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Abstract 
Thyroid hormones play a critical role in regulation of multiple physiological functions and thyroid 

dysfunction is associated with substantial morbidity. Electronic health records were used to 

undertake the largest genome-wide association study of thyroid-stimulating hormone (TSH) levels, 

with a total sample size of 247,107. We identified 158 novel signals, more than doubling the number 
of known associations with TSH, and implicating 112 putative causal genes, of which 78 were not 

previously implicated. For the first time, we demonstrate that a polygenic score for TSH was 
associated with TSH levels in all ancestries in UK Biobank, and strongly predicted age of onset of 

hypothyroidism and hyperthyroidism in European ancestry participants. We developed pathway-

specific genetic risk scores for TSH levels and used these in phenome-wide association studies to 

identify potential consequences of pathway perturbation. Together, these findings demonstrate the 
potential utility of genetic associations to inform future therapeutics and risk prediction for thyroid 

diseases. 
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Introduction 

Thyroid hormones are essential for energy metabolism and act on almost all cells. Thyroid 

dysfunction is associated with secondary cardiovascular, mental health, ophthalmic and other 
disease(1). Hypothyroidism has a high prevalence(2) and is most commonly due to autoimmune 

(Hashimoto) thyroiditis, in areas where iodine intake is sufficient.(1) Hyperthyroidism, prevalence 

0.2%-1.3%, is most commonly due to autoimmune (Graves) disease or toxic nodular goitre.(1) 

Ageing, diet (including iodine deficiency), smoking status, genetic susceptibility, ethnicity, and 
endocrine disruptors are risk factors for thyroid diseases; defining genetic variants, genes, proteins 

and pathways associated with hypothyroidism and hyperthyroidism will inform a deeper 
understanding of the mechanisms of thyroid disease and inform prevention and treatment 

strategies.  

Genome-wide association studies (GWAS) of quantitative traits have been particularly powerful and 
successful in identifying new drug targets(3-5). Most genetic associations for thyroid disorders were 

discovered in GWAS of thyroid-stimulating hormone (TSH) levels, a sensitive marker of thyroid 
function which is suppressed when levels of thyroxine (T4) and triiodothyronine (T3) are high and 

elevated when T4 and T3 levels are low. The largest GWAS to date, including 119,715 participants, 
brought the number of known genetic signals for TSH to 99, highlighting associations with 

hypothyroidism, hyperthyroidism and thyroid cancer(6).  

Electronic health records (EHR) are increasingly utilised in genomic studies(7, 8). In the UK, primary 

care EHR have been recorded prospectively for more than 25 years. TSH is frequently measured in 

primary care because thyroid disease may present with non-specific symptoms or be asymptomatic. 
Through harnessing such TSH measures, our study included 247,107 participants, more than 

doubling the size of the largest study to date, increasing the number of genetic signals for TSH from 
99 to 260. Using these 260 signals we then (i) tested the association between TSH-associated 

variants and disease; (ii) fine-mapped signals through annotation-informed credible sets; (iii) applied 

a consensus-based framework to systematically investigate and identify putative causal genes, 

integrating eight locus-based or similarity-based criteria; (iv) developed and applied a polygenic 
score (PGS) for TSH to show associations with susceptibility and age-of-onset of thyroid disease; (v) 

applied phenome-wide association studies (PheWAS) to individual variants, the PGS, and molecular 
pathway-specific genetic risk scores (GRS). Through evidence from the above, we aimed to define 

putative causal genes, and provide new insights into the mechanistic pathways underlying thyroid 

disorders and their relationship to other long-term conditions to inform relevant drug therapies.  

Results 
In UK Biobank and the EXCEED study we undertook GWAS with TSH levels, using an inverse normal 

transformation and adjusting for age, genotyping array, sex and the first 10 principal components of 

ancestry (Online Methods).  Across the two studies, we analysed 53,518,359 genetic variants in 

127,392 European ancestry (EUR) participants and subsequently meta-analysed these GWAS 

summary statistics with those from the independent European-ancestry populations represented in 

the analysis by Zhou et al,(6) bringing the total sample size to 247,107 participants. 

TSH association with 260 variants 
Using annotation informed fine-mapping (Online Methods), and a genome-wide significance 

threshold of P<5×10-8, we identified 260 independent signals for TSH at 156 unique genomic loci, of 

which 158 signals at 78 genomic loci are new. 212 of the 260 independent sentinels (118 of the 158 

novel signals) showed consistent direction of effect and P<0.01 in at least two of the three 
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contributing datasets in addition to reaching P<5×10-8 in the meta-analysis (Supplementary Table 1). 

The SNP heritability of TSH was 16.6% (95% CI: 12.5%, 20.7%); together the 260 signals explain 

22.6% of the TSH SNP heritability (Online Methods). The median number of variants per 95% 

credible set was 3, and 167 (64%) of credible sets had a putative causal variant with a posterior 

probability of association >50%. 

Identification of putative causal genes and causal variants 
To better understand the functional relevance of our signals, we undertook comprehensive variant-

to-gene mapping by integrating evidence from eight methods: (i) the nearest gene to the sentinel 

variant; (ii) the gene with the highest polygenic priority score (PoPS)(9); identification of (iii) 

expression quantitative trait loci (eQTL) or (iv) protein quantitative trait loci (pQTL) within the 

credible sets; (v) proximity to a gene for a thyroid-associated Mendelian disease (±500kb); (vi) an 

annotation-informed credible set containing a missense/deleterious/damaging variant with a 

posterior probability of association >50%; (vii) identification of a rare variant (±500kb of a TSH 

sentinel) association with hypo- or hyperthyroidism using whole-exome(10) and whole-genome 

sequencing(11) resources; and (viii) proximity to a human ortholog of a mouse knockout gene with a 

thyroid-related phenotype (±500kb). 

