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Abstract 
 
Clinical misclassification between cutaneous squamous cell carcinoma (cSCC) and basal cell carcinoma 

(BCC) affects treatment plans and carries risks of potential for recurrence, metastases morbidity and 

mortality. We report the development of a novel tissue sampling approach with molecular biopsy using  

electroporation. The methods, coined e-biopsy, enables non-thermal permeabilization of cells in the skin 

for efficient vacuum-assistant extraction of informative biomolecules for rapid diagnosis. We used e-

biopsy for ex vivo proteome extraction from 3 locations per patient in 21 cSCC and 21 BCC 

pathologically validated human tissue samples. The total 126 extracted proteomes were profiled using 

LC/MS/MS. The obtained mass spectra presented significantly different proteome profiles for cSCC and 

BCC with several hundreds of proteins significantly differentially expressed in each tumor in comparison 

to the other. Notably, 17 proteins were uniquely expressed in BCC and 7 were uniquely expressed in 

cSCC patients. Statistical analysis of differentially expressed proteins found 31 cellular processes, 23 

cellular functions and 10 cellular components significantly different between cSCC and BCC. Machine 

Learning classification models constructed on the sampled proteomes enabled the separation of cSCC 

patients from BCC with average cross-validation accuracy of 81%, cSCC prediction positive predictive 

value (PPV) of 78.7% and sensitivity of 92.3%, which is comparable to initial diagnostics in a clinical 

setup. Finally, the protein-protein interaction analysis of the 11 most informative proteins, derived from 

Machine Learning framework, enabled detection of a novel protein-protein interaction network valuable 

for further understanding of skin tumors. Our results provide evidence that the e-biopsy approach could 

potentially be used as a tool to support cutaneous tumors classification with rapid molecular profiling.  
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Introduction 
 

Cutaneous squamous cell carcinoma (cSCC) and basal cell carcinoma (BCC) are heterogeneous skin 

lesions, which belong to a broad group of nonmelanoma skin cancer (NMSC)1. Both are increasing in 

incidence worldwide from 3 to 8% per year since the 1960's1. cSCC, representing 20% of all skin cancers, 

accounts for approximately 75% of all skin cancer deaths, excluding melanoma2. BCC, which is the most 

common malignant neoplasm of humans, is usually curable when the lesion is treated in the early phase. 

It is estimated that 3.6 million cases of NMSC are diagnosed in the USA alone every year3, constituting 

an enormous financial burden on the healthcare systems4,5. Sun exposure is the most important risk factor 

for both cSCC and BCC. In addition, exposure to carcinogenetic agents, such as arsenic and aromatic 

hydrocarbons, and viral infections play an important causative association 1. Also, cSCC may arise in the 

setting of scars, draining sinuses, ulcers, burn sites, and areas of chronic inflammation1.  

The clinical diagnoses of cSCC and BCC are performed by a direct skin inspection6, often assisted by 

dermoscopy7. In addition, multiple emerging methods such as optical coherence tomography (OCT)8, 

reflectance confocal microscopy (RCM)9, elastic scattering spectroscopy (ESS)10 and high-frequency 

ultrasound (HFUS)11 aim to assist the clinician in diagnosis. Nevertheless, tissue biopsy for 

histopathological analysis is still essential to confirm the diagnosis, to estimate the risk of recurrence and 

to further dictate  the treatment pathway12. Skin structural and functional complexity lead to existence of 

multiple types of biopsies, with major methods including punch biopsy, shave biopsy, excisional biopsy 

and curettage biopsies1.  

 

The clinical features of cSCC and BCC are well described and, in most cases, the clinical diagnosis is 

done according to the subsequent histological verification. Sometimes, however, the clinical phenotypes 

of these cancers are ambiguous and discrepancies between the clinical presentations and histologic 

analyses occur 13,14. Such misclassification of cSCC as BCC (or vice versa) affects the treatment plan of 

the lesion6. Misclassification of cSCC as BCC carries the highest risk to patients, due to the inherent  
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potential for recurrence, metastases and mortality15. Recent studies suggested that the introduction of 

molecular biomarkers, that would accurately stratify non-melanoma skin lesions, would provide a new 

frontier in personalization of skin cancer care, and hold a potential of greatly improving patient diagnosis 

in many cases 16.  

 

Besides algorithms for discovery of the specific molecular signatures for each of the diseases, the yet 

open challenge is biomarkers sampling. The current strategy involves molecules extraction using lyses 

buffers from tissue sample with tissue biopsies. Tissue biopsy procedures carry risks involved with 

surgical procedures and may lead to localized tissue injury, bleeding, inflammation, infection and 

scarring17. In addition, because of these risks, only a few biopsies can be performed in a single procedure, 

limiting the scope of the spatial mapping of the entire lesion, potentially leading to misdiagnosis if the 

tumor is only partially sampled or completely missed18. To address these problems and to allow direct 

molecular sampling from tissue without resection, a series of procedures and associated mass 

spectrometric tools are currently under development19, yet none of these to date have received a broad 

community recognition. These include the intelligent knife (iKnife), desorption electrospray ionization 

(DESI)20, picosecond infrared laser (PIRL) and the MasSpec pen19,21. All these methods require high 

energy for sample evaporation, potentially damaging the tissue19. In addition, the ionization process is 

competitive, thus, not all informative molecules will be sampled19.  

 

To address the need in improved tissue-spatial sampling of biomarkers, and to extend the technology state 

of the art in enabling precise personal medicine, we developed a novel tissue sampling approach with 

molecular biopsy using electroporation. Electroporation-based technologies have been successfully used 

to permeabilize the cell membrane in vivo, enabling a wide set of applications ranging from tumor 

ablation to targeted delivery of molecules to cell populations and tissues22. We have previously developed 

protocols for targeted delivery of electric fields to tissues to induce focused electroporation at 
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predetermined regions in organs23. More recently, we have shown that electroporation-based molecular 

sampling, termed “e-biopsy”, selectively extracts liquids from solid tissues with informative proteomes in 

animal models in liver cancer24 and brain melanoma25 in vitro and from breast cancer in vivo, enabling in 

vivo spatial mapping of differential protein expression26. To the best of our knowledge, such a technology 

is not yet available and has not been reported in the literature for minimally invasive human tissue 

molecular sampling. Here we demonstrate the ability to sample and analyze the proteome extracted ex 

vivo by e-biopsy from excised human skin. Moreover, we show numerical models demonstrating a non-

thermal nature of this technology together with the analysis of the sampling reproducibility. 

