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Abstract 35 

Research has demonstrated associations between pubertal development and brain maturation. 36 

However, existing studies have been limited by small samples, cross-sectional designs, and 37 

inconclusive findings regarding directionality of effects and sex differences. 38 

We examined the longitudinal temporal coupling of puberty status assessed using the 39 

Pubertal Development Scale (PDS) and magnetic resonance imaging (MRI)-based grey and 40 

white matter brain structure. Our sample consisted of 8,896 children and adolescents at 41 

baseline (mean age = 9.9) and 6,099 at follow-up (mean age = 11.9) from the Adolescent 42 

Brain and Cognitive Development (ABCD) Study. 43 

Applying multigroup Bivariate Latent Change Score (BLCS) models, we found that 44 

baseline PDS predicted the rate of change in cortical thickness among females and rate of 45 

change in cortical surface area for both males and females. We also found a correlation 46 

between baseline PDS and surface area and co-occurring changes over time in males. 47 

Diffusion tensor imaging (DTI) analysis revealed correlated change between PDS and 48 

fractional anisotropy (FA) for both males and females, but no significant associations for 49 

mean diffusivity (MD). 50 

Our results suggest that pubertal status predicts cortical maturation, and that the 51 

strength of the associations differ between sex. Further research is needed to understand the 52 

impact of environmental and lifestyle factors. 53 
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1. Introduction 69 

Adolescence is a transitional stage from childhood to adulthood that is marked by prolonged 70 

tissue-specific neurodevelopmental processes. Tethered to this, puberty has been highlighted 71 

as a defining period for protracted brain structural maturation during adolescence, with a 72 

range of studies linking concurrent trends of pubertal and brain development that go beyond 73 

the effects of age (Ando et al., 2021; Blakemore et al., 2010; Herting & Sowell, 2017; 74 

Vijayakumar et al., 2021). However, existing studies on puberty-brain associations are 75 

limited by small sample sizes and cross-sectional designs, in addition limited research on 76 

directionality of effects, underscoring the need for large-scale longitudinal studies that 77 

examine the temporal coupling of pubertal development and brain maturational processes. 78 

Although pubertal development is characterised by progress through the same stages 79 

for each individual — involving changes in secondary sex characteristics, rising hormone 80 

levels, and emerging reproductive capability — there is a large variation in the timing and 81 

tempo of these changes. The variation in pubertal timing, defined as an individual’s relative 82 

pubertal developmental stage compared with same -age and -sex peers (Ullsperger & 83 

Nikolas, 2017), involve both inter-individual and between-sex differences, with the typical 84 

age of pubertal onset ranging from 9 to 14 years in males and 8 to 13 years in females 85 

(Herting et al., 2021; Savin-Williams & Ream, 2006). 86 

Additionally, there is a genetic contribution, with heritability estimates ranging from 87 

50 to 80% (Stroud & Davila, 2011). A growing body of evidence has also linked variation in 88 

pubertal timing to lifestyle and environmental factors, including childhood obesity (Ahmed et 89 

al., 2009; Herting et al., 2021) and socioeconomic status (SES) (Braithwaite et al., 2009; 90 

Herting et al., 2021). An implication of this is that pubertal timing may be partially malleable 91 

and, as such, represents a window of opportunity for early intervention that targets youth at 92 

risk of health issues related to pubertal timing. For example, earlier pubertal onset is 93 

associated with an increased risk of mental health outcomes related to risk-taking (Braams et 94 

al., 2015; Collado-Rodriguez et al., 2014), depression and anxiety (Copeland et al., 2019; 95 

MacSweeney et al., 2023; McNeilly et al., 2022; Mendle et al., 2010; Mendle & Ferrero, 96 

2012), and substance use (Marceau et al., 2019; Patton et al., 2004; Stumper et al., 2019). 97 

In conjunction to pubertal development, the brain shows continued tissue-specific 98 

changes that are prone to influence by fluctuating environmental pressures (Ferschmann et 99 

al., 2022; Tooley et al., 2021) beyond the complex genetic contribution (Grasby et al., 2020). 100 

Further, puberty has been implicated as an influencing factor to the rate of maturation in the 101 
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brain, and as such recommended as non-negligible when studying adolescent brain 102 

maturation (Holm et al., 2022; Wierenga et al., 2018). 103 

Previous cross-sectional (Bramen et al., 2011; Paus et al., 2010; Pfefferbaum et al., 104 

2016) and longitudinal (Herting et al., 2015; Nguyen et al., 2013; Vijayakumar et al., 2021) 105 

studies have reported reductions in global grey matter volume and cortical thickness 106 

associated with higher pubertal status and testosterone levels, mirroring normative 107 

developmental patterns of grey matter during adolescence (Mills et al., 2016; Tamnes et al., 108 