We identified 112 putative causal genes satisfying ≥2 criteria, of which 30 were supported by ≥3 

criteria (Figure 1, Supplementary Table 2), and compared these to 67 genes implicated typically by a 
single criterion in previous studies (Supplementary Table 3)(6, 12). 

Of the 112 putative causal genes supported by ≥2 criteria, 78 genes have not been previously 

implicated in TSH level. The remaining genes were supported by additional criteria compared with 
the original reports, among which were 15 genes supported by additional signals (Supplementary 

Table 2). Among the 30 genes supported by ≥3 criteria, 18 were not previously implicated in TSH 
levels (ADCY6, ANXA5, BCAS3, BNC2, CADM1, HMGA2, KIAA1217, KRT18, PDE4D, PHC2, PTEN, 

SDCCAG8, SGK1, SMOC2, SPPL3, SULF1, TRIM2, TSHZ3, novel genes shown in bold) and 12 were 
previously reported genes supported by additional criteria compared with the original reports, 

among which were 6 genes also supported by additional novel signals (TG, TSHR, GLIS3, IGFBP5, 

PTPRS, SPATA13). The 30 genes supported by ≥3 criteria include genes involved in transcriptional 

regulation (BNC2, HMGA2, PHC2, TSHZ3, GLIS3), production, signalling or response to thyroid 
hormones (TG, TPO, TSHR, PDE4D) or non-thyroid hormones (ADCY6, INSR, NR3C2), regulation of 

thyroid-relevant pathways (HMGA2, IGFBP5), neuronal protection and neuropathies (ADCY6, 
TRIM2), angiogenesis (SMOC2, SKG1, VEGFC, SPATA13), AKT signalling (PTEN, SGK1, AKT1, PTPRS) 

and ciliogenesis (SDCCAG8).  

To supplement understanding of the biological pathways and clinical phenotypes influenced by TSH-
associated variants, we first tested associations with circulating free T4 levels, hypothyroidism, 

hyperthyroidism (Figure 1, Supplementary Table 4), thyroid cancer and other thyroid disease. Using 

DeepPheWAS(7), we then undertook PheWAS of selected individual variants which mapped to 

putative causal genes implicated by ≥3 criteria or by a single putative causal missense variant 
(posterior probability >50%).  

TSH signals implicating putative causal genes with ≥2 variant-to-gene mapping criteria show variable 

patterns of association with hypothyroidism, hyperthyroidism, thyroid cancer and other thyroid 
diseases. Among these are sentinel variants associated with hypothyroidism but not 
hyperthyroidism (implicating AKT1, IGFBP5, INSR, GLIS3, SPATA13, CADM1, BCAS3, SASH1, PDE4D, 

VEGFC, SPPL3, BNC2, PDE10A, PDE8B, NR3C2, VAV3, SOX9, B4GALNT3, CGA, C9orf92, NEK6, NSF, 
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CCBE1, GNG7, TPPP, WNT4, SNX8, C1orf116, RBM47, KCTD5, PPP2R1B, PTPRJ, OCLN, C9orf156, 

GATA3, WWTR1, MAL2, ZBTB17, ARNT, CDC16), sentinels associated with hyperthyroidism but not 
hypothyroidism (implicating TSHR, NRG1, SDCCAG8, HMGA2, APOH, BMP2, SMAD6), and sentinels 
associated with both hypothyroidism and hyperthyroidism with an opposite direction of effect 
(implicating TPO, PTEN, CAPZB, VEGFA, NFIA, MBIP, HLA-C, SLC25A37, SLC25A37, NKX2-1, NKX2-3, 

FOXA2). However, tolerated SH2B3 misssense variant, rs3184504 (allele T), associated with 
increased TSH, was associated with increased risk of both hypothyroidism and hyperthyroidism, and 
in our PheWAS with increased risk of other autoimmune disorders and pleiotropic associations with 
many traits (Supplementary Tables 4 and 5). Furthermore, the TSH-increasing allele of SGK1 intronic 
SNP rs1743963, were associated with decreased risk of both hypothyroidism and hyperthyroidism 

and in our PheWAS, with increased calcium levels. SGK1, encoding serum glucocorticoid regulated 

kinase 1, is involved in regulation of ion channels and stress response.  

Among relevant clinical phenotypes in the PheWAS is “secondary hypothyroidism”, defined by 

PheCode 244.1 which encompasses ICD codes for hypothyroidism due surgery, ablation or 
medicaments used in treating hyperthyroidism. This code therefore represents consequences of 
treated hyperthyroidism (and is unrelated to central hypothyroidism, which was sometimes 
previously referred to as secondary hypothyroidism). We excluded these codes from our definition 
of hypothyroidism (Figure 1). When we explored single SNP associations with treated 

hyperthyroidism we found consistent directions of association with hyperthyroidism clinical codes 
and instances of associations, implicating genes IGFBP5, CADM1, SOX9, BMP2, TGFB2 and SYT13, 
which were not detected by only studying hyperthyroidism codes in UK Biobank, consistent with 

earlier onset hyperthyroidism cases (Supplementary Figure 1; Supplementary Table 6). 

Of the TSH sentinel variants implicating putative causal genes, a minority were associated with free 
T4 (TPO, IGFBP5, INSR, GLIS3, NRG1, PDE10A, PDE8B, CAPZB, VEGFA, NFIA, MBIP, HLA-C, NEK6, 

CERS6, CCBE1, GNG7, PTPRJ, KANK1, C9orf156, NKX2-1, NKX2-3, GATA3), and sentinels that were 
not associated with T4 included sentinels associated with hypothyroidism or hyperthyroidism (TG, 

AKT1, TSHR, SPATA13, CADM1, BCAS3, SASH1, PTEN, PDE4D, VEGFC, SGK1, SPPL3, SDCCAG8, 

HMGA2, NR3C2, VAV3, CGA, SH2B3, GNG7, APOH, TPPP, WNT4, SNX8, BMP2, C1orf116, KCTD5, 

KDR, FOXA2, WWTR1, TGFB2, MAL2, ZBTB17, ARNT, CDC16). Our findings suggest that the study of 
TSH levels is more sensitive approach to detecting genetic associations relevant to thyroid disease 

than the study of T4 levels.  

