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Abstract

Background: Telomerase reverse transcriptase promoter (pTERT) mutation status

plays a key role in the decision-making and prognosis prediction of glioblastoma

(GBM). The purpose of this study was to assess the prediction value of

diffusion-weighted imaging (DWI) in the pTERT mutation status of GBM

Methods: MR imaging data and molecular information of 266 patients with GBM

were obtained from the Second Affiliated Hospital of Zhejiang University (n=266).

We trained the same residual convolutional neural network (ResNet) for each MR

modality, including structural MRIs (T1-weighted, T2-weighted, contrast enhanced

T1-weighted) and DWI and its associated ADC map, and their combinations to

compare the predictive capacities between DWI and conventional structural MRI.
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Moreover, we explored the effect of different Region of interests (ROIs) on the

outcome of pTERT mutation status prediction: entire tumor (solid tumor, edema and

cystic regions), tumor core (solid tumor), and enhanced tumor.

Results: Structural MRI modalities and their combination performed poorly in

predicting the pTERT mutation status (accuracy, 51-54%, AUC, 0.545-0.571), while

DWI in combination with its ADC maps yielded the best predictive performance

(accuracy = 85.2%, AUC= 0.934). The further including of radiological and clinical

characteristics could not further improve the predictive performance of pTERT

mutation status. Among the three ROI selections, the entire tumor volume yielded the

best prediction performance.

Conclusion: DWI and its associated ADC maps shows promising prediction value in

the pTERT mutation in GBM and are suggested to be included into the MRI protocol

of GBM in clinical practice.

Key Points:

· The ResNet model constructed by radiomics provided great help for the prediction of

pTERT mutation in glioblastoma.

· In the ResNet prediction model, conventional structural MRI was of little value

while DWI and its associated ADC maps shows excellent value.

· The model using the whole tumor as ROI showed best predictive capacity and

potentiality for future clinical application.
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Introduction

High-grade glioma is the most common primary brain tumor in adults and accounts

for 81% of brain malignancies. As the most frequent and lethal subtype, glioblastoma

(GBM) has an extremely poor prognosis, with a median survival of around 15 months

after radical resection followed by concurrent chemoradiotherapy and adjuvant

chemotherapy with temozolomide (TMZ)[1]. Studies had proved several genetic

markers as important indicators for treatment response and overall survival, including

isocitrate dehydrogenase (IDH)1/2 mutation, 1p/19q co-deletion, mutations in the

telomerase reverse transcriptase promoter (pTERT), methylation of

O6-methylguanine-DNA methyltransferase (MGMT) promotor methylation status, et

al.[2][3]. As a result, molecular pathology has been incorporated into the new

integrated diagnosis of WHO[4].

Mutations in pTERT result in increased expression of telomeres, essential for cancer

cells to avoid aging and maintain proliferative potential, and serve as an important

biomarker in glioma diagnosis[5]. Studies have shown that pTERT was mutated in

almost 80% of primary GBM, which was more common than IDH 1/2 mutations[6].

Additionally, pTERT mutations have shown to be a distinct, independent, and

superior prognostic marker in adult GBMs[2][7][8]. pTERT mutations in GBM were

associated with poorer prognosis, and could significantly benefit from more
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aggressive surgical and chemotherapy strategies[2]. As a result, considerable efforts

have been made to develop anti-cancer drugs targeting telomerase, and many TERT

peptide vaccines are undergoing clinical trials[5][9][10]. Above all, the pTERT

mutations status is a key biomarker in GBM as well as future therapeutic targets[11].

Preoperative prediction of pTERT mutations can help with more accurate treatment

decision making.

At present, pathological diagnosis regarding underlying genetic and molecular

alterations of gliomas is still based on post-operational molecular analysis of tumor

tissue obtained by means of surgical resection or biopsy, which carries drawbacks of

sampling error, invasive nature, money and time-consuming[12][13]. MRI radiomics

coupled with either machine learning or deep learning provide a noninvasive way to

assess both global and regional characterization of GBM[14], and have been

successfully applied for the accurate prediction of key molecular markers such as

IDH[15][16][17][18], 1p/19q[19] and MGMT[20] promoter methylation[20].