2017). However, when controlling for age, findings have been less consistent, with some 109 

studies reporting associations between decreased cortical grey matter and more pubertally 110 

developed females (Bramen et al., 2011; Peper, Brouwer, et al., 2009), others reporting 111 

positive associations between grey matter volume and testosterone in males (Peper, Brouwer, 112 

et al., 2009), and several reporting null findings for both sexes (Bramen et al., 2011; 113 

Koolschijn et al., 2014; Peper, Brouwer, et al., 2009; Peper, Schnack, et al., 2009). 114 

 For white matter, numerous cross-sectional studies have reported positive associations 115 

between pubertal status and white matter volumes (Chavarria et al., 2014; Perrin et al., 2009; 116 

Pfefferbaum et al., 2016), with some conflicting findings (Peper, Schnack, et al., 2009). 117 

Similarly, studies have reported positive associations between testosterone levels and white 118 

matter volume among males (Paus et al., 2010; Perrin et al., 2008), with inconsistent findings 119 

when accounting for age (Peper, Brouwer, et al., 2009). 120 

Diffusion tensor imaging (DTI) provides information regarding white matter 121 

architecture and microstructure. DTI studies have generally reported higher fractional 122 

anisotropy (FA) and lower mean diffusivity (MD) among more pubertally developed 123 

adolescents (Herting et al., 2012; Menzies et al., 2014), mirroring normative developmental 124 

patterns (Lebel & Deoni, 2018; Pfefferbaum et al., 2016). However, to date, only one 125 

longitudinal study (Herting et al., 2017) has investigated associations between puberty and 126 

white matter microstructure using DTI, albeit with a small sample, finding that physical 127 

pubertal changes predicted changes in white matter. However, further longitudinal research is 128 

necessary to validate and extend previous findings and to examine potential sex differences. 129 

Using a large-scale longitudinal sample (N = 8,896 at baseline; N = 6,099 at follow-130 

up) of children and adolescents between the ages of 9-14 years from the Adolescent Brain 131 

Cognitive Development (ABCD) Study cohort, we investigated the developmental 132 

associations between puberty and brain structure and tested whether and to what extent these 133 

associations differ between male and female youth. By leveraging a powerful Structural 134 

Equation Modeling (SEM) framework, multigroup Bivariate Latent Change Scores (BLCS), 135 
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we examined how individual and sex differences in pubertal development relate to 136 

differences in structural brain maturation. Importantly, BLSC allows us to test the temporal 137 

dynamics of the puberty-brain relationship, specifically whether pubertal status and brain 138 

features correlate at baseline, brain structure at baseline predicts change in pubertal status, 139 

baseline pubertal status predicts change in brain structure, and whether changes in puberty 140 

and brain structure co-occur over the course of the study period. 141 

Based on the most consistently reported effects documented to date, we expected 142 

cross-sectional and longitudinal associations between pubertal status measured with the 143 

Pubertal Development Scale (PDS) and global features of cortical thickness and surface area 144 

and white matter microstructure (FA, MD) in the examined age range. Specifically, based on 145 

morphometrical and DTI studies (Bramen et al., 2011; Herting et al., 2012, 2015; Menzies et 146 

al., 2014; Nguyen et al., 2013; Paus et al., 2010; Pfefferbaum et al., 2016; Vijayakumar et al., 147 

2021) reporting effects that mirror normative developmental patterns, we hypothesised 148 

correlations at baseline across all brain MRI features and for changes in pubertal status and 149 

brain structure to co-occur. In terms of coupling effects (i.e., regressions), despite limited 150 

research on directionality of effects, we hypothesised that baseline pubertal status would 151 

predict change in global brain structure and not vice versa, in line with a previous study 152 

reporting pubertal changes predicting changes in brain maturation (Herting et al., 2017). 153 

Additionally, based on previous research reporting more consistent effects for females 154 

compared to males, we hypothesised sex related effects to be present, with generally stronger 155 

puberty-brain associations in females compared to males. 156 

 157 

2. Methodology 158 

2.1. Description of sample 159 

The initial sample consisted of children and adolescents that are part of the ongoing 160 

longitudinal ABCD Study, including a baseline cohort of ~11,800 nine- and ten-year-olds to 161 

be followed for the course of ten years (Garavan et al., 2018). Data used in the present study 162 

were drawn from the ABCD curated annual release 4.0, containing data from baseline up 163 

until the second-year visit (https://data-archive.nimh.nih.gov/abcd). All ABCD Study data is 164 

stored in the NIMH Data Archive Collection #2573, which is available for registered and 165 

authorised users (Request #7474, PI: Westlye). The 4.0 release will be permanently available 166 

as a persistent dataset defined in the NDA Study 1299 and has been assigned the DOI 167 