Genes implicated by a single putative causal missense variant that was deleterious included SPATA6, 
ADCY6 and APOH. Apolipoprotein H is involved in lipoprotein metabolism, coagulation and 

haemostasis. The G allele of the APOH missense deleterious variant, rs1801690 (minor allele 
frequency [MAF] 5.7% in EUR), was associated with reduced TSH, increased risk of hyperthyroidism, 

increased risk of congenital anomalies of endocrine glands and thyrotoxicosis in the UK Biobank 
DeepPheWAS analysis, as well as increased aspartate aminotransferase (AST) and alanine 

aminotransferase (AST) levels, increased height, reduced triglycerides, reduced carotid intima media 
thickness and, in FinnGen(13), reduced deep venous thrombosis risk. C9orf156 (encoding TRNA 

Methyltransferase O) was implicated by a single putative causal tolerated missense variant, 
rs2282192 (T allele, frequency 28.8% in EUR), associated with increased TSH, increased 

hypothyroidism risk and decreased risk of nontoxic multinodular goitre and thyroid cancer as well as 
lower mean corpuscular volume and HbA1c. 

Novel TSH signals associated with thyroid diseases also implicated relatively understudied putative 

causal genes, such as SPPL3 and SDCCAG8. SPPL3 encodes Signal Peptide Peptidase Like 3 involved 

in T cell receptor signalling, regulation of calcineurin-NFAT signalling and protein dephosphorylation. 
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The SPPL3 intronic variant rs2393717 G allele (frequency 47.3% in EUR) associated with increased 

TSH was associated with reduced hypothyroidism risk, increased tyrosine (a thyroid hormone 
precursor), as well as decreased C-reactive protein, increased insulin-like growth factor 1 (IGF-1), 

reduced height, whole body fat-free mass and reduced sex hormone binding globulin (especially in 
males), decreased gamma glutamyltransferase (GGT), increased alkaline phosphatase, reduced 

platelet count and eosinophils, increased cholesterol and with lipid composition traits. Mutations in 

SDCCAG8, encoding the sonic hedgehog (SHH) signalling and ciliogenesis regulator, SDCCAG8, cause 

Bardet-Biedl Syndrome 16 (BBS16). Hypothyroidism and hyperthyroidism have been observed in 
commoner forms of Bardet-Biedl Syndrome(14). The TSH increasing allele, C (frequency 53.8% in 

EUR), of SDCCAG8 intronic variant rs10926981 was associated with reduced risk of thyrotoxicosis 
and thyroid cancer, as well as reduced creatinine and increased eGFR. 

As smoking is known to influence thyroid function, we tested whether adjustments for smoking 
attenuated sentinel SNP associations with TSH in UK Biobank. Adjustments for current smoking or 

pack-years resulted in betas <50% of unadjusted betas for eight SNPs, including variants implicating 

DIO2, TSHR, C9orf156, DET1 and DZANK1. 

Druggable targets 
For the 112 genes supported by ≥2 criteria, we surveyed gene-drug interactions using the Drug Gene 

Interaction Database (DGIDB). The protein products of these genes include targets for treatments to 

stimulate (thyrotropin [TSH]) or suppress (methimazole, targeting thyroid peroxidase, TPO) thyroid 

function, and drugs to treat thyroid cancer (e.g. the KDR inhibitor, vandetanib) as well as PDE4 
inhibitors and AKT inhibitors utilised in immunoinflammatory conditions and cancers 

(Supplementary Table 7).  

Pathway analysis 
Employing ConsensusPathDB(15), we tested biological pathways enrichment for the 112 putative 

causal genes supported by ≥2 criteria, highlighting signal transduction, particularly G protein 

(Reactome) and cAMP (KEGG) signalling, and the overlapping phosphodiesterases in neuronal 

function pathway (Wikipathways, including novel genes PDE4D, PDE7A, PDE4B, ADCY6). The 
thyroxine production (Wikipathways) pathway included novel gene CGA, encoding anterior pituitary 

glycoprotein hormones subunit alpha, which is common to TSH, chorionic gonadotropin (CG), 
luteinizing hormone (LH), and follicle stimulating hormone (FSH).  New pathways of interest include 

VEGF hypoxia and angiogenesis (Biocarta), including ARNT, BDKRB2, and KDR alongside VEGFA and 

AKT1, as well as opioid signalling, and platelet activation (Supplementary Table 8). 

Phenome-wide associations of pathway-specific TSH genetic risk scores  
We hypothesised that partitioning a TSH genetic risk score (GRS) into pathway-specific GRSs 
according to the biological pathway(s) that each variant influences could inform understanding of 
mechanisms underlying TSH and thyroid disease, and possible consequences of pathway 
perturbation. Informed by the above prioritisation of putative causal genes and classification of 

these genes by pathway, we undertook PheWAS for TSH-weighted GRSs partitioned by each of 26 

enriched pathways (FDR<5x10-4) after dropping redundant pathways (GRS correlation r2 <0.7).  