However, non-invasive prediction of pTERT mutation status in GBMs using MRI

data still remains a challenge. Tunc F Ersoy et al. reported that conventional structural

MRI biomarkers (i.e., T1-weighted image (T1WI), T2-weighted image (T2WI), and

contrast enhanced T1WI (CE-T1) ) lacks the capability to forecast pTERT

mutation[21]. Similarly, Jana Ivanidze et al. concluded that pTERT mutation lacked

typical imaging features in conventional structural MRI [22]. Tian et al. used

radiomics analysis based on multi-modality structural MRI, and also failed to
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establish a predictive model for pTERT mutation status in GBM[23]. Overall, the

conventional structural MRI lacks the capability to predict pTERT mutation status in

GBM.

Diffusion weighted image (DWI) and its associated apparent diffusive coefficient

(ADC) value is a well-established functional MRI method in clinic and shows

potentials in characterizing tissue microstructure in tumor [24]. Successful

applications of DWI in the predicting of glioma grading[24][25][26][27][28],

diagnosis [29], and prognostic value[30]. But, whether DWI modality has prediction

value of pTERT mutation is still largely unknown. As DWI could be easily

implemented in clinical practice in adjunction to conventional structural MRI, it is

highly desired to explore the prediction value of DWI in pTERT mutation.

In this study, we aim to study the capacity of DWI in the prediction of pTERT

mutation in GBM. In predicting the genetic and molecular biology of tumors based on

MRI, convolutional neural networks (CNNs) show effective performance and

outperform traditional machine learning methods[31]. Among the various CNNs,

residual convolutional neural network (ResNet) exploits extensive stacks of learnable

convolutional filters and had been shown to be one of the most efficacious for medical

imaging[32]. It had a good effect on the prediction of IDH status, MGMT methylation

status and other gene mutations of glioma[20][16]. Here, we tried to explore the

All rights reserved. No reuse allowed without permission. 
perpetuity. 

preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in 
The copyright holder for thisthis version posted January 5, 2023. ; https://doi.org/10.1101/2022.12.28.22283931doi: medRxiv preprint 

https://doi.org/10.1101/2022.12.28.22283931


prediction of pTERT mutation status in GBMs using ResNet, which was trained on

randomly selected dataset from each MRI modalities to compare their prediction

value, namely the conventional structural MRI (T1-weighted image (T1WI),

T2-weighted image (T2WI), and contrast enhanced T1WI (CE-T1)) and DWI

techniques (DWI with its associated ADC maps). In addition, the prediction value of

radiological characteristics including location, edema and necrosis area, and patient’s

age were also explored. At last, the influence of region of interest (ROI) selection on

the predictive efficacy was also examined.

Mater ials and Methods

Patient selection

We retrospectively searched the electronic database of GBM patients operated in the

Neurosurgery Department of the Second Affiliated Hospital of Zhejiang University

(2nd HZJU) between March 2018 and October 2021 (n=386) (Figure 1). MRI, primary

patient demographic data (age, gender, et al.), pathological information including

hemotoxin-eosin staining, immunohistochemistry analysis and molecular genotyping

data were obtained and reviewed. The inclusion criteria were as follows: 1)

pathologically confirmed primary GBM according to 2016 WHO diagnostic criteria; 2)

pTERT mutations including C228T and C250T confirmed by

Quantitative Real-time PCR(qPCR)[33], sanger sequencing following standard PCR

amplification[34], or whole exon sequencing based on next-generation sequencing

(NGS)[35]; 3) MRI within 1 month before operation, including T1WI, T2WI, CE-T1,

with or without DWI; 4) age≥18 years. The exclusion criteria were as follows: 1)

All rights reserved. No reuse allowed without permission. 
perpetuity. 

preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in 
The copyright holder for thisthis version posted January 5, 2023. ; https://doi.org/10.1101/2022.12.28.22283931doi: medRxiv preprint 

https://doi.org/10.1101/2022.12.28.22283931


significant artifacts resulting in low imaging quality; 2) previous history of biopsy,

surgery, radiotherapy or chemotherapy for brain lesions of any kind; 3) coexistence of

other intracranial lesions. Our final patient cohort included 266 patients, with DWI

information available for 147 patients. The study was approved by the institutional

review board of 2nd HZJU. The requirement for informed consents was waived.