10.15154/1523041. 168 
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To minimize confounding effects from complex family-related factors, unrelated 169 

participants were chosen by randomly selecting an individual from each family ID, 170 

subsequently excluding any siblings (see Supporting Information (SI) Section 1 for details). 171 

Additionally, participants were excluded using the ABCD Study exclusion criteria, which 172 

included non-English proficiency, general MRI contraindications, a history of a major 173 

neurological disorder, traumatic brain injury, extreme premature birth (<28 weeks gestational 174 

age), a diagnosis of schizophrenia, intellectual disability, moderate to severe autism spectrum 175 

disorder, or substance abuse disorder (Karcher et al., 2018). 176 

Following procedures of quality control (see SI Section 1) for each brain measure 177 

(FA, MD, cortical thickness, surface area), PDS, and our covariates of interest including SES, 178 

body-mass index (BMI), and genetic ancestry-derived ethnicity, the final sample consisted of 179 

N = 8,896 participants at baseline (4,223 females, 4,673 males) and N = 6,099 participants at 180 

follow-up (2,798 females, 3,301 males). Attrition analyses can be found in SI Section 1 and 181 

SI Figure 1. Table 1 displays means and standard deviations of each brain MRI metric, PDS, 182 

and covariates of interest, split by sex, while the age and PDS distributions in the sample are 183 

presented in Figure 1. Ethical approvals for the study are described in SI Section 2. 184 

 185 

Table 1. Descriptive statistics of the sample, including mean ± standard deviation (SD) for each measure. 

 Baseline 

sample 

Follow-up 

sample 

Males at 

baseline 

Females at 

baseline 

Males at 

follow-up 

Females at 

follow-up 

N subjects 8,896 6,099 4,673 4,223 3,301 2,798 

Age 9.9 ± 0.62 11.9 ± 0.64 9.9 ± 0.62 9.9 ± 0.61 11.9 ± 0.64 11.9 ± 0.63 

PDS 8.0 ± 2.40 10.5 ± 3.48 7.2 ± 1.86 8.9 ± 2.59 8.9 ± 2.74 12.4 ± 3.30 

FA 0.503 ± 0.02 0.509 ± 0.02 0.503 ± 0.02 0.503 ± 0.02 0.509 ± 0.02 0.510 ± 0.02 

MD 0.800 ± 0.02 0.789 ± 0.02 0.802 ± 0.03 0.790 ± 0.02 0.792 ± 0.02 0.786 ± 0.02 

CT 2.72 ± 0.09 2.69 ± 0.09 2.72 ± 0.09 2.73 ± 0.09 2.69 ± 0.09 2.69 ± 0.09 

SA 1,899 ± 180 1,907 ± 183 1,977 ±167 1,813 ± 154 1,990 ± 168 1,814 ± 153 

BMI 18.82 ± 4.13 20.57 ± 4.84 18.75 ± 4.03 18.91 ± 4.23 20.35 ± 4.71 20.84 ± 4.98 

SES 7.25 ± 2.39 7.56 ± 2.23 7.26 ± 2.39 7.24 ± 2.39 7.58 ± 2.44 7.53 ± 2.21 

Note: MRI metrics of FA, MD, cortical thickness (CT), and surface area (SA) represent scanner-harmonised 

scores. CT represented in mm. Area represented in cm2. SES represents a total score derived from the average 

income from both parental and partner income, where 7 represents those earning between $50-75k annually. 

 186 
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Figure 1. Age (left) and PDS (right) distribution of the study sample, split by sex and timepoint. Dotted line 188 

between plots connects the mean age and PDS values at baseline (timepoint 1) and follow-up (timepoint 2). Age 189 

and total PDS scores shown as distributions where green represents females and purple represents males. 190 

 191 

2.2. MRI acquisition and processing 192 

Neuroimaging data were acquired at 21 different sites and processed by the ABCD team. A 193 

3-T Siemens Prisma, General Electric 750 or Phillips scanner was used for data acquisition. 194 

Protocols used for data acquisition and processing are described elsewhere (Casey et al., 195 

2018; Hagler et al., 2019). In brief, T1-weighted data was acquired by magnetisation-196 

prepared rapid acquisition gradient echo scans with a resolution of 1×1×1 mm3, which was 197 

used for generating cortical structural measures, and diffusion-weighted data was obtained by 198 

high angular resolution diffusion imaging scans, used for generating white matter 199 

microstructural measures. 200 

 Two modalities of brain structural measures were used in the present study: grey 201 

matter cortical measures and white matter microstructural measures (Hagler et al., 2019). 202 

Cortical reconstruction and volumetric segmentation was performed with FreeSurfer 6.0 203 