This work tests the hypothesis that tissue liquids, sampled by e-biopsy, contain proteomic signatures 

relevant to skin tumors. Specifically, we show that proteomic profiles obtained by e-biopsy from cSCC 

are different from those obtained from BCC. We found proteins uniquely observed either in cSCC or in 

BCC and proteins significantly differentially expressed. Application of standard machine learning 

techniques allowed to identify a subset of proteins distinguishing between the two cancers with the 

classification performance comparable to current diagnostic methods that involve human professional 

inspection. Moreover, proteomic data produced by e-biopsy lead to a new protein-protein interaction 

network jointly covering many of these highly informative proteins – a finding that may potentially 

improve our understanding of systemic molecular differences between the two carcinomas and potentially 

create new target therapies. 

Our novel e-biopsy approach to the characterization of skin tumors differs substantially from excision 

biopsy approaches, that require tissue resection and that provide information limited to the size and the 

region of resected tissue. E-biopsy is also different from direct mass spectrometric tools as it does not 

require tissue disrupting direct ionization but rather the use of non-thermal pulsed electric fields, which do 

not lead to skin damage. scarring or to other potential medical risks 27–30. 

 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 22, 2022. ; https://doi.org/10.1101/2022.12.22.22283845doi: medRxiv preprint 

https://doi.org/10.1101/2022.12.22.22283845
http://creativecommons.org/licenses/by-nc-nd/4.0/


Results  
 

Proteomics harvesting and analysis from excised human skin with e-biopsy  
 

Electroporation-based biopsy (e-biopsy) for proteome sampling from freshly (10 to 20 minutes since the 

time of excision) excised human skin is shown in Figure 1. First, the sampling needle is inserted in the 

sampling location and the ground needle is positioned on the skin surface (without penetration) and the 

pulsed electric fields (PEF) are applied (Figure 1a). Second, a vacuum is applied on the same needle 

through which the PEF pulses are delivered, to pump the released cellular content into the needle and the 

syringe (Figure 1b). Next, the tissue extract (~1-3µL) is discharged from the syringe to the external 

buffer (biology grade water), and subjected to standard protocols for molecular analysis, including 

purification, separation, identification (LC/MS/MS in this case), and quantification (Figure 1c). Next, 

statistical analysis was performed, and a machine learning classifier was constructed to determine a 

molecular signature that differentiates BCC and SCC tumors (Figure 1d). E-biopsy was repeated in three 

positions in the same area of the excised tissue sample.  

 
 

Figure 1. Skin e-biopsy procedure ex vivo. Schematics of molecular harvesting with e-biopsy (a-d). a. Application 

of high voltage pulsed electric fields on the excised skin. A sampling electrode (insulin syringe needle, connected to 

the voltage generator) is inserted inside the skin sample. The ground electrode is located on the skin surface. b. 

Sampling of the released and intercellular molecules applying vacuum to the needle. c. Isolation, purification and 

then identification and quantification of proteins, using shotgun proteomics. d. Bioinformatics analyses for 

differential expression and classifier construction.  
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Modeling electric field in the human skin with tumors during e-biopsy. 

 
Numerical modeling is a computational tool that allows prediction of electric field and thermal 

distributions in physiologically complex structures. Usage of numerical models allows e-biopsy device 

designers to focus the electric fields in the specific sampling areas, limiting the potential damage to other 

tissues. We created a finite element model using a commercial Quick Field software (Tera Analysis Ltd, 

Denmark) to estimate the electric field and thermal distributions in the excised tissues, during e-biopsy. 

The model constitutes of a 2D mesh, in a plane-parallel mode and the problem type is direct current (DC) 

conduction. A general carcinoma lesion (the electrical31,32 and thermal33–35 properties of BCC and cSCC 

are similar) was modelled as a 2D rectangle with 20mm length, 2mm infiltration depth, and surrounded 

with a healthy skin strap of 5mm length from both sides of the lesion. Needle electrode with radius of 

0.3mm is positioned 10mm from the ground electrode and it penetrates the skin 1mm into the lesion. 

Ground electrode is placed without skin penetration on the lesion surface area, with 3mm radius. The 

model mesh is presented in Figure 2:  

 

 

Figure 2 Model geometry. Skin layers are comprised of stratum corneum, epidermis and dermis, followed by fat 

layer, each layer has its own electrical properties, presented in Table S1. In this model a tumor penetrates 2mm, 

clear skin layers route into fat layer, and alongside lesion left and right boundaries, 5mm healthy skin tissue. Actual 

geometric proportions are not preserved here for visualization purposes. 

It is crucial to know tissue properties for correct prediction of electroporation outcomes and of thermal 

effects. Electric field distribution is mainly determined by the electroporation protocol, such as pulse 

parameters, electrode configuration and physical features of the tissue. For simplicity, each layer in this 

model is assumed to have homogeneous and isotropic properties, taking into consideration the complexity 
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of the skin layers as the stratum corneum, epidermis and dermis, all with anisotropic dielectric 

properties36, including lesion, that paved its way through skin layers, infiltrating fat layer. In this model 

(Figure 3), we selected the electric field strength of 480V cm-1 as a threshold for skin reversible 

electroporation37. The threshold selected for the irreversible skin electroporation was 𝐸𝑖𝑟𝑒𝑣 = 1050
𝑣

𝑐𝑚
 37. 

In addition, to estimate the potential thermal effects of the application of high-voltage pulsed electric 

fields on a skin tissue, we coupled the DC model with the transient heat field problem (Figure 3). The 

maximum predicted temperature increase was 2.2℃, reaching 27.2℃  relative to the initial temperature of 

25. 0℃ (black dot on Figure 3c).  

 

 

 
Figure 3 (a) The electric field distribution in a lesion while applying 1000V, with a color map of the electric field 

strength. Red color represents the electroporated tissue area (E>480V cm-1), which is mainly located between 

ground and needle electrodes.  (b) An electric field strength profile between ground electrode to needle electrode, 

1mm below lesion surface (c) Analysis of temperature distribution after two sequential pulses, high and rapid 

followed by slow and longer pulses. Transient heat transfer problem created through coupling of DC conduction 

problem when V=1000SV were applied, Vrms = 12.65V, pulsing for 10 seconds, with steady state heat transfer 

problem with confined Dirichlet boundary conditions. The described transient heat problem was coupled after 10 

seconds pulsing, with another DC conduction problem when V=50V were applied, Vrms = 10V, pulsing for 10 

seconds to create a transient heat transfer problem performed in a and d figures. (d) The temperature profile from the 

ground electrode until the needle electrode. e Temperature increase in time at the point located 1mm beneath the 

electrode.  
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Reproducibility of molecular harvesting with e-biopsy in cutaneous SCC and in BCC. 