Study Design

The study design was summarized in Figure 2. MR Imaging protocols included T1WI,

T2WI, CE-T1, with or without DWI data. They were registered using T1WI as the

standard. The image was normalized to signal intensity and resampled to a size of

448×448 voxels (Figure 2.A). The input tumor region was manually delineated as

different ROIs, and finally the ResNet-based binary classifier was trained to predict

the pTERT mutation status (Figure 2.C). In order to explore the predictive value of

DWI, we trained ResNet models based on different MRI modality, and group

comparison was performed (Figure 2.B). Age and other clinical characteristics were

added to the optimization model.

Imaging acquisition and data processing

All the patients underwent conventional structural MR and/or DWI (with b values of

0 and 1000 s/mm2). MRI was performed on a 1.5T scanner. The detailed imaging

parameters are as following: T2WI with TR = 3500-4000 ms, TE = 96-107 ms,

section thickness of 6mm, in-plane resolution 4mm×4mm; T1WI with TR = 1800 ms,

TE = 7.5 ms, section thickness = 6mm, in-plane resolution 4mm×4mm; CE-T1
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images were obtained after injection of 0.1 mmol/kg gadolinium with the same

imaging parameter as T1WI; DWI images were obtained prior to injection of the

contrast agent, with TR = 10,500 ms, TE = 96 ms, section thickness = 6mm, in-plane

resolution 1.5mm×1.5mm.

ADC map was calculated from the DWI results, using FSL [FMRIB Software Library

v5.0.2.2] with the following equation: ADC =
ln(S0S1)
b , where S1 was the acquired

signal (averaged over 3 directions) under b = 1000 s/mm2, and S0 was the signal

acquired without diffusion gradients. In each subject, the other MRI modalities were

rigidly registered to the T1WI and the image intensity of MRI (except for ADC maps)

were normalized before further processing and statistics.

Region of interests (ROIs) selection

Two neuroradiologists manually marked the entire tumor (tumor with edema area),

the tumor core, the enhanced portion and the necrotic portion (cystic component),

which were labeled as entire tumor, 2, 3 and 4 respectively (Figure 3). entire tumor

was selected as abnormal area in T2WI. tumor core was drawn by excluding edema

signal on T2WI. enhanced tumor was selected based on CE-T1. We used the strict

criteria of "clear" necrosis as the non-enhanced portion on CE-T1 images, with

similar intensity as CSF on T2WI. Itk-snap (version 3.8), a user-driven manual active

contour segmentation tool, was used to segment tumor volumes. After secondary

correction by a neuroradiologist, the segmented ROI was overlapped on T1WI, T2WI,
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CE-T1, DWI and ADC map. These ROIs were used to generate piece-by-piece

cropped images of tumors in all modes. To facilitate network training, random

number replacement was used to erase the image information outside the ROI so that

each image was subsequently adjusted to 448×448 voxels input.

In order to enhance the model robustness, we performed data enhancement steps

including horizontal inversion, vertical inversion and random translational rotation of

the ROI. In addition, normal ROIs were generated from 97 patients without midline

involvement by mirroring of the tumor ROIs onto the contralateral side, and were also

incorporated into the training model. Enhancements were performed only on the

training set, not on the test set.

Network scheme

In this study, a ResNet structure was selected for pTERT mutation status prediction

using different MR modalities. The input image was transformed through a series of

chained convolutional layers that resulted in an output vector of class probabilities. As

shown in Figure 2.C, our ResNet model was derived from a 50-layer residual

network architecture and divided into five stages. The structure of stage 0 was

relatively simple and could be regarded as input preprocessing. The last four stages

were composed of relatively similar bottleneck structures. The features extracted from

the remaining blocks were pooled using average pooling and sent to the output layer,

which used the sigmoid activation function for prediction.
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Model training

The images input to train the ResNet model were comprised of axial T1WI, T2WI,

CE-T1, DWI and associated ADC map with tumor masks of 448 × 448 voxels. The

predictive capacity of different MRI modalities namely DWI group (DWI, ADC map,

DWI+ADC map (DWI*)) and conventional MRI group (T1WI, T2WI, CE-T1,

T1WI+T2WI+CE-T1), on pTERT mutation status were compared. A total of 266

patients were entered into ResNet. The total number of patient samples were 2081 for

DWI group and 3116 for conventional MRI group. For DWI, 30 randomly chosen

patients who contributed 262 samples per sequence, that were never seen by the

model during training were used as a test set. The rest of patients was input to the

network as a training set. For conventional structural MRI, 60 patients who

contributed 660 samples per sequence were randomly selected as a test group.