(Dale et al., 1999; Fischl et al., 2002). White matter microstructural measures (DTI) were 204 

generated using AtlasTrack, a probabilistic atlas-based method for automated segmentation 205 

of white matter fiber tracts (Hagler Jr. et al., 2009). For cortical measures, global measures 206 

were generated for cortical surface area and thickness. For DTI, measures of FA and MD 207 

were generated over the whole brain. For full pipeline, see SI Section 3. 208 

 209 

2.3. Multi-site MRI scanner effects  210 
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To adjust for non-biological variance introduced by multi-scanner MRI and 211 

acquisition protocols (i.e., scanner effects), a longitudinal harmonisation technique was 212 

carried out using the R package LongComBat (Beer et al., 2020). To reduce bias in scaling 213 

and spatial resolution of features, our four global brain MRI measures (FA, MD, cortical 214 

thickness, surface area) were harmonised separately. Since the harmonisation is applied to 215 

model residuals, the longitudinal ComBat model should ideally match the model in the final 216 

analysis. As such, each model was fitted with formulas including age, PDS, BMI, SES, and 217 

genetic ancestry-derived ethnicity as covariates. SI Figures 2 and 3 show distribution of each 218 

MRI measure before harmonisation and after longitudinal ComBat. 219 

 220 

2.4. Pubertal development assessment 221 

Pubertal status was measured using the PDS (Petersen et al., 1988) to examine the perceived 222 

development of secondary sex characteristics such as growth spurts, body hair growth, skin 223 

changes, breast development and menarche in females, and voice changes and growth of 224 

testes in males. The PDS is a questionnaire designed to mimic the traditional Tanner staging 225 

assessment without the use of reference pictures (Petersen et al., 1988). Due to previous 226 

research showing that youth tend to over-report their perceived physical development at 227 

younger ages (Schlossberger et al., 1992), the current study utilised caregiver PDS report. 228 

The PDS includes five-items, each rated on a 4-point scale (1 = no development; 2 = 229 

development has barely begun; 3 = development is definitely underway; and 4 = development 230 

is complete; except menstruation, which is coded 1 = has not begun, 4 = has begun). Thus, 231 

higher scores reflect more advanced pubertal development. The PDS has shown high inter-232 

rater reliability between parent and self-rated assessment to clinicians, and correlates highly 233 

with plasma levels of gonadal hormones (Carskadon & Acebo, 1993; Koopman-Verhoeff et 234 

al., 2020) in addition to the Tanner stages (Koopman-Verhoeff et al., 2020). We used total 235 

PDS score for our analyses. When describing our results, PDS and the term pubertal status is 236 

used interchangeably for cross-sectional analyses, while pubertal development is used for 237 

longitudinal analyses. Note, both pubertal status and development refer to individual 238 

differences in PDS scores while controlling for age. 239 

 240 

2.5. Covariates of interest 241 

Previous research has highlighted several factors that potentially contribute to pubertal timing 242 

and development, including BMI, SES, and ethnicity (Ahmed et al., 2009; Braithwaite et al., 243 

2009; Deardorff et al., 2019; Freedman et al., 2002; Herting et al., 2021; Kaplowitz et al., 244 
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2001). Therefore, we included BMI, SES, and genetic ancestry-derived ethnicity, in addition 245 

to age, as covariates. For full details on how each covariate was measured and derived, see SI 246 

Section 4. For figures relating to distribution, frequency, and associations between covariates, 247 

see SI Figures 4-6. 248 

 249 

2.6. Statistical analysis 250 

The code used in the present study is available in a public repository - Open Science 251 

Framework (OSF) - and accessible directly through the OSF webpage https://osf.io/nh649/. 252 

All analyses were carried out using R version 4.0.0 (R Core Team, 2022). A 253 

multigroup BLCS model was tested using the lavaan package (Rosseel, 2012) following 254 

recommendations provided by Kievit et al. (2018) for model setup.  255 

The rationale behind using BLCS models is rooted in its ability to model latent 256 

change by using only two data collection waves (Kievit et al., 2018). Moreover, the 257 

modelling framework is especially powerful for testing cross-domain couplings 258 

which captures the extent to which change in one domain is a function of the starting level in 259 

the other. Further motivation for using this model was our interest in sex-related effects. 260 

Using a multi-group BLCS model allows one to assess four different brain-261 

puberty associations of interest for each sex in one model, and to test whether the size of 262 

associations significantly differ across sex. 263 

Four separate models were set up to examine 1) correlations at baseline between 264 

pubertal status and MRI measures of global FA, MD, cortical thickness, and surface area; 2) 265 

to what extent the baseline pubertal status predicted rate of change in global brain MRI 266 

measures; 3) to what extent the baseline score of global brain MRI measure predicted rate of 267 

change in the pubertal development; and lastly, 4) whether change co-occurred. To 268 

investigate sex differences in the associations, we used multiple group analyses in the 269 

framework of SEM, with sex (female, male) as the grouping variable. 270 

We quantified to what extent change in pubertal status (∆PDS) between baseline and 271 

follow-up was a function of brain MRI measure (�2) and pubertal status (�1) at baseline as 272 

following: 273 

∆PDS = �1 · PDS + �2 · MRI 274 

And to what extent change in brain MRI measure (MRI) between baseline and follow-up was 275 

a function of pubertal status (�1) and brain MRI measure (�2) at baseline as following: 276 