We highlight examples of pathway-specific GRSs showing differing patterns of associations with 
thyroid and non-thyroid diseases (Supplementary Table 9). The GRS for higher TSH specific to the 
cAMP signalling pathway (KEGG, including novel genes GNAS, PDE4D, PDE4B, ADCY6, CGA) was 
specific to increased risk of hypothyroidism; no associations (FDR<1%) with other traits were shown 
(Supplementary Figure 2a). A GRS for higher TSH specific to the activin receptor-like kinase (ALK) in 
cardiac myocytes pathway (Biocarta, including novel genes SMAD6, BMP4) showed associations with 
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reduced risk of nontoxic nodular and multinodular goitre, and simple goitre, as well as raised heel 

bone mineral density, standing height and whole-body fat-free mass and reduced FEV1/FVC (Figure 

2a). GRSs specific to several pathways showed association to PheCode 244.1 capturing 
consequences of treated hyperthyroidism: the activin receptor-like kinase (ALK) in cardiac myocytes 
pathway, pathways in cancer (KEGG), factors and pathways affecting insulin-like growth factor 
(IGF1)-Akt signalling (Wikipathways), myometrial relaxation and contraction pathways 
(Wikipathways), FGFR3 signalling in chondrocyte proliferation and terminal differentiation 
(Wikipathways). The GRS for higher TSH specific to the platelet activation, signalling and aggregation 
pathway (Reactome, including novel genes GNG7, ANXA5, PRKCZ) was associated with increased 
hypothyroidism risk, reduced nontoxic nodular goitre and simple goitre risk, raised urate, creatinine 

and reduced eGFR, reduced sex hormone binding globulin and testosterone, increased waist 
circumference, handgrip strength and whole body fat-free mass, osteochondropathies, increased 

triglyceride levels, and with lipid composition traits (Figure 2b). 

Polygenic score associations  
We constructed a polygenic score (PGS) for TSH using the summary statistics of approximately 1.12 
million SNPs from our discovery GWAS (meta-analysed from UK Biobank, EXCEED and results from 

Zhou et al, with total sample size of 247,107 European-ancestry individuals) as the training dataset 

(Online Methods, Figure 3: PGS performance across ancestries).  

The TSH PGS showed distinct patterns of associations with relevant thyroid and non-thyroid 

phenotypes in our PheWAS (Supplementary Figure 3). Thyroid-relevant PGS associations included 
increased risk of hypothyroidism, lower risk of non-toxic (multi)nodular goitre, thyrotoxicosis, 

Graves' disease, and thyroid cancer, and reduced tyrosine. Other PGS associations included 
increased FEV1/FVC, lower risk of chronic obstructive pulmonary disease (COPD), pneumonia, coeliac 

disease, common cancers and multi-site chronic pain, lower arterial stiffness, increased creatinine 
and urate, increased alkaline phosphatase and aspartate aminotransferase, increased eosinophils, 

decreased sex hormone-binding globulin, testosterone and IGF-1, decreased glucose 

(Supplementary Table 10) as well as altered lipid levels and composition. We found little or no 

attenuation of these PGS associations after adjustment for whether the individuals had ever 
smoked. 

We then tested PGS associations across ancestries. Strong associations were shown with TSH levels 

in all ancestry groups tested (African, AFR; Admixed American, AMR; Central/South Asian, CSA; East 

Asian, EAS; Middle Eastern, MID; Figure 3, Supplementary Table 11). The TSH PGS was strongly 

associated with free T4 levels in E ancestry individuals (P=5.93x10-58), nominally associated with free 
T4 in the next largest ancestry group, CSA (P=0.0010, 1307 participants), and showed a consistent 

direction of effect in other ancestry groups (Supplementary Table 11).  

To inform understanding of the relevance of the TSH PGS for disease, we subsequently tested 

disease susceptibility risk in all UK Biobank ancestry subgroups with at least 100 cases. In European 
ancestry UK Biobank participants the TSH PGS was associated with risk of hypothyroidism 

(P<1x10-300), hyperthyroidism (P=4.79x10-169), thyroid cancer (P=7.64x10-10) and other thyroid disease 
(P=1.55x10-44, Supplementary Table 12. In other ancestry groups, a consistent direction of 

association was shown with each of these traits, the largest case numbers being seen for 
hypothyroidism in CSA (720 cases, P=4.68x10-17, 

Supplementary Table 12).  

To further understand the clinical relevance of the polygenic score we examined risk of thyroid 

disease per decile of the PGS in European ancestry individuals. Individuals in the highest decile had 

3.53-fold higher odds of hypothyroidism compared with those in the lowest decile, whilst those in 
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the lowest decile had 4.12-fold and 2.15-fold higher odds of hyperthyroidism and thyroid cancer, 

respectively, and 2.98-fold higher odds of other thyroid disease compared with those in the highest 
decile (Figure 4). Given questions about how best to deploy and repeat testing for thyroid disease in 

asymptomatic patients and in patients with non-specific symptoms, we explored whether 
membership of a high or low risk decile for TSH PGS was associated with differences in age of onset 

of hypothyroidism or hyperthyroidism (Online Methods). Between individuals with median, highest 

and lowest deciles of the TSH PGS, clear differences were seen in age of onset of hypothyroidism 

(P=1.0x10-300, Figure 5a) and hyperthyroidism (P=5.3x10-65, Figure 5b). For example, a 5% prevalence 
of hypothyroidism was reached by age 51.1 years in the highest TSH PGS decile versus by 74.7 years 

in the lowest TSH PGS decile. Similarly a 1% prevalence of hyperthyroidism was reached by age 47.3 
years in the lowest PGS decile compared with 71.2 years in the highest TSH PGS decile.  