To assess the reproducibility of the e-biopsy methodology, the similarity between the measurements 

gathered from 3 measured for each patient was estimated. Our assumption was that the actual proteomes 

in the sampled locations should be very similar, given these locations are spatially and phenotypically 

close. Therefore, we expected that protein profiles sampled by a reliable technology to be in a high 

agreement with each other. Together with this, inherent tissue spatial heterogeneity would prevent even 

the ideal sampling method from receiving the exact measurement replicate.  

Specifically, we calculated maximal intra-patient Pearson correlation between proteomes measured in 

each sampled patient’s location. We observed Pearson correlation of 0.914±0.058 (0.925 ± 0.052 for BCC 

patients; 0.903 ± 0.062 for SCC patients; Table S2), which indicates high consistency of the e-biopsy 

sampling technique. 

E-biopsy sampled proteome differentiates cutaneous SCC from BCC in human skin 

To assess the data potential in distinguishing between the cSCC and the BCC proteomic profiles, we used 

a balanced dataset of 42 patients, specifically 21 cSCC and 21 BCC patients with similar gender, age, and 

birth origin distributions (Figure S1). Each patient’s lesion was sampled in 3 locations, resulting in 63 

samples for each carcinoma type. In total, we identified 7087 proteins observed with non-zero intensity in 

at least one of 126 dataset samples. 

The e-biopsy extracted proteomics profiles obtained from cSCC and BCC appeared notably different. 

Among all 7087 observed proteins we identified 118 proteins (FDR=1.9e-01, Methods), that completely 

do not appear (zero intensity) in cSCC, while appearing in at least 5% (at least 4) of BCC samples. 

Moreover, 17 of these proteins (FDR=9.8e-02) appear in at least 33% (at least 7 out of 21) of BCC 

patients (Table 1, Table S3). In addition, we identified 100 proteins (FDR=2.3e-01), that do not appear at 

all in BCC, while appearing in at least 5% (at least 4) of cSCC samples; 7 of them (FDR=2.4e-01) were 

identified in more than 33% (at least 7 out of 21) of cSCC patients (Table 2, Table S4). 
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To identify most differentially expressed proteins we performed both parametric (Student T-Test, Table 

S5) and non-parametric (Wilcoxon rank-sum, Table S6) tests between cSCC and BCC samples. Both 

approaches identified a high number of significantly differentiated genes (978 and 944 overexpressed in 

BCC for p-value< 0.05 cut for T-Test and Wilcoxon rank-sum tests respectively). Interestingly, the 

opposite direction – overexpression in cSCC resulted in significantly less significant genes (378 and 125 

overexpressed in cSCC for p-value< 0.05 cut for T-Test and Wilcoxon rank-sum tests respectively).  

 

 

Table 1.  17 most frequent genes unique to BCC samples compared to cSCC. Full table see Table S3 

GeneID 

Frequency 

in samples  

# (%) 

Frequency 

in patients  

# (%) 

Gene Name 

Q96I15 15(23.8%) 9(42.9%)  Selenocysteine lyase;SCLY 

Q6UXV4 13(20.6%) 8(38.1%)  MICOS complex subunit MIC27;APOOL 

P09132 11(17.5%) 8(38.1%)  Signal recognition particle 19 kDa protein;SRP19 

Q16773 11(17.5%) 8(38.1%)  Kynurenine--oxoglutarate transaminase 1;KYAT1 

P29972 10(15.9%) 8(38.1%)  Aquaporin-1;AQP1 

Q13144 9(14.3%) 8(38.1%)  Translation initiation factor eIF-2B subunit epsilon;EIF2B5 

P36954 9(14.3%) 8(38.1%)  DNA-directed RNA polymerase II subunit RPB9;POLR2I 

P23443 8(12.7%) 8(38.1%)  Ribosomal protein S6 kinase beta-1;RPS6KB1 

P40967 11(17.5%) 7(33.3%)  Melanocyte protein PMEL;PMEL 

P12694 11(17.5%) 7(33.3%)  2-oxoisovalerate dehydrogenase subunit alpha, mitochondrial;BCKDHA 

Q6PD62 11(17.5%) 7(33.3%)  RNA polymerase-associated protein CTR9 homolog;CTR9 

A4D1P6 11(17.5%) 7(33.3%)  WD repeat-containing protein 91;WDR91 

Q9Y3R5 10(15.9%) 7(33.3%)  Protein dopey-2;DOP1B 

Q9NP81 9(14.3%) 7(33.3%)  Serine--tRNA ligase, mitochondrial;SARS2 

Q92990 9(14.3%) 7(33.3%)  Glomulin;GLMN 

Q8N7H5 9(14.3%) 7(33.3%)  RNA polymerase II-associated factor 1 homolog;PAF1 

Q7L266 8(12.7%) 7(33.3%)  Isoaspartyl peptidase/L-asparaginase;ASRGL1 

 

Table 2.  7 most frequent genes unique to cSCC samples, compared to BCC. Full table see Table S4 

GeneID 

Frequency 

in samples  

# (%) 

Frequency 

in patients  

# (%) 

Gene Name 

Q9GZP8 14(22.2%) 10(47.6%)  Immortalization up-regulated protein;IMUP 

F8WE70 17(27.0%) 7(33.3%)  Serpin B13;SERPINB13 

P35658 13(20.6%) 7(33.3%)  Nuclear pore complex protein Nup214;NUP214 

Q9UHR4 12(19.0%) 7(33.3%)  Brain-specific angiogenesis inhibitor 1-associated protein 2-like protein 1;BAIAP2L1 

MAP4K4 11(17.5%) 7(33.3%)  Mitogen-activated protein kinase kinase kinase kinase 4;MAP4K4 

P13688 10(15.9%) 7(33.3%)  Carcinoembryonic antigen-related cell adhesion molecule 1;CEACAM1 

ZNF827 9(14.3%) 7(33.3%)  Zinc finger protein 827; Zinc finger protein 827 (Fragment);ZNF827 
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Gene Ontology analysis of proteome extracted with e-biopsy from skin tumors.  