∆MRI = �2 · MRI + �1 · PDS 277 
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For an illustrative description of this model, see Figure 2. Due to their relatedness to pubertal 278 

development, age, BMI, SES, and genetic ancestry-derived ethnicity were included in each 279 

model. Full information for maximum likelihood estimation procedures were used for all 280 

BLCS analyses, thereby providing missing data routines that are considered to be adequate 281 

(Enders, 2010). 282 

Analyses to test sex differences were also carried out, where the model parameters 283 

above (1-4) were constrained to be equal across the two groups and tested by means of χ2-284 

difference tests against their respective non-constrained (original) model for each of the four 285 

brain MRI metrics. To test sex differences for all associations for all four models, sixteen 286 

such tests were carried. The significance threshold was set at p < 0.05, and the results were 287 

corrected for multiple comparisons using the false discovery rate (FDR) adjustment 288 

(Benjamini & Hochberg, 1995). Both uncorrected (p) and corrected (pcorr) values are reported 289 

for these tests. 290 

 291 

 292 
Figure 2. Bivariate latent change score (BLCS) model with two timepoints, examining correlation between 293 

pubertal status (PDS) and brain MRI metric (MRI) at baseline (pink), to what extent pubertal status at baseline 294 

predicts the rate of change in brain MRI metric (blue: 1), to what extent brain MRI metric at baseline predicts 295 

the rate of change in pubertal status (blue: 2), and whether changes in PDS and MRI co-occur (yellow) after 296 

considering the coupling ( 1, 2) pathways. Image adapted from Kievit et al. (2018) with permission 297 

from author. 298 

 299 
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3. Results 300 

3.1. Descriptive statistics 301 

Descriptive statistics can be found in Table 1. Figures for each brain MRI measure as a 302 

function of age are presented in SI Figure 7. Brain MRI trajectories as a function of PDS are 303 

presented in SI Figure 8. 304 

 305 

3.2. Multigroup bivariate latent change score (BLCS) models 306 

The main results of the models are summarised in Table 2. For the full models, including 307 

analyses testing for sex differences in the associations, see SI Section 5. 308 

 309 

Table 2. Multigroup BLCS model for each brain MRI metric, where numbers 1-4 represent the following effects: (1) 

correlation at baseline, (2) regression (PDS at baseline related to change in MRI metric), (3) regression (MRI metric at 

baseline related to change in PDS), (4) correlation of change score. 

        Effect Female Male 

    Est  SE   z   p  Est  SE   z    p 

FA          

(1) PDSt1↔FAt1 (�) -0.00 0.02 -0.27 0.79 0.00 0.01 0.14 0.89 

(2) PDSt1→ΔFA (γ1)  -0.00 0.02 -0.07 0.95 -0.00 0.03 -0.00 0.99 

(3) FAt1→ΔPDS (γ2) -0.01 0.02 -0.83 0.41 0.01 0.01 0.50 0.62 

(4) ΔPDS↔ΔFA (ρ) 0.05 0.01 3.54 <0.01 0.03 0.01 2.36 0.02 

MD          

(1) PDSt1↔MDt1 (�) 0.01 0.02 0.53 0.60 -0.00 0.01 -0.30 0.76 

(2) PDSt1→ΔMD (γ1) -0.01 0.02 -0.27 0.79 -0.02 0.03 -0.77 0.44 

(3) MDt1→ΔPDS (γ2) -0.01 0.02 -0.59 0.56 -0.01 0.01 -1.03 0.30 

(4) ΔPDS↔ΔMD (ρ) -0.01 0.02 -0.59 0.56 -0.01 0.02 -0.55 0.58 

CT          

(1) PDSt1↔CTt1 (�) -0.01 0.02 -0.71 0.48 0.00 0.01 0.05 0.96 

(2) PDSt1→ΔCT (γ1) -0.08 0.02 -4.56 <0.01 -0.00 0.02 -0.10 0.92 

(3) CTt1→ΔPDS (γ2) 0.01 0.02 0.62 0.53 -0.02 0.01 -1.40 0.16 

(4) ΔPDS↔ΔCT (ρ) -0.03 0.01 -2.68 <0.01 -0.00 0.01 -0.07 0.94 

SA          

(1) PDSt1↔SAt1 (�) -0.00 0.01 -0.04 0.97 0.04 0.01 3.64 <0.01 

(2) PDSt1→ ΔSA (γ1) -0.07 0.01 -8.94 <0.01 -0.03 0.01 -3.60 <0.01 

(3) Areat1→ΔPDS (γ2) 0.01 0.02 0.31 0.75 -0.02 0.02 -1.25 0.21 

(4) ΔPDS↔ΔSA (ρ) 0.00 0.01 0.11 0.91 0.02 0.00 3.95 <0.01 

Note. Table showing results from the multigroup BLCS model of Pubertal Development Scale (PDS) and MRI measures of 

