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A Semi-Supervised Contrastive Learning Approach to Alzheimer’s Disease Diagnostics using

Convolutional Autoencoders

Article Type

Original Research

Summary Statement

A semi-supervised contrastive learning deep learning system optimizes latent feature vector

representations and yields strong model classification performance for larger data

distributions within the Alzheimer’s Disease diagnostics domain.

Key Points

1. A common diagnostic procedure used by trained radiologists in the clinical setting is the

visual analysis of PET 18F-AV45 neuroimaging scans to diagnose the different stages of

Alzheimer’s Disease in a patient.

2. Contrastive learning is a strategy that allows for the optimization of latent feature

representations in multidimensional space through the use of a loss function that

maximizes the distance between feature vectors of different classes and minimizes the

distance of feature vectors of the same class.

3. A semi-supervised contrastive learning approach can lead to improved performance and

generalization of deep learning models optimized using small training datasets as

encountered in Alzheimer’s Disease and other neurodegenerative conditions.
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4. Alzheimer’s Disease

5. neuroimaging scans

6. PET 18F-AV45

7. principal component analysis

Abbreviations

1. AD: Alzheimer’s Disease

2. CN: Control

3. PET 18F-AV45: florbetapir

4. ADNI: Alzheimer’s Disease Neuroimaging Initiative

5. DL: deep learning

6. CNN: convolutional neural network

7. AE: autoencoder

8. MSE: mean squared error

9. PCA: principal component analysis

10. ce: cross entropy

11. ctr: contrastive

12. euc: euclidean

13. cos: cosine similarity
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ABSTRACT

PURPOSE

Alzheimer’s Disease (AD) is a neurodegenerative disease that progressively deteriorates

memory and cognitive abilities. PET 18F-AV45 (florbetapir) is a common imaging modality used

to characterize the distribution of beta-amyloid deposits in the brain, however interpretation

may be subjective and the misdiagnosis rate of AD ranges from 12-23%. Automated algorithms

for PET 18F-AV45 interpretation including those derived from deep learning may facilitate more

objective and accurate AD diagnosis.

MATERIALS & METHODS

A total of 1232 PET AV45 scans (207 - AD; 1025 - normal) were obtained from the Alzheimer’s

Disease Neuroimaging Initiative (ADNI). A semi-supervised deep learning framework was

developed to differentiate AD and normal patients. The framework consists of an autoencoder

(AE), a contrastive learning loss, and a categorical classification head. A contrastive learning

paradigm is used to improve the discriminative properties of latent feature vectors in

multidimensional space.

RESULTS

Upon five-fold cross-validation, the best-performing semi-supervised contrastive model

achieved validation accuracy of 82% to 86%. Secondary analysis included visualization of

intermediate activations, classification report verification, and principal component analysis

(PCA) of latent feature vectors. The training process yielded optimal converging losses for all

three loss frameworks.

CONCLUSION

A deep learning model can accurately diagnose AD using PET 18F-AV45 scans. Such models

require large amounts of labeled data during training. The use of a semi-supervised contrastive

learning objective and AE regularizer helps to improve model performance, especially when

dataset sizes are constrained. Latent representations extracted by the model are visually

clustered strongly with the addition of a contrastive learning mechanism.
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INTRODUCTION

According to the Alzheimer’s Association, more than 6 million individuals were living with

Alzheimer’s Disease (AD) in 2021 [1]. AD is misdiagnosed at a high rate of 12-23% [2] and is one

of the top 10 leading causes of death in the United States [3]. In addition to memory problems,

AD presents an array of symptoms that can seriously disrupt an individual’s life [3]. In the clinical

environment, AD is commonly diagnosed through the analysis of neuroimaging scans by trained

radiologists [4]. Specifically, PET AV45 (florbetapir), a neuroimaging modality commonly used to

identify beta-amyloid clusters in a subject’s brain, is used by radiologists due to the correlations

between beta-amyloid quantities & locations and the progression of AD [5]. However, subjective

biases which are inherent in radiologist-based diagnostics cause issues with the generality of AD

diagnostics [6].