Probabilistic analysis was used to determine the pTERT mutation status of tumor slice.

For a specific tumor slice in the test set, the probabilities of TERT-W, TERT-M and

normal were generated, with sum of 1. We compared the probabilities of TERT-W

and TERT-M and chose the higher one to denote pTERT mutation status of each

tumor slice. The pTERT mutation status of each patient in the test group was

determined based on whether the proportion of positive pTERT mutated slices were

more than 50%. The sizes of experimental data were summarized in Table 1.
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We further compared the effects of different ROI selection on the prediction of tumor

pTERT mutation status. The mask data of entire tumor, tumor core, and enhanced

tumor were input to build the predictive models. The ResNet with DWI* was selected

for further comparison across different ROIs.

TERT-related radiological and clinical character istics

Previous studies have shown that the pTERT mutation may be related to age[36],

location[37], and necrosis volume[38]. Age, gender, primary tumor site, tumor

laterality at diagnosis were extracted from the raw data. Area of tumor necrosis and

edema, the percentage of necrosis and edema were extracted from the processed MRI

data. Primary sites were classified as frontal lobe, parietal lobe, temporal lobe,

occipital lobe, insular lobe, basal ganglia, brain stem and cerebellum. Tumor laterality

was defined as a ternary variable, left of center line, right of center line, left and right

of center line. The factors associated with pTERT mutation in GBM were analyzed

using binary logic univariate regression, except laterality which were analyzed by

multivariate logistic regression, and the variables with significant difference were

input into a support Vector Mac (SVM) model[38]. the results of the ResNet and the

factors included were input into the trained classification model based on SVM

algorithm.

Prediction per formance evaluation
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The performance of the model was evaluated by evaluating the predictive accuracy of

the test sets. Moreover, receiver operating characteristics (ROC) analysis was

performed using sigmoid probabilities to obtain ROC curves and calculate the area

under curve (AUC). The optimal dataset selection and architecture of the model were

determined based on the AUC obtained from the test dataset.

Statistical Analysis

Data were presented as the number of patients with percentage for categorical

variables, means ± standard deviation for parametric continuous variables. All

statistical analyses were performed using SPSS Version 25 (IBM Corp, Armonk, New

York, USA). A p-value of <0.05 was considered to indicate a statistically significant

difference.

Result

Patient character istics

A total of 14562 samples were generated from 266 GBM patients (168 males, 98

females), with age of 55.2 ± 14.8 years. 124 patients (46.6%) belonged to TERT

wild-type (TERT-W) group (78 males, 48 females), with age of 53 ± 16 (SD) years.

142 patients (53.4%) belonged to TERT mutation-type (TERT-M) group (90 males,

52 females) with age of 57 ± 15 years. Basic information for all patients was

summarized in Supplementary Materials 1.
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As shown in Table 2, we used univariate analyses to screen the potential independent

prognostic factors of pTERT. The variables that were not validated as independent

prognostic factors included gender, laterality of the tumor, percentage of tumor edema,

and percentage of tumor necrosis. Age at diagnosis (95% CI 1.007-1.043, p=0.049),

necrosis volume (95% CI 1.366-7.929, p=0.042), occipital lobe (95% CI 1.366-7.929,

p=0.008) and brain stem (95% CI 0.029=0.696, p=0.016) were the significant features

of TERT-M GBM.