Fractional Anisotropy (FA), Mean Diffusivity (MD), Cortical Thickness (CT), and Surface Area (SA), with estimates (Est), 

standard error (SE), z-score (z) and p-values (p). For each effect, T1 represents baseline score, dPDS or dMRI represents the 

delta score in PDS and MRI measure between baseline and follow-up, ↔ represent correlations, and → represents regression 

coefficients. All reported effects are standardised. Bold fonts represent significant effects. 

 310 
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3.3. Pubertal development and fractional anisotropy 311 

First, a BLCS for pubertal development and FA was modelled and the model fit was good: χ2 312 

(28) = 272.45, CFI = 0.96, RMSEA = 0.04. Inspection of the four parameters of interest, 313 

reflecting the four possible puberty-brain relationships (outlined in Section 2.6), showed no 314 

statistically significant correlation between pubertal status and FA at baseline for males or 315 

females. The results did however show statistically significant associations of correlated 316 

change for both males (r = 0.03, p = 0.02) and females (r = 0.05, p < 0.01). In other words, 317 

those with greater increase in pubertal status were, on average, those with greater increase in 318 

FA. There were no coupling effects to report. Next, χ2-difference testing for sex differences 319 

were carried out. Here, no significant difference between males and females were found for 320 

any of the four puberty-brain relationships. For a graph representation of the results, see 321 

Figure 3. 322 

 323 

 324 
Figure 3. Graph showing the multigroup BLCS models for fractional anisotropy (FA) and PDS relations. 325 

 326 

3.4. Pubertal development and mean diffusivity 327 

Second, a BLCS for pubertal development and MD was modelled and the model fit was 328 

good: χ2 (28) = 267.86, CFI = 0.96, RMSEA = 0.04. Inspection of the four parameters of 329 

interest revealed no statistically significant correlations or regression coefficients. χ2-330 

difference tests revealed no significant difference between males and females for any of the 331 

four puberty-brain relationships. For a graph representation of the results, see Figure 4. 332 

 333 
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 334 
Figure 4. Graph showing the multigroup BLCS models for mean diffusivity (MD) and PDS relations. 335 

 336 

3.5. Pubertal development and cortical thickness 337 

Third, a BLCS for pubertal development and cortical thickness was modelled and the model 338 

fit was good: χ2 (28) = 274.47, CFI = 0.96, RMSEA = 0.04. When examining the four 339 

parameters of interest, no statistically significant associations were observed between 340 

pubertal status and cortical thickness at baseline for males or females. The results did 341 

however reveal statistically significant correlated change for females (r = -0.03, p < 0.01), 342 

with no association present for males (r = -0.00, p = 0.94). In terms of coupling effects, 343 

pubertal status at baseline predicted rate of change in cortical thickness in females (β = -0.08, 344 

p < 0.01), while no associations were present in males. In other words, having initially higher 345 

PDS scores at baseline predicted larger increase between baseline and follow-up cortical 346 

thickness among females. χ2-difference tests revealed a significant difference between males 347 

and females ((df, 1) = [8.75], p < 0.01. pcorr = 0.049) when comparing model parameters of 348 

pubertal status at baseline predicting rate of change in cortical thickness. The three other 349 

relationships investigated revealed no significant sex differences after correction for multiple 350 

comparisons. A graph representation of the results can be seen in Figure 5. 351 

 352 
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 353 
Figure 5. Graph showing the multigroup BLCS models for cortical thickness (CT) and PDS relations. 354 

 355 

3.6. Pubertal development and surface area 356 

Lastly, a BLCS for pubertal development and surface area was modelled and the model fit 357 

was good: χ2 (28) = 275.74, CFI = 0.98, RMSEA = 0.04. Inspection of the four parameters of 358 

interest showed statistically significant (positive) associations for the correlation between 359 

pubertal status and surface area at baseline (r = 0.04, p < 0.01) and correlated change for 360 

males (r = 0.02, p < 0.01), with no significant associations among females for either 361 

correlated baseline (r = -0.00, p = 0.97) or change (r = 0.00, p = 0.91). Coupling effects 362 

indicated pubertal status at baseline as being predictive of rate of change in surface area for 363 

both males (β = -0.03, p < 0.01) and females (β = -0.07, p < 0.01). In other words, having 364 

initially higher PDS scores at baseline predicted larger decrease between baseline and follow-365 

up surface area measures. χ2-difference tests found a statistically significant sex difference 366 