Deep Learning (DL) is a subset of machine learning that focuses on utilizing artificial

neural networks to generalize across large/varying data distributions [7]. In recent years, the use

of DL neural networks within clinical diagnostics have yielded strong results in diagnostic

accuracy and speed. Within the AD diagnostics domain, DL models have proven to successfully

perform disease progression predictions. A study by Huang et al yielded consistent accuracies of

84.5% utilizing PET FDG (metabolism) scans for AD vs. CN classification [8-9]. PET AV45 scans

can be used in the DL spectrum in training neural networks to identify specific

features/biomarkers and automate the diagnosis task. DL approaches which have tackled this

problem frequently utilize end-to-end 3D CNN architectures for feature extraction and

classification subject only to cross-entropy classification loss or a combination of AEs and

classifications heads [10]. These existing approaches commonly use single loss methodologies

on small datasets and are subject to class imbalances (there are usually always significantly

more CN than AD neuroimaging scans available), limiting the model’s ability to generalize and

form effective decision boundaries [11-12].

This study proposes the use of a contrastive learning paradigm to accelerate extracted

feature differentiation and to optimize the distances between latent feature vectors of differing

and similar input samples [13-14]. We utilize a semi-supervised deep learning system consisting

of an AE, a binary classification head, and a contrastive learning head. The AE is used to reduce
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the dimensionality of the inputted PET 18F-AV45 neuroimaging scan into a latent feature vector

with extracted features that are key to the classification task at hand - a multi-loss training

process is comparatively faster and retains high test accuracies [15]. The classification head

performs binary predictions (Alzheimer’s Disease (AD):Control (CN)) on the extracted latent

feature vectors. The contrastive learning head computes a distance metric between the latent

feature vectors and creates gradients that correspond to the ideal distance between the feature

vectors (maximum or minimum).

These optimal positions which are created due to the emphasized distance loss which

propagates position-aware gradient computation can be visually discerned through PCA

reduced 2D plots [16]. Further hyperparameter tuning to improve individual subsystem

performances can yield optimal results. Specifically, we hypothesize that contrastive learning

can contribute to high classification accuracies with the training process accelerated by the

addition of AE reconstruction loss.

MATERIALS & METHODS

DATA & ANNOTATIONS

A total of 1232 PET 18F-AV45 samples were obtained from the open-source ADNI and clustered

into two different collections [17]. There were 207 samples in the positive cohort (subjects with

AD) and 1025 samples in the negative cohort (subjects classified as CN) and a 4:1

train:validation split was utilized during the training process. Due to the noticeable imbalance in

the different class distributions, a custom data generator was created to maintain a 50:50 input

distribution of AD and CN samples during the training and validation processes. The positive

cohort was defined to be the subjects with Alzheimer’s Disease whereas the negative cohort

was defined to be the subjects falling under the “Control” category (individuals without

Alzheimer’s Disease). The data was contributed to the ADNI from PET Core (University of

Michigan) group and was preprocessed prior to downloading the CN and AD collections on our

local system [18]. PET 18F-AV45 samples were pre processed prior to downloading the AD and

CN collections to our local system and the standardization techniques that were applied to each

sample are shown in table 1.
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LOCAL PREPROCESSING

The data was subsequently preprocessed to a shape of 96x128x128 with a Z-dimension slice

thickness of 3mm with no additional padding and then normalized using Z-score normalization.

All images are ensured to be axial. During the training process, stratified sampling was set to be

0.5 AD and 0.5 CN. Randomized shifting and scaling was also set to 20%. These steps were taken

to further improve model training efficiency and to ensure that the dataset would not skew the

training sequence.

CORE ARCHITECTURE

Two types of experiments were performed with varying hyperparameters and different model

architectures. In order to simplify the task at hand and isolate the different components to

easily discern the performance metrics of the crucial/necessary system, the initial iteration of

the experiment did not contain reconstruction loss. Reconstruction loss was added to the

system once an optimal model with only contrastive and cross-entropy loss was found after a

thorough hyperparameter sweep. Cosine similarity, euclidean distance, and a weighted

combination of the two were all tested to determine the optimal difference metric for

contrastive loss [19-20].