Structural MRI vs DWI

Table 3 shows the prediction performance of the ResNet model trained from different

MRI modalities with entire tumor. The prediction accuracies of T1WI, T2WI, CE-T1

and the combination of all structural MRI in the testing dataset were 50.38%, 51.91%,

51.53 and 50.10% (AUCs=0.547, 0.564, 0.571 and 0.527), respectively. In the DWI

group, the prediction accuracy of DWI alone was only 54.58% (AUC =0.626), while

the prediction accuracy of ResNet corresponding to ADC map reached 78.63%

(AUC=0.865). The ResNet using DWI* (DWI and its associated ADC) data together

showed the best performance in predicting pTERT status of each MRI slice with

85.20% accuracy (AUC=0.934, Table 3). The patient-based predictive accuracy was

also excellent, being 86.6% (26/30) in the test group (The specific experimental

results are shown in Supplementary Materials 2). Overall, ResNet using DWI* data

had a significant advantage over the conventional structural group in terms of

All rights reserved. No reuse allowed without permission. 
perpetuity. 

preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in 
The copyright holder for thisthis version posted January 5, 2023. ; https://doi.org/10.1101/2022.12.28.22283931doi: medRxiv preprint 

https://doi.org/10.1101/2022.12.28.22283931


predictive accuracy and AUC in testing set and showed best performance (Figure

4.A).

Prediction per formance of different ROIs

ResNet using DWI* data was subsequently tested using different ROIs. Table 4

and Figure 4.B summarized the accuracies and ROC analyses of different ROIs in

distinguishing pTERT-mutated events from negative events. ResNet using the entire

tumor performed best with an accuracy of 85.20% (AUC =0.934), while that using

tumor core and enhanced tumor exhibited accuracies of 78.06% (AUC=0.856) and

81.70% (AUC=0.869) respectively.

The prediction value of clinical characteristics

As indicated in Table 2, age, necrosis volume, and tumor location were significantly

different between the TERT-M and the TERT-W groups (p<0.05) in the training

cohort by univariate analysis. Here we further explored the prediction value of these

clinical characteristics in pTERT mutation. Using SVM classifier with all the three

clinical characteristics as inputs, the clinical characteristics had a relatively low

prediction accuracy of 70.91% (AUC = 0.735). The further addition of these three

clinical characteristics into DWI* data by building a model combining SVM classifier

and RestNet (see methods in Supplementary Materials) didn’t make the predictive

performance better than RestNet model based DWI* data, suggesting DWI* data
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itself has enough prediction value and the further addition of clinical characteristics is

not necessary.

Discussion

Pre-treatment identification of pTERT mutation status is important in clinical decision

making because it can guide diagnosis, surgical strategy and chemotherapy selection

for GBM. In this study, we demonstrated the value of DWI and its associated ADC

map in predicting pTERT mutation status through deep learning and constructed a

pTERT mutation status prediction model for GBMs. We further found that the ResNet

model performed best using the entire tumor volume and the further inclusion of

clinical characteristics into the prediction model was not necessary. Based on these

results, it is highly suggested to include DWI into the clinical management of GBM.

In the ResNet models based on the entire tumor volume, the best prediction accuracy

from the DWI group was 85.20% (AUC = 0.934), while the best prediction accuracy

in the conventional MRI group was only 51.53% (AUC = 0.571). Previous studies

had shown that it was difficult to find predictive radiological markers for pTERT

mutation status using conventional structural, and our results also indicated that

conventional structural MRI has limited value in pTERT mutation prediction[39][40].
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However, few studies used diffusion-based MRI techniques to predict pTERT

mutation status in glioma. Here, we found a significant improvement in the prediction

performance of ResNet models using DWI and its associated ADC map (accuracy

78.63%, AUC 0.865). Because telomere maintenance is necessary to sustain infinite

cell proliferation, pTERT mutations may lead to cell growth and proliferation, hence

higher cell density, which is also associated with tumor aggressiveness[41][42][43]. A

number of investigators showed an inverse linear relationship between ADC values

and cell density in cerebral tumors [44][45]. Therefore, we speculated that the status

of pTERT might be correlated with the ADC value of the tumor. However, Jana

Ivanidze et al. found no significant difference between TERT-W and TERT-M tumors

in histogram analysis of ADC values of GBM[40]. K. Yamashita et al. used

diffusion-based MR images to predict pTERT mutations in patients with IDH

wild-type GBM, similarly showing no difference in ADC values between TERT-W

and TERT-M GBM[38]. This may be due to spatial and temporal heterogeneity based

on tumor cell structure, vasogenic edema, degenerative changes (hemorrhage, cystic