((df, 1) = [12.26], p < 0.01, pcorr < 0.01) when comparing model parameters of pubertal status 367 

at baseline predicting rate of change in surface area, thereby showing that the association was 368 

significantly stronger for females than males. The three other relationships investigated 369 

revealed no significant group differences after correction for multiple comparisons. See 370 

Figure 6 for a graph representation of the results. 371 

 372 
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 373 
Figure 6. Graph showing the multigroup BLCS models for surface area (SA) and PDS relations. 374 

 375 

4. Discussion 376 

We investigated the coupling pathways of pubertal development and brain maturation in early 377 

adolescence using a multi-group BLCS framework in a large-scale longitudinal sample. Our 378 

main findings indicate that baseline pubertal status predicted the rate of change in cortical 379 

thickness for female youth only, and that pubertal status predicted rate of change in surface 380 

area for both sexes, but more strongly for females than males. Associations were also present 381 

for both correlation between pubertal status and surface area at baseline, and co-occurring 382 

changes over time, but these associations were present among male youth only. DTI analyses 383 

revealed correlated change over time between pubertal development and FA for both males 384 

and females, and no significant associations for MD. Overall, our results suggest sex-related 385 

differences in the associations between baseline pubertal status and rate of change in global 386 

cortical grey matter features of the brain. 387 

 Our study utilised a solid statistical framework to investigate the longitudinal 388 

coupling effects of pubertal development and structural brain maturation, providing valuable 389 

insight into the temporal dynamics of brain-and-puberty development. Previous research has 390 

reported sex-related associations between higher pubertal stage and global cortical grey 391 

matter (Herting et al., 2015), with studies generally reporting reduced cortical thickness in 392 

females (Bramen et al., 2011; Pfefferbaum et al., 2016) and no associations for males 393 

(Bramen et al., 2011; Koolschijn et al., 2014; Peper, Brouwer, et al., 2009). Our findings 394 

support previous findings and reveal additional knowledge into the coupling effects, with 395 

baseline pubertal status predicting rate of change in cortical thickness, as hypothesised. 396 
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 For global surface area, baseline levels of pubertal status and surface area were 397 

positively related in males, going against our hypothesis. However, male participants who 398 

were more pubertally developed at baseline showed less increases in surface area compared 399 

to male participants who were less pubertally developed at baseline. Interestingly, our 400 

coupling effects provide evidence suggesting that pubertal status at baseline predicts rate of 401 

change in surface area (for both males and females), with faster pubertal tempo associated 402 

with greater decrease in surface area, supporting our hypothesis. Moreover, despite both 403 

sexes showing effects, our findings revealed significantly stronger effects in females than 404 

males. 405 

For surface area, our findings can be best understood in the context of the age range in 406 

this sample. While the directionality of the coupling effects go in the expected directions (i.e., 407 

more pubertally developed predicting surface area decrease), one unexpected finding is the 408 

observation that males show the opposite trend for baseline levels of pubertal status and 409 

surface area (i.e., positively related). Previous research has reported decreases in surface area 410 

associated with more pubertally developed males (Herting et al., 2015). One possible 411 

explanation for this could be that many of the males in the present sample are still 412 

experiencing increase in surface area (see e.g., Raznahan et al. (2011) and SI Figure 7). 413 

Additionally, as evidenced by Figure 1 and PDS descriptive statistics in Table 1, the majority 414 

of the males in our sample are in the early stages of pubertal development compared to 415 

females (mid-late stages), and do not progress a lot throughout the study period, with the 416 

average PDS moving from 7.5 at baseline to 8.8 at follow-up. This is a major limitation of the 417 

current study. ABCD Study data collection is ongoing and thus, the age range available at the 418 

time of analysis is not representative of the entire pubertal period. While the current study is 419 

an important first step in investigating the emergence of sex differences in pubertal and brain 420 

development, longitudinal data spanning the entire range of puberty will be needed to 421 

advance our understanding of sex-specific developmental patterns. 422 

 Previous research investigating associations between pubertal development and DTI 423 

is sparse. The one existing longitudinal DTI study (Herting et al. 2017) reported that increase 424 

in PDS was associated with increase in FA, which was supported in our study using a much 425 

larger sample. However, while the prior study reported sex-related effects, our results did not 426 

indicate differences between males and females. One potential explanation for this is that 427 

Herting and colleagues looked at various regions of the brain while our study observed global 428 