Discussion 

The large sample size of our study, achieved through utilising quality-controlled TSH measures from 
UK primary health care records, increased the yield of TSH genetic signals by over 2.5-fold, to 260. 
Through the most comprehensive initiative to identify putative causal variants and genes for TSH 
levels, we defined 112 high confidence genes implicated by multiple criteria. This is the first study to 

develop pathway-specific GRS for TSH levels and to use these in PheWAS, through our new 
DeepPheWAS platform(7), to investigate the potential consequences of intervening in relevant 
pathways. It is also the first to develop and use a polygenic score to predict age of onset of 
hypothyroidism and hyperthyroidism, showing marked differences in ages of onset of these 

conditions according to PGS deciles.  

We implicate novel putative causal variants and genes, which alongside those previously reported(6, 
12, 16), provide a more complete picture of relevant pathways and putative mechanisms. Pathways 
we highlight include signal transduction and cAMP signalling, as well as pathways not confidently 

implicated previously such as VEGF hypoxia and angiogenesis, AKT signalling and platelet activation. 
Our findings are consistent with signalling or response to thyroid or non-thyroid hormones (including 
IGF signalling), neuronal protection, angiogenesis and ciliogenesis influencing TSH levels and thyroid 

diseases.  

Pleiotropic effects of aggregated TSH-associated variants have been previously shown through 
PheWAS. Partitioning TSH-associated variants by pathway provides a more nuanced understanding 
of the consequences of pathway perturbation on thyroid and non-thyroid disorders. We show 
contrasting patterns of phenotype association – for example highly specific associations for 

hypothyroidism (cAMP signalling) versus associations also with body composition, renal function and 
lipid traits (platelet activation pathways). As individuals may have high GRS for one or more 
pathways and low GRS for other pathways(17), individuals’ pathway GRS profiles may relate to 

patterns of comorbidities, and could have implications for treatment choices in thyroid diseases.  

Here we adopted a powerful strategy for discovery of signals associated with thyroid diseases. We 
studied TSH as a quantitative measure within reference ranges, and detect novel signals which 
individually and in aggregate are associated with thyroid diseases. Not all TSH-associated variants 
showed association with free T4 levels, even those associated with thyroid disease, highlighting the 

value of TSH as a sensitive marker of thyroid disorders. In addition, thyroid function within the 
euthyroid range is associated with adverse outcomes(18) and thus TSH-associated variants that have 
not yet been overtly associated with thyroid disease remain highly relevant. GWAS of other 
quantitative traits – including those on the UK Biobank biomarker panel – have highlighted a number 
of targets leading to active drug development for related diseases(3-5). However, TSH has not yet 
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been measured in UK Biobank samples. Thus, harnessing TSH levels measured in primary care in the 

EXCEED and UK Biobank studies more than doubled available sample sizes.   

As with other contemporary genome-wide association meta-analysis, maximising power for 
discovery does not leave available datasets suitable for independent replication.  In our study, 212 of 

the 260 independent sentinels (118 of the 158 novel signals) showed consistent direction of effect 
and P<0.01 in at least two of the three contributing datasets in addition to reaching genome-wide 
significance in the meta-analysis. Not all SNPs were represented in the Zhou et al dataset due to 
contributing datasets using less dense imputation platforms than we were able to use in UK Biobank 

and EXCEED.  

The PGS we developed for TSH utilised the full genome-wide association statistics to maximise 
predictive power. To our knowledge this is the first TSH PGS to be shown to be associated with TSH 
levels across all ethnic groups in UK Biobank. Power was more limited for testing other traits and 
diseases in the much smaller sample sizes available in non-European ancestries in UK Biobank. 
Nevertheless, we showed a consistent direction of association on T4 levels in all ancestries and 
association with hypothyroidism in South Asian participants (P=4.68x10-17, 720 cases). 
Understanding the genetic architecture of thyroid diseases within and across ancestries requires 
larger sample sizes in non-European ancestries, and an urgent global effort is required to include 

much more diverse populations in genomic studies than has been the case to date(19).  

The PGS shows a strong association with age of onset of hypothyroidism and hyperthyroidism in 
European ancestry individuals. Universal screening for thyroid disease is not recommended(20, 21). 

Instead, case finding strategies are adapted to personal risk factors such as age, family history and 
relevant long-term conditions. Our findings raise the possibility of tailoring case finding strategies for 
thyroid disease according to a PGS for thyroid disease, especially if genome-wide data become 
available as part of the medical record. Further development and testing of a PGS would be required 

in independent, diverse populations, and alongside risk factors already employed in case finding.  

Although we used TSH as the trait for signal discovery, there is potential for misclassification of 
thyroid diseases using electronic healthcare records in our investigating the clinical relevance of 
these signals. We undertook careful curation of clinical codes used to define clinical thyroid disease 
to test SNP associations. For example, we excluded cases of hypothyroidism resulting from 
treatment of hyperthyroidism. To avoid classifying cases incorrectly as hyperthyroidism or 
hypothyroidism we created a separate category "other thyroid disease" containing disorders such as 
goitre (where the clinical code was not explicit regarding thyroid status) and thyroiditis. In the latter 
group, we found that the direction of PGS associations were similar to those for hyperthyroidism, 

albeit with a smaller effect estimate.    

In summary, we more than doubled the number of TSH-associated signals to 260, confidently 
implicated 112 priority genes, showed their relevance to thyroid diseases, and developed pathway-

specific genetic risk scores which show differential patterns of pleiotropy of relevance in 
understanding co-morbidities and treatment choices. The PGS we developed predicts risk of onset 
and age of onset of hypothyroidism and hyperthyroidism, of potential utility in future case finding 

strategies, subject to further development and appropriate evaluation. 