 

All 7087 identified proteins were sorted according to the lowest of two p-values (Student T-Test and 

Wilcoxon rank-sum, Table S7, Table S8) and fed into Gene Ontology (GO) analysis in terms of cellular 

processes, functions, and components with GOrilla tool38–40. We identified 31 cellular processes (Table 

S9, Figure S2), 23 cellular functions (Table S10, Figure S3) and 10 cellular components (Table S11, 

Figure S4) significantly (p-value<1e-03) enriched in the top of the list.  

 
 

 

 

Identification of protein signatures that differentiate cSCC and BCC lesions based on e-biopsy-

sampled proteome.  

To identify a group of proteins with a maximal potential in distinguishing between cSCC and BCC 

conditions, we performed 100 repetitions of leave-6-patients out procedure (Figure 4). In each repetition, 

18 cSCC and 18 BCC patients were randomly selected, and their proteomes were used to construct an 

optimal subset of 5 to 100 most differentiating proteins. The samples from the remaining 3 cSCC and 3 

BCC patients were used to assess the classification quality of the resulted protein subset. Finally, for each 

protein we counted the number of repetitions it was selected for the final set of top-5 most differentiating 

proteins. Most frequently selected proteins were further studied for known connections and existing 

functions. 
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Figure 4. General flow of the leave-6-patient out algorithm for the selection of most informative proteins: (i) 

Splitting the data; (ii) Selecting most informative subset of proteins; (iii) Construction of Machine Learning model 

based on the selected subset; (iv) Evaluation of the classification performance of the resulted ML model. 
  
 

Resulting average (over 100 repetitions) model accuracy ranges 74.0-81.0% (Table 3, Table S12). 

Addressing the cSCC subjects as positive and BCC subjects as negative, we achieved the positive 

predictive value (PPV) and sensitivity of 72.9-78.7% and 84.7-95.7% respectively, together with negative 

predictive value (NPV) and specificity of 80.1-90.3% and 60.0-69.7% respectively (Table S12). These 

findings are comparable to the quality of the initial manual diagnostics of the same patients in the clinics 

(Table 4), as performed by physicians, suggesting that the proposed molecular profiling has a potential to 

be a valuable diagnosis-supporting tool, especially if the large number of patients is used for model 

construction 
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Table 3. Performance of the best Machine Learning models (selected according to best leave-6-patient 

out accuracy). Per-model details are available in Table S12. All metrics are calculated over 100 

repetitions and presented both as MEAN ± SEM (Standard Error of Mean) and as Clopper-Pearson 95% 

confidence interval (in parenthesis) 

Number of 

used proteins 
Accuracy 

(correct SCC and BCC 

predictions out of total cases) 

NPV 

(actual BCC out of 

predicted BCC) 

Specificity 

(predicted BCC out 

of total actual BCC) 

PPV 

(actual SCC out of 

predicted SCC) 

Sensitivity 

(predicted SCC out 

of total actual SCC) 
5 

78.3% ± 1.6% 
 (74.8%-81.6%) 

84.2% ± 2.8% 
(81.9%-91.0%) 

66.7% ± 2.9% 
 (61.0%-72.0%) 

76.2% ± 1.9%  
(68.1%-77.4%) 

90.0% ± 1.8% 
 (86.0%-93.2%) 

10 
81.0% ± 1.7% 

 (77.6%-84.1%) 
86.6% ± 2.7% 

 (85.5%-93.6%) 
69.7% ± 2.9% 

 (64.1%-74.8%) 
78.7% ± 1.8% 

 (70.5%-79.6%) 
92.3% ± 1.5%  
(88.7%-95.1%) 

20 
79.5% ± 1.6% 

 (76.0%-82.7%) 
88.0% ± 2.5% 

 (84.5%-93.0%) 
67.0% ± 2.7% 

 (61.4%-72.3%) 
76.5% ± 1.7% 

 (68.8%-78.0%) 
92.0% ± 1.6% 

 (88.3%-94.8%) 

50 
79.2% ± 1.7% 

 (75.7%-82.3%) 
90.3% ± 2.6%  

(89.2%-96.5%) 
62.7% ± 2.9% 

 (56.9%-68.2%) 
75.0% ± 1.7% 

 (67.2%-76.3%) 
95.7% ± 1.2%  

(92.7%-97.7%) 

100 
78.5% ± 1.7%  

(75.0%-81.7%) 
88.9% ± 2.8%  

(88.0%-95.8%) 
62.0% ± 2.8%  

(56.2%-67.5%) 
74.1% ± 1.7%  

(66.7%-75.8%) 
95.0% ± 1.4% 

 (91.9%-97.2%) 
 

 
Table 4. Comparison of the best-performing Machine Learning model with accuracy of the initial 

diagnosis in clinics, performed by physicians. In parenthesis we present Clopper-Pearson 95% confidence 

interval for each metric. Cells with the best observed performance are highlighted. 

Data Overview 
Diagnostic 

Approach 

Accuracy 

(correct SCC 

and BCC 

predictions out 

of total cases) 

NPV 

(actual BCC 

out of 

predicted 

BCC) 

Specificity 

(predicted BCC 

out of total actual 

BCC) 

PPV 

(actual SCC 

out of 

predicted 

SCC) 

Sensitivity 

(predicted SCC 

out of total actual 

SCC) 

Total:  42 patients 

 

Initial diagnosis by 
dermatologists in 

clinic: 

• 14 BCC 

• 18 SCC 

• 10 Unclear 

cases* 

Final post-operational 
diagnosis performed by 

pathologist: 

• 21 BCC 

• 21 SCC 

Initial diagnosis by 
physician for patients 

used in this article 

 

61.9%* 

(45.6%-76.4%) 

 
81.2% ** 

(63.6%-92.8%) 

72.2%** 

(46.5%-90.3%) 

92.9%** 

(66.1%-99.8%) 

92.9%** 

(66.1%-99.8%) 

72.2%** 

(46.5%-90.3%) 

E-biopsy based 
Machine Learning 

diagnostic model 

with best accuracy 
(Top-10 proteins 

based, from Table 3) 

81.0% ± 1.7% 

(77.6%-84.1%) 

86.6% ± 2.7% 

(85.5%-93.6%) 

69.7% ± 2.9% 

(64.1%-74.8%) 

78.7% ± 1.8% 

(70.5%-79.6%) 

92.3% ± 1.5% 

(88.7%-95.1%) 

* Including unclear cases 
** Ignoring unclear cases  
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Differentially expressed proteins and a protein network that differentiates cSCC from 

BCC. 