Cross-entropy loss and contrastive loss with cosine similarity as the difference metric

were used in a dual loss training process to simultaneously train the classification head and

improve latent space vector positioning. The AE architecture used during this experiment is

presented in figure 1. Four encoder and four decoder blocks were used to produce latent space

feature representations of the input sample and reconstruct the input sample from the feature

vector. It is important to note that the computed weights did not take into account

reconstruction loss (reconstruction loss was weighted 0 for the entire training process) for the

first iteration of the experiment. Each encoder block contained a 3D convolution layer with a

kernel size of (3, 3, 3) followed by a Leaky ReLU (alpha value of 0.3) activation layer. A batch

normalization layer was used to improve the model’s ability to generalize on a larger input data

distribution and to accelerate the training process as a whole by normalizing intermediary

outputs. Due to the limited dataset size, an additional l2 regularization methodology was
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employed to prevent overfitting and ensure the model's ability to generalize across a larger data

distribution during inference [21].

ADDING RECONSTRUCTION

Once stable loss and accuracy values were achieved, reconstruction loss was added as a

normalization technique and a catalyst to speed up the training process as a whole. The

supervised contrative learning system architecture is shown in figure 2. The combination of

reconstruction and contrastive loss in a triple loss system acted as a regularizer to improve the

generality of the diagnostic model by swaying the model’s training process away from focusing

solely on the classification problem to reduce the chances of overfitting.

IMPLEMENTATION

Mean squared error (MSE) reconstruction loss was implemented to accelerate the AE’s training

process and to extract latent features quickly and efficiently. To ensure that the extracted

feature vectors were useful to the classification task at hand, and did not transform into a

generic identity function, a triple loss training methodology was used. By effectively imposing a

set of restrictions on the reconstruction problem, an accelerated pathway was created to

minimize binary classification (AD:CN) log loss. Cross-entropy loss was also used when

incorporating the contrastive learning paradigm. A distance metric was first computed by

calculating the euclidean distance and/or cosine similarity between the extracted latent feature

vectors. Since the individual values within the latent feature vectors were passed through a

softmax function, generating normalized distance values between 0 and 1 respectively.

Cross-entropy contrastive loss was then computed using one minus the normalized distance

being the predicted label and whether the binary classification labels were equal to each other

or not being the true label. Loss weights were applied to modify the overall effect each of the

three losses had on the model’s training process: [1.0, 0.5, 0.75] mapped to [binary

classification loss, contrastive loss, and reconstruction loss]. The Adam method was used to

optimize the model with a learning rate of 5E-6 and a decay rate of 0.03 [22]. To prevent a

preference for the class with a larger number of samples (CN - 1025 samples), a custom

generator was created to produce a 50:50 input sample distribution. Model weights were

randomly initialized at the beginning of each training process using the Xavier distribution [23].
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This study utilized a batch size of 8 paired scans (4 training examples total per iteration) and the

training process was run with a step size of 50 for 4000 iterations (80 epochs).

The models were developed using Python Version 3.6 RRID:SCR_008394, TensorFlow

[24] Version 2.1.0 RRID:SCR_0163, and Keras Version 1.0.8. All experiments were performed

using a total of 8 NVIDIA Titan RTX 24 GB GPU cards. The average model training time for each

experiment was 4 hours, while the time for single inference prediction was 0.113 seconds.

STATISTICS

Binary cross-entropy log loss was used for both the classification and contrastive tasks. Binary

log loss values calculated from the logits (capped between zero and one) produced by the

classification head and the labels were used during the training process to improve the model’s

classification performance. For the contrastive loss paradigm, the latent feature representation

output of the encoder of the AE was first computed for both the unknown and anchor scans.