 

  

 . CC-BY 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 22, 2022. ; https://doi.org/10.1101/2022.12.22.22283779doi: medRxiv preprint 

https://doi.org/10.1101/2022.12.22.22283779
http://creativecommons.org/licenses/by/4.0/


9 
 

Methods 
Cohort details 
We analysed data from UK Biobank(22) and the Extended Cohort for E-health, Environment and DNA 

(EXCEED) study(23). UK Biobank is a cohort of approximately 500,000 individuals recruited from 
across the United Kingdom. Individuals aged between 40 and 69 years were recruited from the 

general population between 2006 and 2010. EXCEED recruited approximately 10,000 individuals 

primarily through local general practices in Leicester City, Leicestershire and Rutland. Recruitment 

started in 2013. Individuals invited to contribute to EXCEED were aged between 40 and 69 years. 
Both UK Biobank and EXCEED collected information at baseline concerning lifestyle and health 

outcomes, as well as providing linkage to electronic health records and genetic data. 

Phenotype 
We captured all TSH results reported in the primary care data available in up to 230,000 individuals 

in UK Biobank and 8500 individuals in EXCEED utilising codes from Read version 2 and Read version 3 
(Clinical Terms Version 3 or "CTV3"). We took an individual’s first non-missing TSH measurement to 

minimise the effect of thyroid function-altering medications on our phenotype as an individual is 
unlikely to have received these medications before their first thyroid function test. Where an 

individual’s first non-missing TSH measurement was 0, they were excluded from the analysis unless 
the individual also had a code in their primary care data for hyperthyroidism where a TSH 

measurement of 0 may be clinically feasible. In all other instances, we were unable to disentangle 

true 0 measurements from those that may have arisen due to, for example, an individual’s TSH being 

below the detectable range of the test apparatus used and, therefore, being entered into the 
primary care data as 0 or some other value such as "<0.05" which may have later been converted to 

0. We excluded individuals with a TSH measurement <0.4 or >4.0 mU/L as has been done 
previously(12). 

Genome-wide association study 
We applied an inverse normal transformation to the residuals from linear regression of the TSH 
phenotype against age (at time of measurement) and sex. This transformed phenotype was used for 

genome-wide association testing under an additive genetic model adjusted for age, genotyping 
array, sex and the first 10 principal components of ancestry using PLINK 2.0(24). We analysed 

individuals of European ancestry, as defined by the Pan-UK Biobank initiative(25), who were not 
more closely related than third-degree relatives using a KING software relatedness coefficient 

>0.0884 to indicate second-degree relatives or closer(26). In UK Biobank, we tested genetic variants 

with a minor allele count >20 and imputation score >0.5. In EXCEED, due to the smaller sample size, 

we tested genetic variants with a minor allele frequency >0.1% and imputation score >0.5. 

We derived the LD Score regression intercept using LDSC(27) to estimate inflation in our test 
statistics due to confounding, such as by cryptic relatedness or population stratification. We 

estimated, separately, the LD Score regression intercept for the GWAS in UK Biobank and EXCEED. 

The UK Biobank test statistics were corrected for inflation (λLDSC = 1.05) prior to meta-analysis. The 

EXCEED test statistics were not corrected for inflation (λLDSC = 0.98). 

We used METAL(28) to meta-analyse the results from the GWAS in UK Biobank and EXCEED and the 

previous largest GWAS of TSH(6). Since the EXCEED results were aligned to GRCh38, we ran LiftOver 

to map the results to GRCh37. Over 99.5% of the genetic variants tested in the GWAS in EXCEED 
were successfully mapped to GRCh37. Following meta-analysis, we estimated the LD Score 

regression intercept once more. 
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We estimated the proportion of variance explained by the sentinel SNPs using the formula: 

∑ 2���1 � �����
��

���

	
 

where n is the number of SNPs, ��  and �� are the frequency and effect estimate of the ith variant 
from our UK Biobank discovery analysis, and V is the phenotypic variance (always 1 as TSH was 

inverse-normal transformed). 

Signal selection 
We selected 2 Mb loci centred on the most significant variant for all regions containing a variant 

with P<5×10-8. Loci within 500 kb of each other were merged for fine mapping. 

PolyFun(29) and Sum of Single Effects (SuSiE)(30) was used to fine-map autosomal non-HLA loci 
utilising pre-computed functional prior causal probabilities based on a meta-analysis of 15 UK 

Biobank traits. The functional priors are proportional to per-SNP heritabilities estimated from the 

functional enrichments of 187 variant annotations from the baseline-LF 2.2.UKB model (Gazal S, 

2018), including those relating to conservation, regulation, MAF and linkage disequilibrium, which 
were estimated using an extension of stratified-LDSC(31). Imputed genotype data from 10,000 

randomly selected European individuals from UK Biobank was used as an LD reference. Loci for 
which PolyFun and SuSiE did not identify any credible sets, as well as HLA and chromosome X loci, 

were fine-mapped using the Wakefield method(32) with the prior W set as 0.04 in the approximate 

Bayes factor formula. 95% credible sets were generated for all loci, and variants with the highest 

posterior inclusion probability (PIP) per credible set identified (Supplementary Table 13). 

Novel signals 
We searched PubMed and GWAS Catalog to identify applied studies focused on thyroid stimulating 
hormone and associations reaching P<5x10-8. These included the following sources: Gudmundsson et 

al. (33), Kwak et al. (34), Malinowski et al. (35), Medici et al. (36), Nielsen et al. (37), Popović et al. 

(38), Porcu et al. (16), Taylor et al. (39), Teumer et al. (12), and Zhou et al. (6). We determined 
whether a signal was novel if its extent of linkage disequilibrium (LD) with nearby previously 

reported signals was <0.2 (R2). 