FA, meaning if a minority of regional effects (as observed in Herting et al. (2017)) were 429 

going the other direction, they may not be evident in the overall effect of increasing FA in the 430 
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majority of other regions. No evidence of correlation at baseline or coupling effects were 431 

observed in either FA or MD, and there were no significant sex differences, which goes 432 

against our previously stated hypotheses. 433 

 Adolescence is a sensitive period that offers a window of opportunity to shape the fate 434 

of the adult brain. Within that period, accelerated pubertal development has been identified as 435 

a potential indicator of concern for the developing brain, with earlier pubertal timing being 436 

linked to psychological outcomes such as depression, anxiety, and ADHD (Copeland et al., 437 

2019; Ge et al., 2006; Mendle et al., 2010; Mendle & Ferrero, 2012). Future research should 438 

focus on increasing our understanding on the extent to intervention strategies targeting early 439 

pubertal-timing-related risk factors reduce the risk of related psychopathology. Explicitly 440 

investigating the brain-puberty relationship with sex differences in mind is also important for 441 

future research when considering that risk of worse mental health outcomes for females and 442 

males may differ, and this may have ramifications for related brain changes. 443 

With research showing earlier pubertal timing in those facing barriers to positive 444 

health and well-being, questions must be raised of how to tackle the challenges posed by 445 

environmental factors and disparities in living conditions. Research has observed earlier 446 

pubertal timing in concordance with higher child weight status, lower SES, and nutritional 447 

needs not being met, and these have disproportionately impacted minority groups more. 448 

Although speculative, environmental pressures may be central agents in advanced adaptation 449 

to adult roles in the environment, termed ‘adultification’ (Pfeifer & Allen, 2021), where 450 

adolescents may be undergoing earlier onset and tempo of puberty, and related 451 

neurodevelopmental changes, as a means to adapt to a harsh environment, subsequently 452 

increasing their risk of psychopathology. More research is needed to elucidate the potential 453 

role of environmental factors on advanced pubertal development and brain maturation. 454 

The current study has several strengths and limitations that warrant further discussion. 455 

Firstly, the ABCD Study cohort provides a well-powered sample that is openly available for 456 

researchers, improving both transparency and encouraging initiatives testing the robustness of 457 

the findings. Second, the longitudinal data and analyses allow for tracking changes over time, 458 

albeit while still limited by only one follow-up assessment. Nevertheless, the current 459 

multigroup BLCS analysis framework is well tailored to address hypotheses related to both 460 

general and fine-grained temporal dynamics over time and is especially powerful for testing 461 

cross-domain couplings (Kievit et al., 2018). 462 

While global measures may capture broad effects, we know that pubertal development 463 

is associated with regional changes in frontal, temporal and parietal areas (as well as 464 
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subcortical regions) which provides rationale for looking at these in future research. FA and 465 

MD revealed fewer effects compared to grey matter morphology. Future research should 466 

utilise advanced diffusion MRI metrics (Beck et al., 2021; Tamnes et al., 2018) that 467 

differentiate between intra- and extra-axonal compartments and potentially provides more 468 

information than conventional DTI. Lastly, future research would benefit from a combined 469 

approach of assessing pubertal development by means of questionnaires as well as hormonal 470 

data, given the limitations of PDS (Cheng et al., 2021). 471 

Some general limitations pertaining to ABCD Study and other large-scale volunteer 472 

scale databases include biases related to being more healthy, more wealthy, and more 473 

educated compared to the general population in their respective countries (Brayne & Moffitt, 474 

2022). This lack of representativeness may mean that those with most adversity and 475 

disadvantage will not be represented in this research. Future research should consider more 476 

diversified samples to reduce the healthy volunteer bias compromising the generalisability of 477 

the findings to more vulnerable populations. On the other hand, the ABCD Study cohort does 478 

include more ethnically diverse participants than similar large-scale volunteer databases 479 

(Brayne & Moffitt, 2022). Due to participant ages at recruitment, the ABCD Study data does 480 

not capture early gonadal processes for many participants (Cheng et al., 2021; Herting et al., 481 

2021), which is more pronounced for females and non-White participants. We also 482 

acknowledge that the ABCD Study cohort shows some overlap in age and PDS between the 483 

included timepoints in the study (see Figure 1), and thus caution must be taken in interpreting 484 

results. Additionally, we recognise that variations in pubertal development in, for example, 485 

early stages vs mid-late stages may differ in their associations to brain maturation, and such 486 

possible non-linear associations were not examined in the current study. Future research 487 

would benefit from analysing samples with multiple timepoints and an age-range spanning 488 

the entire span of pubertal development and utilising longitudinal modelling that 489 

accommodates potentially non-linear relationships between brain maturation and pubertal 490 

development. 491 

In conclusion, our analyses highlight pubertal status in early adolescence as being 492 

predictive of longitudinal changes in cortical grey matter structure over time, and that these 493 

changes are different for males and females. Further research is needed to understand how 494 

puberty impacts the brain, the contribution of environmental and lifestyle factors on pubertal 495 

development and brain maturation, and, in turn, the effects on mental health. 496 

 497 
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