The distance between these two extracted vectors was subsequently derived with varying

difference algorithms: euclidean distance, cosine similarity, and a weighted average of both. A

sigmoid activation head was then used to cap the output value of the contrastive learning head

between zero and one. Binary log loss values calculated from the logits produced by the

contrastive head and the labels (zero: the classification labels are the same; one: the

classification labels are different) were used during the training process to produce optimal

latent space vector positions. Each prediction from the anchor and unknown AE is compared to

the ground truth through binary log loss.

To measure the performances of this study's models in-depth, a classification report was

produced after each experiment which included the following metrics: weighted f1, regular f1,

sensitivity, specificity, predictive positive value (PPV) and negative predictive value (NPV). In

order to see how the model performed according to various logit threshold values, receiver

operating characteristic and precision recall curve graphs were generated. To compare models,

weighted f1, area under receiver operating characteristic (AUROC), and area under precision

recall curve (AUPRC) statistics were used. Other analysis methods, such as utilizing the PCA

dimensionality reduction technique to visualize latent feature vectors in 3D space, analyzing
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model extracted features, and reconstruction results, were crucial to figuring out if specific

components of the system were functional.

RESULTS

To evaluate the performance of the different training methodologies, a static model was

trained with different sets of loss function weights and evaluated on a test set. Because it is

possible that the performance of a specific training methodology may be influenced by the

exact model hyperparameters used, 16 different model hyperparameter architectures were

trained and evaluated for each of the loss functions. The space of models tested are shown in

table 2 and the aggregated results are shown in table 3. Identifying the proper combination of

hyperparameters was just as important as optimizing specific hyper parameter values as the

performance of the model directly correlated to the relationship between hyperparameters as

well.

On average, the use of supervised contrastive learning using cosine similarity (ctr-cos)

techniques yielded the strongest result. We hypothesize that this is the case because using

cosine similarity features for contrastive learning helps the model to maximize the angle

between feature vectors of different classes and minimize the angle of feature vectors of the

same class in multidimensional space, which is important for discerning between AD and CN.

A 2-dimensional PCA projection of the embedding dimension (16 features) for a random

model is shown in figure 3. A visual analysis of these plots appear to show that the supervised

contrastive learning models learned better embeddings with a more discriminative decision

boundary for the AD and CN classes. This suggests that the model’s ability to generalize on a

much larger data distribution will have improved as the location of the extracted features will be

polarized and closer to the correct cluster corresponding to a specific class. The decision

boundary will thus have an easier time differentiating between extracted features that belong

to the AD and CN classes. Further analysis of model performance was done through the use of

the Grad-CAM system [25] which allowed for the visual analysis of the important regions of the

input scan which the model focused on. Figure 4 shows that the model focused primarily on
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parts of the brain close to the hippocampal and prefrontal cortex regions - these regions of the

brain are directly linked to memory and other cognitive abilities.

Overall, the results were highly informative with higher accuracies across mean, median,

and max statistics for the models trained with supervised contrastive losses. Additionally, for

our task, we found that the focal loss, batch size, and log loss were important hyperparameters

for driving down the false negative rates and improving overall model performance.

DISCUSSION

PET 18F-AV45 is an imaging modality frequently used within AD clinical diagnostics to allow

radiologists to identify the correlations between beta-amyloid clusters in different regions of the

brain, stemming from the hippocampal region. As AD progresses throughout its multiple stages,

there is shown to be a positive correlation between the amount of secreted beta-amyloid

plaque and the amount of time that has passed. Identifying relationships between beta-amyloid

plaque amount, locations within the brain, and corresponding behavioral traits is a common

diagnostic procedure used to effectively diagnose AD.

Contrastive learning optimizes the ability for a model to develop complicated decision

boundaries for multi-class classification. Although not commonly present in diagnostic medicine

literature, the results of this study show promise for improved DL-based diagnostics using

contrastive learning, especially with constraints such as limited computational resources and

small dataset sizes. The use of a contrastive learning system allowed the DL system to yield

robust validation accuracies of 82%. The proposed tool has the potential to be deployed in

clinical settings as a verification step to ensure that trained radiologist diagnoses are accurate.