Epidemiological associations with clinical thyroid disease 
We tested the association between our sentinel variants and free thyroxine (T4) or five clinical 
thyroid diseases: (i) hypothyroidism ; (ii) hyperthyroidism; (iii) thyroid cancer; and (iv) other (non-

cancer) thyroid disease. Using the UK Biobank primary care data, we extracted free T4 
measurements that co-occurred with the corresponding individual’s first TSH measurement. To 
maximise potential cases for hypo- and hyperthyroidism, we utilised data available in primary care, 
secondary care and self-reported diagnoses (UK Biobank Data-Field 20002). For the remaining 
clinical disease phenotypes, we defined these using primary care alone (other thyroid disease), and 

cancer register data (thyroid cancer). To reduce the overlap in cases for the clinical disease 
phenotypes, we defined a case by their first diagnosis of hypothyroidism, hyperthyroidism, thyroid 
cancer and other thyroid diseases. The clinical codes used to define free T4 and the clinical thyroid 
diseases are presented in (Supplementary Table 14). We used PLINK 2.0(24) to test the associations 
under an additive genetic model adjusted for sex, genotyping array, age at recruitment to UK 

Biobank and the first 10 principal components of ancestry.  

These phenotypes were further tested for association with our polygenic score (described below). 
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To assess the robustness of the associations between our sentinel SNPs and TSH to smoking 

behaviour, we fit separate models that included current smoking status (UK Biobank data field 1239) 
and pack-years of smoking (UK Biobank data field 20161). We determined that an association was 
attenuated upon adjusting for smoking if the smoking-adjusted effect estimate was less than 50% its 

original magnitude. 

Identification of putative causal genes 
To systematically prioritise putative causal genes for TSH associated signals, we integrated eight 
sources of evidence including: (i) the nearest gene to the sentinel variant; (ii) the gene with the 
highest polygenic priority score (PoPS)(9), a method based on the assumption that causal genes on 
different chromosomes share similar functional characteristics; identification of (iii) expression 
quantitative trait loci (eQTLs) or (iv) protein quantitative trait loci (pQTLs) within the credible sets; (v) 

proximity to a gene for a thyroid-associated Mendelian disease (±500kb); (vi) an annotation-
informed credible set containing a missense/deleterious/damaging variant with a posterior 
probability of association >50%; (vii) identification of a rare variant (±500kb of a TSH sentinel) 
association with hypo- or hyperthyroidism using whole-exome(10) and whole-genome(11) 
sequencing resources; and (viii) proximity to a human ortholog of a mouse knockout gene with a 

thyroid-related phenotype (±500kb). 

For (i), (v), (vii) and (viii), all 260 signals were used as input; for (ii), the 257 autosomal signals were 

used as input; for (iii), (iv) and (vi), all variants across the credible sets were used as input. Where 

there were two signals with the joint-highest posterior probability in their credible set, the one with 

the smallest P-value was used. 

We catalogued previously reported genes (Supplementary Table 3) implicated by mapping genome-
wide significant sentinels for thyroid traits using eQTL colocalization (P<1x10-7)(12) or DEPICT 

(FDR≤0.01, ref.(6)), to define whether the genes we implicated were novel. 

Expression quantitative trait loci (eQTLs) 
We used the SNP2GENE function implemented by FUMA(40) to facilitate the eQTL analysis. FUMA 
contains several eQTL datasets across a broad range of tissue types. We ran SNP2GENE requesting 
eQTL results from the GTEx v8 (thyroid, hypothalamus and pituitary tissues) and eQTLGen (blood, 
cis- and trans-eQTLs) datasets. We performed approximate colocalisation between our GWAS and 

eQTL signals by identifying whether the top variant in an eQTL signal was in one of our 95% credible 
sets (Supplementary Table 15). 

Protein quantitative trait loci (pQTLs) 
Two pQTL datasets were included in the pQTL analyses: deCODE Genetics(41), with data for 4,719 
proteins measured by 4,907 aptamers, and the SCALLOP Consortium(42), including 90 cardiovascular 
proteins. The significance level for pQTL associations were set as in the original publications: P-
value<1.8×10−9 for deCODE Genetics(41) and P-value<5×10−8 for the SCALLOP Consortium(42). We 
performed approximate colocalisation between our GWAS and pQTL signals by identifying whether 

the sentinel variant in a pQTL signal was in one of our 95% credible sets. 

Polygenic priority score (PoPS) 
We used a gene prioritization tool, PoPS(9), to calculate gene features enrichment based polygenic 
priority score(42) to predict genes for our TSH signals. The full set of gene features used in the 
analysis included 57,543 total features – 40,546 derived from gene expression data, 8,718 extracted 

from a protein-protein interaction network, and 8,479 based on pathway membership. In this study, 
we prioritized genes for all autosomal TSH signals within a 500kb (±250kb) window of the sentinel 
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and reported the top prioritised genes in the region. If there was no gene prioritized within a 500kb 

window of the sentinel, we reported any top prioritized genes within a 1Mb window 

(Supplementary Table 16). 

Nearby Mendelian disease genes: 
We selected rare Mendelian-disease genes from ORPHANET (https://www.orpha.net/) within 

±500kb of a TSH sentinel that were associated with thyroid-related diseases. We implicated the gene 
if the string “thyro” (but not “parathyro”) was included in either the disease name or appeared 
frequently in human phenotype ontology (HPO) terms for that disease. We manually checked the 

diseases and HPO terms identified for relevance (Supplementary Table 17). 

Nearby mouse knockout orthologs with thyroid related phenotype: 
We selected human orthologs of mouse knockout genes with thyroid related phenotypes, as listed in 
the International Mouse Phenotyping consortium (https://www.mousephenotype.org/) within 
±500kb of a TSH sentinel. The thyroid related phenotypes included enlarged thyroid gland, abnormal 

thyroid gland morphology and increased/decreased circulating thyroxine level (Supplementary 

Table 18). 