or mucinous degeneration), and/or compression of normal structures that destroys

normal anatomical structures. As a result, signal changes may be additive or cancel

each other out when evaluated using average ADC values[46]. The ResNet model,

however, could completely analyze the distribution and texture changes of DWI

signals and ADC values throughout tumor volumes and surrounding structures, and

displayed significant advantages over the traditional ADC value analysis. In addition,

we constructed a ResNet model combining DWI and ADC map, which resulted in
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further improvement of the prediction performance, with accuracy of 85.2% and AUC

of 93.4%.

In this study, we found ResNet using the entire tumor achieved the best predictive

performance. Interestingly ROI containing only enhanced tumor also showed

acceptable results with predictive accuracy of 81.7% and AUC of 0.869 in the test set.

The enhanced area is the core region of GBM that contains the most compact cellular

and vascular architecture compared with the invasive margin. Moreover, the void

signal in the center of the enhanced region commonly represents the necrotic area,

which is proved to be correlated with pTERT mutation[38]. Therefore, using

enhanced tumor as ROI might provide texture information most relevant with pTERT

mutational status. Since it is easiest to distinguish enhanced tumor from other

component, we can depict this ROI for preoperative screening. For tumor with tiny

enhancement, we can change into ROI of the whole tumor for predictive analysis.

In our cohort, patient age, necrosis volume and tumor location are important features

of TERT-M GBM but their prediction performance is worse than that of DWI* data.

The SVM classifier model including these clinical features achieved a moderate

predictive performance (accuracy=70.9%, AUC=0.735), which was similar with the

results obtained by K Yamashita et al.[38]. However, the further incorporation of this

SVM classifier model into our ResNet model using DWI* data doesn’t further
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improve the prediction performance of the latter, suggesting that it is not necessary to

include these clinical characteristics in the prediction model using DWI* data.

Our study had several limitations. Firstly, this study is still a small-sample study. Due

to the small sample size, most of our results was based on the cross-sectional slices

rather than the whole tumor volume. Though the prediction performance was also

tested on the patient-level using the 3D tumor volume and our results demonstrated

the special value of DWI*, it is still highly desired to further test the results in a large

sample using the 3D tumor volume in future. Moreover, our study was a retrospective

study, and only focused on glioma diagnosed as WHO IV GBM by pathological

analysis after surgery. In the future, we will try to explore the application of DWI

technique in predicting pTERT mutation in glioma with lower WHO grade.

Conclusion

In conclusion, we first proved the value of DWI techniques in predicting pTERT

mutation status of GBM as compared with conventional structural MRI modality.

Based on ResNet prediction model, DWI combined with its derived ADC map

showed greatest value in the pTERT prediction of GBM. The model using the whole

tumor as ROI showed best predictive capacity and potentiality for future clinical

application.
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Legends

Figure 1. Flow diagram of the study population. 2nd HJZU, the Second Affiliated Hospital of

Zhejiang University; TERT, Telomerase reverse transcriptase.

Figure 2. Flow diagram of pTERT mutation status prediction. A, Image

preprocessing steps in our proposed approach. B, Comparison of different MRI

modalities. C, A modified 50-layer residual neural network architecture was used to

predict pTERT mutation status. Conv and pool stand for convolutional and pooling.

The pooling size used was 2 (denoted by “/2.”). The first box (“7 × 7 conv, 64”)

meant that the convolutional kernel size was 7 × 7 with 64 filters. We then explicitly

described the following layer as a 2 × 2 pooling layer, but elsewhere in this figure we
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used the shorthand of “/2” in the box showing the layer. Solid lines (—) indicate

identity and dashed lines (- - -) indicate cross-residual weighted connections. DWI*,

DWI and its associated ADC map.

Figure 3. Segmentation result from a training image of GBM, overlapping on

T1WI(a), T2WI(b), CE-T1(c), DWI(d) and ADC map(e). Red: edema; Green:

non-enhancing tumor solid portion. Blue: enhanced portion; Yellow: cystic or

necrotic portion. entire tumor: red, green, blue, and yellow. tumor core: green, blue.

enhanced tumor: blue.