 
Summarizing the genes selected as top-5 most useful for constructing the machine learning classifiers 

between BCC and cSCC over different repetitions of the leave-6-patient out process (Figure 4), we 

derived the following 11 genes presented in Table 5, Figure 5. Most of these proteins are known to be 

associated with malignancies, including BCC or cSCC 42. 

Table 5.  Genes most frequently selected in the final subset of top-5 genes differentiating cSCC and BCC.  

Gene 

Symbol 

Gene 

Uniprot Id 
  Gene Name 

Direction in 

cSCC 

compared to 

BCC 

Number of 

repetitions the 

gene was 

selected into 

final Top-5  
CRNN Q9UBG3  Cornulin DOWN 92 / 100 

SULT1E1 P49888  Sulfotransferase 1E1 DOWN 65 / 100 

H1-5 P16401  Histone H1.5 DOWN 41 / 100 

ISG15 P05161  Ubiquitin-like protein ISG15 UP 27 / 100 

ERO1A Q96HE7  ERO1-like protein alpha UP 26 / 100 

KRT27 Q7Z3Y8  Keratin, type I cytoskeletal 27 DOWN 26 / 100 

KATNAL2 Q8IYT4  Katanin p60 ATPase-containing subunit A-like 2 DOWN 22 / 100 

PALM O75781  Paralemmin-1 DOWN 22 / 100 

VCAN* P13611*  Versican core protein* DOWN 19 / 100 

HNRNPDL O14979  Heterogeneous nuclear ribonucleoprotein D-like DOWN 13 / 100 

KYNU Q16719  Kynureninase UP 11 / 100 

 * VCAN does not appear in Figure 6

Figure 5. Comparative proportion of samples, where the genes most optimally differentiating between two 

cancers from Table 5 were identified. Whiskers depict 95% Clopper-Pearson confidence interval. 
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Moreover, protein-protein interaction data from IntAct DB43 together with pathways derived from KEGG 

DB44 and other public sources45,46 (Table S13, Table S14) provides an interesting protein-protein 

interaction map for most of these proteins, with the exception of VCAN (Figure 6).  

 

 
Figure 6. Protein interaction network of genes most frequently selected to the top-5 optimal differentiating gene 

subset (Table 5) based on IntAct DB43. More details on the gene appearance, PPI details and known pathways are in 

Table S13 and Table S14. Shape notation: ellipses correspond to proteins from Table 5; rhombs correspond to 

proteins connecting between them; rectangles correspond to pathways and comments. Shape color: green 

corresponds to proteins with intensity in cSCC smaller than in BCC; red corresponds to proteins with intensity in 

cSCC greater than in BCC; gray corresponds to proteins without significant change in measured intensity in cSCC 

vs BCC; blue corresponds to proteins that were not observed in the data.  

 

 

  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 22, 2022. ; https://doi.org/10.1101/2022.12.22.22283845doi: medRxiv preprint 

https://doi.org/10.1101/2022.12.22.22283845
http://creativecommons.org/licenses/by-nc-nd/4.0/


Discussion  
 

Current solutions for diagnosing skin tumors lack the ability to sample suspicious lesions for molecular 

content without resection or thermal destruction. In this work we introduced the potential of e-biopsy, a 

novel method of molecular sampling with electroporation, for applications in molecular diagnostics of 

non-melanoma skin cancers. Specifically, we showed that proteome released by electroporation and 

directly harvested into a syringe by vacuum, has a signature that differentiates cSCC from BCC. We 

analyzed the sampled proteomes to identify proteins uniquely expressed in each type of the tumors, and 

performed differential expression analysis followed by GO term enrichment analysis and protein-protein 

interaction analysis. We also developed a classifier to differentiate cSCC from BCC with a performance 

comparable to that of human medical professionals. Finally, we modelled electric and thermal effects of 

the e-biopsy procedure on the excised human skin and evaluated the e-biopsy technique reproducibility in 

terms of the harvested proteomic samples.  

In this study we found that e-biopsy sampled proteome showed 17 proteins uniquely expressed in BCC 

(Table 1) and 7 proteins uniquely expressed in cSCC (Table 2).  Furthermore, 11 genes (Table 5, Figure 

5) were identified as most informative for the optimal separation between the two cancers. Unfortunately, 

none of these 11 genes appeared unique to the specific carcinoma type (Figure 5), thus the optimal 

differentiation of cSCC from BCC would require joint measurements of several genes. 

Cornulin, CRNN gene (selected by 92% of the machine learning models, Table 5, Figure 5), 

downregulated in cSCC in comparison to BCC, plays a role in epidermal differentiation, while its 

expression is believed to be specific to squamous cells47. It was shown previously that CRNN is 

downregulated in tongue SCC48,49.  In addition, CRNN expression has been reported to differentiate 

between low-grade and high-grade oral epithelial dysplasia and could be represented as a potential 

biomarker for the assessment of progression of oral cancers50,51. Up-regulated CRNN levels prevent lesion 

formation, and its tumor suppressive role has been reported51, which is aligned with the less aggressive 

nature of BCC. Sulfotransferase 1E1 (SULT1E1), which also appears in BCC with increased measured 
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intensity in comparison to cSCC (Table 5, Figure 5), is responsible for the metabolism of active 

estrogens and plays crucial roles in their homeostasis52. SULT1E1 was reported as a predictor of breast 

cancer recurrence53 and its upregulation has been reported in normal mammary epithelial cells and breast 

cancer cell lines54–56.  SULT1E1 downregulation was proposed to serve as a marker for more aggressive 

cancer57. Ubiquitin-like protein Interferon Stimulated Gene (ISG15)58, upregulated in cSCC in our study 

in comparison to BCC, was overexpressed in up to 80% of oral squamous cell carcinoma as reported in 

previous studies59. The endoplasmic reticulum oxidoreductin-1-like (ERO1-like protein) alpha, 

upregulated in cSCC in comparison to BCC as sampled by e-biopsy proteomes (Table 5, Figure 5) was 

shown in literature to be associated with cancer60, driving the production of VEGF61.  Interestingly, 

another study showed significantly higher peritumoral and intra-tumoral blood vessel area in cSCC when 

compared to BCC62. Also, versican core protein was previously shown to be a mediator of skin cancer 

development in mice and humans and was reported to be strongly expressed in BCC compared to cSCC42 

similar to our findings (Table 5, Figure 5). Finally, the protein-protein interaction analysis of these 11 

highly informative genes (Table 5, Figure 5) enabled us to identify a novel protein interaction network 

(Figure 6), which surprisingly covers 10 of the 11 top-ranked proteins. Such network has the potential to 

be valuable for further understanding of the differences in molecular mechanisms of the two carcinomas. 

