scenario) 
would result in more gain of QALYs than that in an unsevered situation in the context of the same 
epidemic scale. Moreover, the second booster strategy would save more direct medical costs with a high 
benefit-cost ratio of 3.00 and 7.30, respectively (Table 2). In contrast, applying a second booster for those 
aged 18-49yrs and 12-17yrs (second booster 18+ all scenario and second booster 12+ all scenario) is no 
longer cost-effective with an ICER value of $754,345 and $859,594/QALY gained, respectively. 
 
 
DISCUSSION 
 
Our study evaluated the population impacts and cost-effectiveness of the second booster vaccination 
strategy in the US. We identified several key findings. First, compared to no second booster strategy, the 
second booster strategy would reduce 1.3 million infections, 41,806 hospitalizations, 7,269 ICU-
admission, and 5,249 deaths among adults aged 50 years and older. This would reduce direct medical 
costs by $1,128 million but only incur an additional vaccination cost of $807 million, corresponding to a 
benefit-cost ratio of 1.40. Moreover, the strategy would result in a gain of 1,041 QALYs during the 180 
days, suggesting the second booster strategy was cost-saving. Likewise, it is more cost-effective if all 
eligible individuals aged 50 years and older received their second boosters. Notably, if we expand the 
second booster strategy to those aged 18-49yrs, it will reduce direct medical costs by $2,768 million and 
the majority of decreased costs were attributed to the 50+yrs age group ($1,905 million). This scenario 
incurs an additional vaccination cost of $1200 million and a gain of 2,276 QALYs, leading to an overall 
cost-saving result. However, if the infection only transmits within each age group, this strategy would no 
longer be cost-effective with an ICER of $754,345 per QALY. Expanding the second booster strategy to 
those aged 12-17yrs shows similar results as to those aged 18-49yrs under both assumptions of with and 
without inter-age-group transmission. This indicates the second booster strategy for 18-49yrs and 12-
17yrs remains cost-saving when their interaction with other (elder) age groups was explicitly modelled 
but not cost-effective if the interaction was not considered.  
 
Our study demonstrates that the second booster for those aged 50+ years is likely to be cost-effective 
during the Omicron pandemic in the US, and it would be more cost-effective if all eligible 50+yrs 
individuals received a second booster. Even though the Omicron strain is less pathogenic than delta and 
even other previous SARS-COV-2 strains, it still causes a large disease burden in the US, mostly from the 
older age group.25 Currently, nearly 98% of deaths are in people 50 or older in the US and, thus, it is 
crucial to reinforce the preventive and treatment strategies to protect the elder people. A second booster 
shot could not only improve protection against Omicron both for preventing infection and progression to 
severe disease status,30 but also reduce billions of direct medical costs due to the reduced number of 
severe patients. Promoting taking the second booster dose for those aged 50+ should be still the priority to 
suppress the Omicron epidemic in the elderly. 
 
Our study demonstrates that expanding the second booster strategy for those aged 12-49yrs is likely to be 
cost-effective, largely because of reducing the disease burden and medical costs in those aged 50+ years. 
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Compared to the 1.067% of fatality rate in aged 50+yrs COVID-19 infections, individuals aged 18-49, 
and 12-17 have milder symptoms and lower fatalities of 0.033% and 0.009%, respectively.25,31 Although 
the disease burden and health impact in the younger age groups is mild per se,  our study found an 
unexpected increase in the benefit for the elderly by enhancing vaccination in the younger population. 
Providing a second booster for individuals aged 18-49yrs adults bring huge incremental benefits for those 
aged 50+yrs, and it would reduce 3.3 million Omicron infections (31% in 50+yrs), 85,879 
hospitalizations (84%), 10,056 deaths (94%), and 2,758 million medical costs (69%) deaths in 180 days in 
the US. This finding provides a new perspective to evaluate the additional value of the second booster 
strategy to suppress the pandemic. 
 
Our study demonstrates that the second booster strategy for 18-49yrs and 12-17yrs alone would not be 
cost-effective for curbing the Omicron epidemic if they do not interact with other age groups. Assuming 
all the 18-49yrs and 12-17yrs people interact only with their peers but total contacts remain consistent 
with the previous epidemic scale, the strategies would no longer be cost-effective. This is mainly due to 
mild symptoms after Omicron infection in younger age groups and most of them would spontaneously 
recover without any medical treatments. In this situation, the Omicron epidemic would not bring a huge 
disease burden and medical costs for those aged 18-49yrs or 12-17yrs, and thus it would be less cost-
effective to receive a second booster shot for their own. 
 