Additionally, a contrastive learning paradigm can be employed in other sectors of diagnostic

medicine to automate the process or verify radiologist analyses.

Previous studies have utilized 3D CNNs for feature extraction and classification with the

training process supported only by binary log loss. Cheng and Liu (2017) employed a dual

modality strategy with MRI and PET to train an end-to-end 3D CNN + 2D CNN deep learning

system. That study did not employ any other auxiliary loss and had a limited dataset size of 193

scans (93 AD and 100 CN). Similar studies accomplish automated dimensionality reduction to
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perform classification on latent space vectors through the use of autoencoder intermediaries to

specialize in the feature extraction process. However, with a small dataset comes the issue of DL

models having trouble generalizing across a larger data distribution during inference -

something that needs to be held up to a high standard if the final goal is deployment in a clinical

setting.

A thorough analysis of PCA plots showed that the positionings of extracted latent space

vectors were optimized with clear visual distinctions between the regions of space occupied by

the latent space vectors of the AD and the CN classes. Comparisons between the ground truth

labels and predicted labels on the extracted latent space vectors plotted on multidimensional

graphs show the model’s ability to effectively position vectors of varying classes and classify

them accordingly. Through the use of an AE, the addition of a regularization term to prevent

overfitting was no longer necessary as the reconstruction process acted as a regularizer for the

classification head. To verify that the reconstruction mechanism was working properly,

reconstructions results were visually analyzed using the image viewing environment on

JupyterLab. Individual slices within the input and reconstructed output were extremely similar,

an important observation considering the dimensionality of the input was reduced to [1, 32]

and [1, 16] shaped latent feature vectors. The ability for the model to effectively reconstruct the

input scan given a very small representation of the input scan supports the idea that the model

was able to learn meaningful low-rank representations of the input.

In addition, the contrastive learning paradigm acted as another regularizer methodology

alongside performing its primary task of optimizing latent space vector positions. Since the

parameters of the AE feature extractor were being influenced by 3 different losses

simultaneously, the issue of overfitting was not as substantial as shown in the validation results.

The limited amount of data available for medical imaging (PET and MRI modalities alike)

has prevented proper benchmark comparisons to assess the statistical significance of a model’s

performance in relation to that of another study’s model. Recreations of benchmark models are

critical to ensure that all crucial variables are kept under control and a difference in dataset size

or computational resources does not impact the model’s training process. Additionally, the PET

18F-AV45 scans used in this study were manually labeled by trained radiologists, a process that
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inherently contains subjective biases which could have resulted in inaccurate class prediction.

Furthermore, hyperparameter tuning for weightage given to reconstruction, classification, and

contrastive losses and other architecture design choices (e.g. the number of encoder/decoder

blocks) will likely provide increased performances and stronger results.
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TABLES

The three tables are separately listed in the following three pages
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Table 1: Preprocessing Techniques Employed Prior to Collection Download

This table shows all the preprocessing techniques used to standardize the AV45 samples prior to

downloading the data on the system this study used.

Process Name Package Name Program Name

Step 1 Smooth Xida cvt_ext_smooth

Step 2 Calculate Coregistration Neurostat mcoreg

Step 3 Apply Coregistration Neurostat coregimg

Step 4 Average Frames Xida ave_sep_frames

Step 5 AC-PC Orient Baseline Neurostat stereo

Step 6 Standardize to Baseline Neurostat coreg

Step 7 Average Frames Xida avg_sep_frames

Step 8 Intensity Normalization to Cerebellar
Gray Matter

Xida ImageNormalize

Step 9 Variable Smooth Xida SmoothFile
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Table 2: Model Component Dimensions and Activation Function Details

This table provides information about the space of embedding and projection dimensions

chosen for the models during this study. In total, this table represents 16 different

hyperparameter configurations.