We report, in this study, a binary classifier differentiating between cSCC and BCC based on a limited, 

predetermined number of proteins. A subset of 5 to 100 proteins resulted in a classifier accuracy of 78.3-

81.0% (depending on the number of proteins used, Table 3). In comparison, the accuracy of the initial 

diagnosis by dermatologists in clinic on the same 42 patients was only 61.9% (or 81.2% when omitting 

the unclear cases, Table 4). However, these 42 patients selected for our study do not represent the general 

distribution of patients in clinics. For example, an expert panel of pathologists reported on 91.6% 

accuracy for 154 patient panel 13, and a single surgeon reported on accuracy of 93.8% in 1326 patient 

cases 41. It is important to notice that both the panel and surgeon reports included significantly higher 

number of BCC patients in comparison with cSCC, while in our study the numbers of cSCC and BCC 

patients are equal.  
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One of the limitations of the current study is its sole focus on the NMSC samples, without addressing its 

matching healthy areas. Thus, for the next stage we are working on gathering healthy tissue samples and 

their comparative analysis to the available NMSC samples. Moreover, we plan to include paired healthy 

and affected samples obtained from the same patient to verify that every patient’s lesion has a genetically 

adequate control. Based on proteomic signatures obtained by e-biopsy and the resulted model 

performance, we aim to develop even better classifiers differentiating cSCC, BCC and normal skin in 

future large-scale trials. Such disease-specific classifiers could enable a personalized treatment approach 

in high risk NMSC.  

Additional limitation of this study is that all sampled proteomes were measured using LC-MS/MS. Thus, 

measurement is biased towards this method. Therefore, we are working on a targeted proteomics 

confirmation study to validate the presence or absence of the selected proteins.   One of the most 

problematic side effects of high voltage pulsed electric fields application on skin is Joule heating63. High 

temperature may have devastating effects on living cells, such as protein coagulation, microvascular 

blood flow stasis, cell death or permanent changes in tissue structure or function. When the temperature is 

over 42℃ for a prolonged exposure time, thermal damage begins. The results of our models show that 

under current parameters (ex- vivo), the procedure is non-thermal. Future in vivo applications will require 

more detailed thermal modeling and testing64–66, once the geometry of the applicators is known.  

The decision to biopsy the lesion on the skin should be made only if the biopsy would be helpful to the 

diagnosis and would provide the information needed to the clinician. The major types of biopsies 

currently used include punch biopsy, shave biopsy, excision biopsy, and curettage biopsies.  Our 

proposed e-biopsy technique could result in a novel sampling device and approach enabling personalized 

medicine by providing a minimally invasive local molecular sampling procedure to assist in deciding 

whether tissue biopsy is needed. In addition, e-biopsy could assist in the personalization of skin lesion 

care in the future, potentially reducing morbidity and mortality by enhancing and speeding-up the 

decision process on the use of more advanced surgeries or adjuvant therapies such as: radiation, 

chemotherapy, and emerging immunotherapy. E-biopsy derived results can also contribute to determining 
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the recommended frequency of follow up visits and dictate the type and frequency of imaging needed for 

follow up. Until this moment, there are no known approved biomarkers to distinguish high risk NMSC 

from the benign subtype. We envision that in vivo sampling of molecular signatures with e-biopsy, such 

as proposed for development in this work, will enable future classification of NMSC molecular signatures 

to groups by observed multi-omics profiles and tumor phenotypes, such as aggressiveness (defined by 

local recurrence, lymph node metastasis, systemic metastasis). These group characteristics together with 

patient’s demographics (gender, age, etc.) and clinical information (immunosuppression status, used 

medications, etc.) pave the way to enable personalized diagnostics and more precise treatments, improved 

outcomes and savings in costs and resources.  

 

  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 22, 2022. ; https://doi.org/10.1101/2022.12.22.22283845doi: medRxiv preprint 

https://doi.org/10.1101/2022.12.22.22283845
http://creativecommons.org/licenses/by-nc-nd/4.0/


Materials and Methods 

From March 2020 to March 2022, tissue samples were collected from NMSC (non-melanoma skin 

cancer) lesions from 143 patients who underwent surgical excision of a skin lesion suspected as BCC and 

cSCC, at Meir Medical Center, Israel. All lesions excised were at least 1 cm in diameter. Proteins were 

extracted from 42 patients fresh (between 10-20minutes after surgery) samples randomly chosen 21 c 

BCC and 21 from the entire patent’s data (126 samples, 3 per tumor, one tumor per patient) and 

proteomics were analyzed as described below. This study was approved by the Meir Medical Center IRB, 

number MMC-19-0230. All patients gave consent for participation and for genetic analysis of tissue. 

Sample extraction with e-biopsy.  

 

Each patient’s lesion was sampled in 3 locations, resulting in 63 samples for each carcinoma type.  

The sampling needle is inserted in the sampling location and the ground needle is positioned on the skin 

surface without the penetration and the PEF are applied. A vacuum is applied on the same needle through 

which the PEF pulses are delivered, to pump the released cellular content into the needle and the syringe. 

The pulsed electric field was applied using our laboratory custom-made high-voltage pulsed electric field 

generator, described in detail in ref67. E-biopsy was performed using a combination of high-voltage short 

pulses with low-voltage long pulses24,68 as follows:  40 pulses, 1000 V, 40 µs, 4 Hz, and 40 pulses, 50 V, 5 

ms, delivered at 4 Hz. After the application of the electric fields, the liquids were extracted from the tissue 

to the needle with the vacuum, manually applied with a 1.5mL syringe. The liquids were immediately 

transferred to 1.5ml tubes with 100µl double distilled water.  The electrodes were positions about 5mm 

apart. For the sampling electrode we used a standard 30-G insulin syringe. The second electrode was a 

custom-made bar with 3mm diameter.  
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Proteins isolation from the e-biopsy sample.  