Figure 4. ROC plots of different ResNet models. A, the ROC plots comparing ResNet models

using DWI* data and the combined conventional structural MRI (T1WI, T2WI and CE-T1) in the

prediction of pTERT mutation status. B, the ROC plots of ResNet models using DWI* data for

three different ROIs. ROC, receiver operating characteristic;

Table 1. ResNet registration dataset

Table 2. Univariate analysis of radiological and clinical characteristics in GBM with

different TERT mutation status

L, left; R, right

Table 3. Predictive performance of different MRI modalities of ResNet prediction

model, SVM classifier model and a combination model

DWI*, DWI+ADC; characteristics*: SVM clarifier ; SVM, support Vector Mac;
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Table 4. Predictive performance of different ROIs of ResNet prediction model using

DWI* data

ROI-DWI*, different ROIs of ResNet prediction model base on DWI* date

Figure 1.
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Figure 2.
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Figure 3.

Figure 4.
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Table 1.

Training set Test set

Patients Slices Patients Slices

DWI group

normal 97 740 0 0

TERT-M 67 631 15 139

TERT-W 50 448 15 123

Total 117 1079 30 262

Conventional MRI group

normal 97 740 0 0

TERT-M 114 1075 30 266

TERT-W 92 808 30 237

total 206 1883 60 503
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Table 2.

Characteristic Total
TERT-M

(n=142)

TERT-W

(n=124)

Univariate

95% CI p value

Age(y) 55.2 ± 14.8 57 ± 15 53 ± 16 1.007-1.043 0.049

Gender(male/female) 168/98 90/52 78/48 0.62-1.682 0.936

Necrosis Volume (cm3) 8.6 ± 13.4 10.5 ± 16.8 7.2± 10.3 1.366-7.929 0.042

Percentage (%) 7.3 6.7 8.1 0.639-4.565 0.241

Edema Volume (cm3) 32 ± 25.6 39.9 ± 34.8 24.8 ± 21.4 0.454-2.407 0.065

Percentage (%) 53.8 54.8 51.9 0.019-2.64 0.233

Laterality L 121 67 54 0.657-1.576 0.596

R 129 68 61 0.546-1.478

both 16 7 9 0.219-1.793

Location Frontal lobe 93 46 47 0.654-2.407 0.496

Parietal lobe 53 33 20 0.888-3.408 0.106

Temporal lobe 107 64 43 0.964-3.302 0.065

Occipital lobe 36 27 9 1.366-7.929 0.008

Insular lobe 13 8 5 0.388-4.216 0.687

All rights reserved. No reuse allowed without permission. 
perpetuity. 

preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in 
The copyright holder for thisthis version posted January 5, 2023. ; https://doi.org/10.1101/2022.12.28.22283931doi: medRxiv preprint 

https://doi.org/10.1101/2022.12.28.22283931


Basal ganglia 30 18 12 0.822-4.683 0.129

Brain stem 17 3 14 0.029-0.696 0.016

cerebellum 7 3 4 0.179-6.097 0.962

Table 3.

Accuracy% AUC

Per slice

DWI* group DWI 54.58 0.626

ADC 78.63 0.865

DWI+ADC 85.20 0.934

Conventional MRI group T1WI 50.38 0.547

T2WI 51.91 0.564

CE-T1 51.53 0.571

T1+T2+CE-T1 50.10 0.545

DWI*+Conventional
structural MRI

T1+T2+CE-T1+DWI+A
DC

75.57 0.818

characteristics*
necrosis volume,tumor

location,age
70.91 0.735

DWI*+characteristics*
DWI+ADC+necrosis
volume,tumor location,age

79.92 0.898

Per patient DWI* 86.67

DWI*: DWI+ADC, characteristics*: SVM clarifier
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Table 4.

ROI-DWI* ROI Accuracy% AUC

entire tumor 85.20 0.934

tumor core 78.06 0.856

enhanced tumor 81.70 0.869

ROI-DWI*, different ROIs of ResNet prediction model base on DWI* date
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