Our study has several limitations. First, although we used an SEIR-Markov model to simulate the 
COVID-19 epidemic, our model still lacks the ability to predict future epidemics and new variants, and 
thus our findings should be interpreted with all other resources available when informing public health 
initiatives for vaccination and epidemic management. Second, based on the US recommendation schedule 
for second booster vaccination, we assumed that the VE of the first booster wanes 4 months after 
vaccination. In reality, the efficacy of vaccines is likely to gradually decline without a clear cut-off. This 
assumption may have led to an overestimate of booster VE in the short term, and an underestimate of 
booster VE in the long term. Third, we assumed the immune individuals would lose the COVID-19 
infection-induced antibody protection and reverse back to the un-infected health states in the model so 
that it simulates the fact the infected individuals can be reinfected again. However, the transition 
probability of losing the protection from the previous infection remained uncertain and estimated by our 
model calibration as 0.033% per day, which means about 11% of the immune individuals would reverse 
back to the uninfected states annually. Finally, we only consider the mRNA-based COVID-19 vaccines 
(BNT162b2, mRNA1273) in our model. Nevertheless, in reality, mRNA-based COVID-19 vaccines are 
most used in the US and account for 96.8% of vaccination use.9  
 
In conclusion, the second booster strategy implemented in the US is likely to be beneficial and cost-
effective for reducing the disease burden of the COVID-19 pandemic. Expanding the second booster 
strategy to 18-49yrs and 12-17yrs remains cost-effective due to their contacts with the elderly age groups.  
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Table 1. The results of the cost-effectiveness analysis of second COVID-19 booster vaccination in the United States over an evaluation period of 
180 days.  

  No 2nd 
booste
r 

Status 
quo 

Second 
booster 
50+ all 

Second 
booster 
18+ all 

Second 
booster 
12+ all 

Incremental 
benefits (SQ 
Vs. No) 

Increment
al benefits 
(50+ all 
Vs. SQ) 

Incrementa
l benefits 
(18+ all Vs. 
50+ all) 

Incremental 
benefits 
(12+ all Vs. 
18+ all) 

QALY 
162,32
1, 846 

162,322, 
894 

162,326, 
896 

162,329, 
173 

162,329
, 261 

1,048 4,002 2,276 89 

Costs ($, million) 17,186 16,865 14,157 12,591 12,576 -321 -2,708 -1,566 -15 
Vaccination cost (2nd booster) 0 807 1,738 2,938 3,048 807 932 1,200 109 

50+yrs 0 807 1,738 1,740 1,740 807 932 2 0 
18-49yrs 0 0 0 1,198 1,198 0 0 1,198 0 
12-17yrs 0 0 0 0 109 0 0 0 109 

Vaccination cost (1-3 doses) 267 267 269 271 271 0 2 4 2 
Direct medical cost 16,919 15,791 12,150 9,382 9,257 -1,128 -3,641 -2,768 -125 

50+yrs 13,197 12,175 8,998 7,093 7,013 -1,022 -3,177 -1,905 -80 
18-49yrs 2,590 2,516 2,192 1,535 1,514 -74 -324 -657 -21 
12-17yrs 362 353 310 243 226 -9 -43 -67 -17 
5-11yrs 362 352 308 244 240 -10 -44 -64 -4 
0-4yrs 408 395 342 267 264 -12 -53 -75 -3 

COVID-related deaths 65,384 60,135 44,292 34,236 33,811 -5,249 -15,843 -10,056 -425 
50+yrs 62,761 57,591 42,109 32,699 32,299 -5,170 -15,483 -9,409 -400 
18-49yrs 2,400 2,327 2,021 1,390 1,370 -72 -307 -631 -20 
12-17yrs 84 81 71 56 52 -2 -10 -16 -4 
5-11yrs 47 46 32 32 31 -1 -14 0 -1 
0-4yrs 92 89 60 60 59 -3 -29 0 -1 

ICER -- -- -- -- -- Cost-saving Cost-saving Cost-saving Cost-saving 
Benefit-cost ratio -- -- -- -- -- 1.40 3.91 2.31 1.14 
Cost/death prevented, $ -- -- -- -- -- 153,673 58,818 119,323 257,184 
NBM, ($, million) -- -- -- -- -- 373 2,908 1,680 20 
* Incremental benefits = difference in QALY, cost and covid-related deaths while two scenarios comparing.  
Benefit-cost ratio: the ratio between the reduction in the direct medical cost for COVID-19 disease and the investment in 2nd booster vaccination  
Net monetary benefit (NMB) is calculated as (incremental benefit × willingness-to-pay threshold) – incremental cost. 
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Table 2. The results of the cost-effectiveness analysis of second COVID-19 booster vaccination using the new contact metrics that all age groups 
interact only within their peers in the United States over an evaluation period of 180 days.  