 

Proteins were isolated from the e-biopsy extract using the EZ- RNA II kit (Biological Industries, Beit 

Haemek Ltd). Homogenizing solutions were not used in the samples; phase separation solutions were 

directly added as follows: 0.2 ml of water-saturated phenol, and 0.045 ml of BCP. This step was followed 

by protein precipitation using isopropanol and wash using guanidine hydrochloride in 95% ethanol. Air-

dried protein pellets were taken for proteomic analysis as described below.  

 

Identifying and quantifying proteins with LC-MS/MS 

 

Proteolysis 

 

The samples were brought to 8M urea, 400mM ammonium bicarbonate, 10mM DTT, vortexed, sonicated 

for 5' at 90% with 10-10 cycles, and centrifuged. The protein amount was estimated using Bradford 

readings. 20ug protein from each sample was reduced 60ºC for 30 min, modified with 37.5mM 

iodoacetamide in 400mM ammonium bicarbonate (in the dark, room temperature for 30 min) and digested 

in 2M Urea, 100mM ammonium bicarbonate with modified trypsin (Promega) at a 1:50 enzyme-to-

substrate ratio, overnight at 37oC. Additional second digestion with trypsin was done for 4 hours at 37oC. 

 

Mass spectrometry analysis 

 

The tryptic peptides were desalted using C18 tips (Harvard Apparatus,MA), dried, and re-suspended in 

0.1% formic acid. The peptides were resolved by reverse-phase chromatography on 0.075 X 180-mm 

fused silica capillaries (J&W) packed with Reprosil reversed-phase material (Dr. Maisch GmbH, 

Germany). The peptides were eluted with a linear 180-minute gradient of 5 to 28%, 15 minutes gradient 

of 28 to 95%, and 25 minutes at 95% acetonitrile with 0.1% formic acid in water at flow rates of 0.15 

μl/min. Mass spectrometry was performed using Q-Exactive Plus mass spectrometer (Thermo Fischer 

Scientific, CA) in a positive mode using a repetitively full MS scan followed by collision-induced 

dissociation (HCD) of the 10 most dominant ions selected from the first MS scan. The mass spectrometry 

data from all the biological repeats were analyzed using the MaxQuant software 1.5.2.8 vs. the human 

proteome from the UniProt database with 1% FDR. The data were quantified by label-free analysis using 
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the same software, based on extracted ion currents (XICs) of peptides enabling quantitation from each 

LC/MS/MS run for each peptide identified in any of the experiments. 

 

Bioinformatics data preprocessing and identification of unique proteins 

 

Raw mass spectrometry data received from the MaxQuant program was transformed into a binary format. 

Specifically, a protein value measured in the sample was assigned with 1’ if it was observed in this 

sample with any positive intensity and assigned with 0’ otherwise. Proteins were defined unique for the 

certain condition, if they were observed only among samples with this condition. 

Differential Expression and GO terms analyses 

Protein differential expression analysis between cSCC and BCC was performed both with a parametric 

Student TTest (scipy.stats.ttest_ind) and with a non-parametric Wilcoxon rank-sum (scipy.stats.ranksums) 

tests. Afterwards, for each protein the lowest (among received two) test p-value was selected and 

corrected using Bonferroni approach with multiplication by 2. Next, the proteins were sorted according to 

the resulted p-values and fed into Gene Ontology (GO) analysis with GOrilla tool38–40 (exact input is 

available in Table S8) to identify statistically significant overrepresentations of specific cellular 

processes, functions, and components. 

Constructing protein signatures differentiating cSCC and BCC  

Protein signature differentiating cSCC from BCC is effectively a small set of proteins that, when 

measured together, is informative enough to separate between these two conditions. Selection of these 

most informative proteins was performed by 100 repetitions of leave-6-patient out algorithm, while in 

each repetition 18 BCC and 18 SCC patients were used as a training set for protein selection and the 

remaining 3 BCC and 3 SCC patients were used as a testing set to assess the performance of the resulting 

set of proteins.  

In each repetition of the leave-6-patient out the training part consisted of two major stages: (i) verification 

of high gene abundance among cSCC or BCC training samples; followed by (ii) iterative backward gene 

elimination based on the relative protein importance.  In the first stage, we omitted all the proteins with 
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maximal prevalence below 80% among 18 BCC and 18 cSCC training patients and with maximal 

prevalence below 50% among 54 BCC and 54 cSCC training samples (each patient was sampled in 3 

locations). With this procedure we aim to increase the chances to observe the selected marker in the 

sample of the corresponding carcinoma type. On average (over different repetitions), roughly 1700 out of 

7087 proteins passed this stage in each repetition. In the second stage, we iteratively omitted 10% of the 

least important proteins, where the importance of each protein was defined as average protein importance 

obtained from 3 different machine learning classifiers: (i) Random Forest (RF); (ii) Logistic Regression 

(LR) and (iii) Deep Neural Network (DNN). Specifically we used: (i) rank of feature importance for the 

corresponding protein as obtained from sklearn Random Forest classifier; (ii) rank of absolute coefficient 

for the corresponding protein as obtained from Logistic Regression classifier; and (iii) rank of total 

absolute weight of the input feature for the corresponding gene in the input layer of Deep Neural Network 

classifier. The predicted per-patient diagnosis (cSCC patients were addressed as positive and BCC 

patients as negative) was estimated as average over predictions of 3 patient’s samples. The resulted model 

performance was estimated in terms of overall accuracy, positive predictive value (PPV), negative 

predictive value (NPV), sensitivity and specificity over the 6 patients from the testing set. 

Finally, all the metrics were summarized in terms of mean and its standard error (standard error of mean 

(SEM) is defined as standard deviation (STD) divided by the square root of the sample size) over 100 

repetitions and 95% Clopper-Pearson confidence interval for the resulted value was estimated. 

 

Analysis of most differentiating proteins 

The final set of most differentiating proteins was derived from the proteins that were consistently (over 

100 repetitions of leave-6-patients-out feature selection algorithm) selected into the final set of top-5 

genes. Specifically, we identified 11 proteins that were chosen with at least 10% frequency (10 reps or 

more; Table 5).  
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These proteins were analyzed for protein-protein interactions based on IntAct DB43 resulting in a protein 

network describing these and intermediate proteins. This network, together with protein differential 

expression directions and with known selected pathways derived from KEGG DB44 and other public 

sources45,46, is presented in Figure 6, while it’s exact details including (i) protein abundances in our 

patients, (ii) details and references for experiments that observed each protein-protein interaction, and (iii) 

known pathways for each protein are presented in Table S10 and Table S11. 