Functional annotation of credible sets: 
We annotated variants in the 95% credible sets using Variant Effect Predictor (VEP)(43) . We 
implicated the gene if there was a variant with >50% posterior probability in the credible set that 

was also either a missense variant, annotated as "deleterious" by SIFT, annotated as "damaging" by 

PolyPhen-2 or had a CADD PHRED score ≥20. 

Rare variant analysis from whole exome and whole genome sequencing 
We performed a lookup for rare variant associations with hypothyroidism or hyperthyroidism within 
±500kb of a TSH sentinel using the following resources: (i) single variant and gene-based exonic 

associations from the AstraZeneca PheWAS Portal(10) (https://azphewas.com/); (ii) single variant 

whole-genome associations in 150,119 UK Biobank participants(11). For all tests, we used MAF<1% 

and P<5x10-6 (Supplementary Table 19). 

Pathway analysis 
We used ConsensusPathDB(15) to test for enrichment of our prioritised genes in up to 31 pathway 

and gene set ontology databases. Pathways with FDR<5% are reported. 

Pathway-specific GRS 
We selected 26 pathways that were enriched at FDR <5x10-4 for our 112 genes implicated by 2 or 

more lines of evidence (Supplementary Table 8). We created a weighted GRS (weights estimated 

from the TSH meta-analysis of UK Biobank and EXCEED) for each of the 26 pathways by including, for 

each gene in the pathway, the variant with the most significant P-value that implicates the gene in 
our variant-to-gene mapping (Supplementary Table 2). Each of the 26 GRS were then checked for 

association with up to 1939 traits in the PheWAS. 
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Polygenic score (PGS) 
We applied PRS-CS-auto(44) to construct a polygenic score (PGS) using the summary statistics from 

our discovery GWAS (a meta-analysis of UK Biobank, EXCEED and results from Zhou et al (HUNT, 
Michigan Genomic Initiative [MGI], ThyroidOmics)) as the training dataset. PRS-CS-auto is a Bayesian 
approach, which automatically learns hyper-parameters from the training data; no validation dataset 
is required. We tested the association of this PGS trained from EUR ancestry group with TSH in non-
EUR ancestry groups in UK Biobank, including AFR, AMR, CSA, EAS, MID. Associations were tested 

using a linear regression model, adjusted for genotyping array, age at TSH measurement, sex and the 
first 10 principal components of ancestry. We evaluated the association of the TSH PGS with 
susceptibility to hypothyroidism, hyperthyroidism, thyroid cancer, other thyroid diseases and thyroid 
eye disease in ancestry groups with more than 100 cases in UK Biobank. Associations were tested 
using logistic regression models, adjusted for genotyping array, sex and the first ten 10 principal 
components of ancestry. To further aid clinical interpretation, we divided individuals into deciles 
according to their PGSs and using logistic regression, investigated disease risk associated, comparing 
each decile to a reference decile. To evaluate the age-dependent PGS performance, we used the 
Kaplan–Meier method to generate a cumulative incidence plot and a log-rank test to test for 

differences between groups. 

 

Phenome-wide association study (PheWAS) 
To identify pleiotropic associations with a wide range of phenotypes, we used DeepPheWAS(7), a 
flexible PheWAS framework which incorporates phenotypes not present in other PheWAS platforms 
for: (i) sentinel variants implicating genes supported by ≥3 variant-to-gene mapping criteria 
(Supplementary Table 2), variants in a credible set that were annotated as 
missense/damaging/deleterious/phred-scaled CADD score ≥20 that also had a posterior probability 
>50% (Supplementary Table 20), and low-frequency sentinel variants (MAF<1%, Supplementary 

Table 1); (ii) the PGS for TSH; (iii) pathway-specific genetic risk score (GRS).  

Druggability 
To identify gene products that are the targets of drugs, we queried the Drug Gene Interaction 

Database (DGIDB) (https://www.dgidb.org) for the 112 putative causal genes supported by ≥2 
variant-to-gene criteria. Genes were mapped to ChEMBL interactions and indications (MeSH 

headings). 
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Figure 1: 112 genes prioritised by two or more variant-to-gene criteria. The first seven columns indicate that at least one variant implicates the 

corresponding gene via the evidence for that column. The remaining six columns indicate the strength of association of the most significant variant 

implicating the corresponding gene as causal with respect to the TSH increasing allele, such that shades of blue represent associations with the other 

thyroid phenotypes that have the same direction of effect as the TSH association and shades of red represent an opposite direction of effect to the TSH 

association. 
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Figure 2: PheWAS for pathway-specific TSH-weighted GRS partitioned by: (a, top) activin receptor-

like kinase (ALK) in cardiac myocytes pathway (Biocarta); (b, bottom) platelet activation, signalling 

and aggregation pathway (Reactome).   
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Figure 3: PGS performance across ancestries. Prediction performance of the TSH PGS across 

ancestry groups in UK Biobank shown as standard deviation (SD) change in TSH/free T4 per SD 

increase in the PGS. The ancestry groups were as defined by the Pan-UK Biobank initiative – 

AFR=African ancestry, AMR=admixed American ancestry, CSA=Central/South Asian ancestry, 

EAS=East Asian ancestry, MID=Middle Eastern ancestry. Error bars indicate 95% confidence intervals. 
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Figure 4: PGS performance across clinical diseases. Prediction performance of the TSH PGS for four 

clinical thyroid phenotypes – (a, top left) hypothyroidism, (b, top right) hyperthyroidism, (c, bottom 

left) thyroid cancer, and (d, bottom right) other thyroid disease. Error bars indicate 95% confidence 

intervals. 
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Figure 5: Age-of-onset analysis. Proportion of hypothyroidism (a, left) and hyperthyroidism (b, right) cases diagnosed by age stratified into lowest (green), 

median (blue) and highest (red) decile for the TSH PGS. Shaded bands indicate 95% confidence intervals. 
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