  No 2nd 
booste
r 

Status 
quo 

Second 
booster 
50+ all 

Second 
booster 
18+ all 

Second 
booster 
12+ all 

Incrementa
l benefits 
(SQ Vs. 
No) 

Incremental 
benefits 
(50+ all Vs. 
SQ) 

Incremental 
benefits 
(18+ all Vs. 
50+ all) 

Incremental 
benefits 
(12+ all Vs. 
18+ all) 

QALY 
162,32
0,313 

162,322,
619 

162,330,
388 

162,330,
689 

162,330
,705 

2,306 7,769 301 16 

Costs ($, million) 18,557 16,949 11,316 11,543 11,557 -1,608 -5,633 227 14 
Vaccination cost (2nd booster) 0 806 1,741 2,939 3,048 806 935 1,197 110 

50+yrs 0 806162 1,741 1,741 1,741 806 935 0 0 
18-49yrs 0 0 0 1,197 1,197 0 0 1,197 0 
12-17yrs 0 0 0 0 110 0 0 0 110 

Vaccination cost (1-3 doses) 267 268 271 272 272 1 4 4 1 
Direct medical cost 18,290 15,875 9,304 8,332 8,236 -2,415 -6,571 -972 -96 

50+yrs 14,695 12,280 5,709 5,709 5,709 -2,415 -6,571 0 0 
18-49yrs 2,497 2,497 2,497 1,525 1,525 0 0 -972 0 
12-17yrs 354 354 354 354 258 0 0 0 -96 
5-11yrs 353 353 353 353 353 0 0 0 0 
0-4yrs 392 392 392 392 392 0 0 0 0 

COVID-related deaths 72,705 60,423 28,454 27,528 27,504 -12,283 -31,968 -927 -24 
50+yrs 70,179 57,896 25,928 25,928 25,928 -12,283 -31,968 0 0 
18-49yrs 2,303 2,303 2,303 1,377 1,377 0 0 -927 0 
12-17yrs 84 84 84 84 61 0 0 0 -24 
5-11yrs 47 47 47 47 47 0 0 0 0 
0-4yrs 92 92 92 92 92 0 0 0 0 

ICER -- -- -- -- -- Cost-saving Cost-saving 754,345 859,594 
Benefit-cost ratio -- -- -- -- -- 3.00 7.03 0.81 0.87 
Cost/death prevented, $ -- -- -- -- -- 65,616 29,260 1,292,285 4,664,407 
NBM, ($, million) -- -- -- -- -- 1,724 6,021 -212 -13 
* Incremental benefits = difference in QALY, cost and covid-related deaths while two scenarios comparing.  
Benefit-cost ratio: the ratio between the reduction in the direct medical cost for COVID-19 disease and the investment in 2nd booster vaccination  
Net monetary benefit (NMB) is calculated as (incremental benefit × willingness-to-pay threshold) – incremental cost. 
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Figure 1. Schematic overview of the SEIR-Markov model. The ��,� the parameter of the force of infection 
to measure the infection risk. The symbols �, � denotes five age groups (0-4yrs, 5-11yrs, 12-17yrs, 18-49yrs, 
and 50+yrs). The ��,� denotes the transmission coefficient of five age groups and the ��,� represents the contact 
metric between age groups.  
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Figure 2 The decreased direct medical cost, COVID-19 infections and severe clinical outcomes of the 
second COVID-19 booster vaccination strategy implemented in different age groups in the United States. 
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Figure 3 The tornado plot of one-way sensitivity analyses of the second COVID-19 booster vaccination 
strategy implemented in different age groups in the United States. A horizontal bar was generated for 
each parameter analysis. The width of the bar indicates the potential effect of the associated parameter on 
the ICER when the parameter is changed within its range. The red part of each bar indicates high values 
of input parameter ranges, while the blue part indicates low values. The dotted vertical line represents the 
threshold of willingness-to-pay (WTP) of the baseline. 
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Figure 4 Probabilistic sensitivity analysis (PSA) based on 100,000 simulations (the figures mean the 
chance of being cost-effective) of the second COVID-19 booster vaccination strategy implemented in 
different age groups in the United States. 
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