 

Numerical simulations of electric fields distribution in the skin tissue and electric field-

induced thermal effects. 

To model the distribution of the electric fields in the skin with tumors during e-biopsy, we used the finite 

elements method (FEM), which allows us to find an approximate solution in complex geometries for 

solving the Laplace differentiation equation with boundary conditions defined by the applied voltage. 

Numerical solutions for a Laplace equation that result in the electric field distribution in the brain and brain 

melanoma models were performed in QuickField (Terra Analysis, Denmark). The electric and thermal 

properties of tissues used to appear in Table S1. The model files with full solutions appear online at the 

following link: https://github.com/GolbergLab/BCCvsSCC.git 

 

We assume the thermal properties of the skin didn't change after electroporation69, while the electric 

conductivity after electroporation increased 70. Direct current (DC) conduction and steady-state heat 

transfer problems were coupled with transient heat field problems. 

 

In steady-state heat transfer, with Dirichlet boundary conditions, the temperature is constant with time: 

TAirline = 25 ℃, where the airline differentiates between skin and air.  
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Heat sources were imported from DC conduction and steady-state heat transfer problems coupling, for the 

thermal field problem. To calculate the power supplied by the pulsed electric field, we used the following 

equation (Eq. 1): 

𝑄𝑎𝑣𝑔 =  
𝑉𝑅𝑀𝑆

2

𝑅
=

𝑉2𝑡𝑝𝑓

𝑅
 

(Eq. 1) 

  

where 𝑄𝑎𝑣𝑔(W) is the total average power delivered by square pulse electric field, R (ohm) is the 

resistance, 𝑉𝑅𝑀𝑆 is the root mean square voltage, V (Volt) is the applied voltage, 𝑡𝑝 is the duration of the 

pulse and 𝑓 (Hz) is the frequency of the pulse wave.  

To calculate the electric field distribution, we used the Laplace equation (Eq. 2): 

𝛻2𝑈 = 0 (Eq. 2) 

With the following potentials: 𝑉𝑆ℎ𝑜𝑟𝑡,   ℎ𝑖𝑔ℎ 𝑣𝑜𝑙𝑡𝑎𝑔𝑒 𝑝𝑢𝑙𝑠𝑒 = 1000𝑉, 𝑉𝐿𝑜𝑛𝑔,   𝑙𝑜𝑤 𝑣𝑜𝑙𝑡𝑎𝑔𝑒 𝑝𝑢𝑙𝑠𝑒 = 50𝑉, and 

𝑉𝐺𝑟𝑜𝑢𝑛𝑑 = 0. 

To calculate the thermal distribution, we solved the transient heat transfer equation (Eq. 3): 

𝜕

𝜕𝑥
(𝛾𝑥

𝜕𝑇

𝜕𝑥
) +

𝜕

𝜕𝑥
(𝛾𝑦

𝜕𝑇

𝜕𝑦
) +

𝜕

𝜕𝑧
(𝛾𝑧

𝜕𝑇

𝜕𝑧
)= −𝑞 − 𝑐𝑝

𝜕𝑇

𝜕𝑡
 (Eq. 3) 

 

Where T is the temperature (K), 𝛾(W 𝐾−1𝑚−1) is the thermal conductivity, 𝑐𝑝 (𝐽 𝐾−1 𝑘𝑔−1) is the 

specific heat capacitance, t (s) is time, q (𝑊𝑚−3)  is the volume power of heat sources. In our problem q 

is the average volume power supplied by a pulsed electric field. We assume that heat is transferred by 

convection between the air, and skin, and the convection coefficient with air is α = 5(W K-1m-2)71 

Reproducibility analysis 

To assess the reproducibility of e-biopsy methodology, the similarity between the measurements gathered 

from 3 sampled patient’s locations was estimated. Our assumption is that the actual proteomes in the 

sampled locations should be very similar, given these locations are spatially and phenotypically close. 

Therefore, we expect that protein profiles sampled by a reliable technology to be in a high agreement with 
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each other. Together with this, inherent tissue spatial heterogeneity would prevent even from the ideal 

sampling method to receive the exact measurement replicas.  

Specifically, to assess the similarity of the samples produced by e-biopsy method, while reducing the 

impact of local spatial heterogeneity, we calculated maximal intra-patient Pearson (scipy.stats.pearsonr) 

correlation between each of 3 pairs of measured raw protein intensities. The per-patient results are 

available in Table S2. 

Calculating FDR for condition-unique proteins 

To assess the FDR for the number of proteins identified as unique in a certain condition, we calculated the 

probability to observe a protein uniquely in this condition for the predefined number of times (or more) 

by a mere chance. Specifically, the probability of a certain protein t to appear in at least 4 (and at most 63) 

BCC samples, while to never appear in any of 63 cSCC samples (and symmetrically vice versa, since the 

data is balanced) by a mere chance was 3.2e-03. This is derived as follows (Eq. 4), where HG(126,k,63,k) 

is a hypergeometric probability of selecting k out of k samples inside the subgroup sized 63 in population 

sized 126; and 𝑃(𝒕 occurs in exactly 𝒌 cases) is calculated from data: 

𝑃(𝒕 occurs in at least 𝟒 and at most 𝟔𝟑 BCC cases and never in cSCC cases ) = (Eq. 4) 

= ∑ 𝑃(𝒕 occurs in exactly 𝒌 BCC cases|𝒕 occurs in exactly 𝒌 cases) ∗ 𝑃(𝒕 occurs in exactly 𝒌 cases)

63

𝑘=4

= 

= ∑ 𝐻𝐺(126, 𝑘, 63, 𝑘) ∗ 𝑃(𝒕 occurs in exactly 𝒌 cases)

63

𝑘=4

 

This leads to the expectation of 22.9 such proteins, resulting in FDR of 1.94e-01 for 118 such proteins 

uniquely observed in BCC and of 2.29e-01 for 100 such proteins uniquely observed in cSCC samples. On 

the patient level, the probability of a certain protein to appear in at least 7 (and at most 21) BCC patients, 

while to never appear in any of 21 cSCC patients (and symmetrically vice versa) by a mere chance is 

2.3e-04 (calculation is similar to Eq. 4), leading to the expectation of 1.7 such proteins. This results in 

FDR of 9.79e-02 for 17 such proteins uniquely observed in BCC and of 2.38e-01 for 7 such proteins 

uniquely observed in cSCC patients. 
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