Model Permutations Cartesian Product Description

Projection Dimension 256, 128, 64, 32 layer after pooling

Embedding Dimension 64, 32, 16, 8 layer after projection
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Table 3: Single Classification Loss/Contrastive Learning Boosted Classification Statistics

This table shows the classification performance statistics on the three experimental models

(no-ctr → no contrastive, ctr-euc → Euclidean distance, and ctr-cos → cosine similarity).

Loss 1 Loss 2 Count Mean Accuracy Mean AUC Mean Recall Mean Precision

no-ctr ce 16 0.8027 0.8477 0.7941 0.4548

ctr-euc ce 16 0.8023 0.8329 0.7659 0.4532

ctr-cos ce 16 0.8067 0.8427 0.7831 0.4599
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FIGURE LEGENDS

Figure 1: 3D AE Architecture

Experiments with a limited training dataset distribution size tend to leverage the power of

autoencoder reconstruction loss to accelerate the feature extraction process. The

reconstruction task forces the model to learn meaningful low rank approximations in order to

reconstruct the input sample. The figure provides an overview of the AE architecture used in

this study for latent feature extraction.

Figure 2: Contrastive Learning + Classification System Architecture

This figure highlights the data flow during the contrastive learning and classification training

processes performed in this experiment. The extracted features from the anchor and unknown

samples passed into the contrastive learning head where a distance metric was computed

between elements of the feature vector in the same position. Binary cross-entropy loss was

simultaneously computed for each of the predicted classes for the latent feature vectors.

Figure 3: PCA Reduced Dimensionality Representation Analysis of Input Scans With and

Without Contrastive Learning

To verify the functionality of the contrastive loss mechanism, a PCA visual analysis was

performed on the extracted features of the test dataset distribution, where class 0 corresponds

to CN and 1 corresponds to AD.

Figure 4: Grad-CAM Generated Image For Important Feature Visualization

Understanding whether the extracted features that the encoder portion of the classification

system output actually contains useful features for the classification task is key to validate

model performance. Grad-CAM is a technique that generates an interpretable gradient heatmap

of what latent features are correlated to a given prediction. The figure above shows that the

hippocampal region and prefrontal cortex is the region of the brain that the model most focuses

on (red -> important; blue -> not important).
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FIGURES

Figure 1: 3D AE Architecture

Experiments with a limited training dataset distribution size tend to leverage the power of

autoencoder reconstruction loss to accelerate the feature extraction process. The

reconstruction task forces the model to learn meaningful low rank approximations in order to

reconstruct the input sample. The model will learn important features for the classification task

and the reconstruction task when coupled with classification loss. The figure above provides an

overview of the AE architecture used in this study for latent feature extraction.
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Figure 2: Contrastive Learning + Classification System Architecture

This figure highlights the data flow during the contrastive learning and classification training

processes performed in this experiment. The extracted features from the anchor and unknown

samples passed into the contrastive learning head where a distance metric (cosine similarity

and Euclidean distance) was computed between elements of the feature vector in the same

position. Binary cross-entropy loss was simultaneously computed for each of the predicted

classes for the latent feature vectors.
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Figure 3: PCA Reduced Dimensionality Representation Analysis of Input Scans With and

Without Contrastive Learning

To verify the functionality of the contrastive loss mechanism, a PCA visual analysis was

performed on the extracted features of the test dataset distribution, where class 0 corresponds

to CN and 1 corresponds to AD.

Hparams: projection dimension (32), embedding dimension (16), activation function (softmax)

Accuracy: 80.67%

Hparams: projection dimension (32), embedding dimension (16), activation function (softmax)

Accuracy: 80.34%

Hparams: projection dimension (32), embedding dimension (16), activation function (softmax)

Accuracy: 82.34%
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Figure 4: Grad-CAM Generated Image For Important Feature Visualization

Understanding whether the extracted features that the encoder portion of the classification

system output actually contains useful features for the classification task is key to validate

model performance. Grad-CAM is a technique that generates an interpretable gradient heatmap

of what latent features are correlated to a given prediction. The figure above shows that the

hippocampal region and prefrontal cortex is the region of the brain that the model most focuses

on (red -> important; blue -> not important).
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