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Abstract21

When a standardized diagnostic test fails to locate the primary site of a metastatic cancer,22

it is diagnosed as a cancer of unknown primary (CUP). CUPs account for 3-5% of all cancers23

but do not have established targeted therapies, leading to typically dismal outcomes. Here, we24

develop OncoNPC, a machine learning classifier of CUP, trained on targeted next generation25

sequencing data from 34,567 tumors across 22 primary cancer types collected as part of routine26

clinical care at three institutions under AACR Project GENIE initiative [1]. OncoNPC achieved27

a weighted F1 score of 0.94 for high confidence predictions on known cancer types (65% of28

held-out samples). To evaluate its clinical utility, we applied OncoNPC to 971 CUP tumor29

samples from patients treated at the Dana-Farber Cancer Institute (DFCI). OncoNPC CUP30
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subtypes exhibited significantly different survival outcomes, and identified potentially actionable31

molecular alterations in 23% of tumors. Importantly, patients with CUP, who received first32

palliative intent treatments concordant with their OncoNPC predicted sites, showed significantly33

better outcomes (Hazard Ratio 0.348, 95% C.I. 0.210 - 0.570, p-value 2.32×10−5) after accounting34

for potential measured confounders. As validation, we showed that OncoNPC CUP subtypes35

exhibited significantly higher polygenic germline risk for the predicted cancer type. OncoNPC36

thus provides evidence of distinct CUP subtypes and offers the potential for clinical decision37

support for managing patients with CUP.38

Introduction39

When a standardized diagnostic work-up, including radiology and pathology review, fails to locate40

the primary site of a metastatic cancer, it is diagnosed as a cancer of unknown primary (CUP). CUP41

represents about 3-5% of all cancers worldwide [2] and is characterized by aggressive progression42

and poor prognosis (survival of 6 to 16 months [3]). The hidden nature of the primary cancer43

types for a CUP limits treatment options since clinical responses to some treatments are known to44

vary based on patients’ tumor types (e.g., identical BRAF V600 mutations targetable in melanoma45

but no colorectal cancer[4]). Emerging cancer treatments targeting actionable molecular alterations46

are typically developed for specific cancer types: HER2 in breast cancer and EGFR mutation or47

ALK/ROS1 rearrangement in Non-small cell lung cancer (NSCLC) [5], and are thus inaccessible to48

CUP patients. Accurately identifying the latent primary site for CUPs and demonstrating clinical49

benefit from site-specific therapies may thus open many existing treatment options for patients with50

CUP.51

Pathology review plays a key role in determining primary cancer types of malignant tumors based52

on immunohistochemistry (IHC) results as well as tumor morphology and clinical findings; however,53

pathological diagnosis can be challenging for highly metastatic or poorly differentiated tumors. For54

known cancer types, prior studies showed that an IHC-based diagnostic work-up correctly identified55

77 - 86% of primary tumors, which further decreased to 60 - 71% for metastatic tumors [6]. For56

patients with CUP, IHC results suggestive of a single primary diagnosis account for only 25% of57

tumors [3]. The subjective nature of pathological interpretation and guidelines, as well as the58

variability in IHC staining techniques across institutions thus makes it challenging to establish59

consistent protocols for CUP diagnosis [7].60

Molecular tumor profiling has been proposed as an alternative for CUP primary classification61

due to its quantitative nature and high accuracy on tumors with known cancer types [8–12]. Such62

tools rely on microarray DNA methylation [8], whole genome sequencing (WGS) [9, 12], or RNA-63

seq data [11] to train machine learning classifiers using reference data from known-primary tumors.64

However, molecular sequencing remains prohibitive and not integrated into the existing standard65

of care, limiting the translational potential of such methods. Recently, key work by Penson et66

al. [10] demonstrated that accurate primary cancer type classifications could be made from next67

generation sequencing (NGS) of targeted panels, now routinely collected at many cancer centers and68

applicable to hundreds of thousands of tumors [1]. However, its clinical utility in diagnosing and69
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aiding treatment for patients with CUP was not systematically investigated.70

Several recent studies have investigated the potential clinical benefit of molecular CUP clas-71

sification, in non-randomized prospective studies [13–15] as well as the randomized clinical trials72

[16]. These trials have often struggled to recruit sufficient numbers of representative patients and73

explore the full range of available therapies. A recent randomized phase II trial [16] did not find74

significant improvement in 1-year survival for the treatment group receiving site-specific therapy75

guided by molecular profiling. However, this study was limited by a small number of patients (n =76

101) recruited over 7 years, with few common solid tumor types and well-established therapies [17].77

Assessing the clinical benefits of molecular CUP classification thus poses both an opportunity for78

precision medicine and a major challenge for conventional randomized studies.79

In contrast to prospective trials, retrospective Electronic Health Records (EHR) data can cap-80

ture a larger and more heterogeneous patient population, despite potential biases due to informative81

missingness and unobserved heterogeneity. Coupling EHR data with tumor sequencing can offer82

insights into the molecular mechanisms of CUPs and their relationship to clinical outcomes. As83

panel sequencing is often part of the standard of care, such insights also have the potential to assist84

diagnostic efforts and clinical management within existing molecular workflows. Here, we utilized85

multi-center, Next Generation Sequencing (NGS) targeted panel sequencing data from 36,445 tumor86

samples with known primary cancers to train and evaluate a machine learning classifier predicting a87

primary cancer type of a given tumor sample. We applied this classifier, named OncoNPC (Oncology88

NGS-based Primary cancer type Classifier), to 971 patients with CUP with clinical follow up at the89

Dana-Farber Cancer Institute (DFCI). Using the OncoNPC cancer type predictions, we identified90

CUP subtypes that shared specific characteristics with their corresponding predicted primaries in-91

cluding: significant differences in clinical outcomes, elevated germline risk, and prognostic somatic92

alterations. 23% of OncoNPC classified CUP tumors had actionable somatic variants enabled by93

their corresponding OncoNPC cancer type predictions. Finally, using EHR-based treatment and94

survival data, we showed that site-specific treatments concordant with the OncoNPC cancer type95

predictions led to longer survival than those discordant with the cancer type predictions. Our find-96

ings suggest that many CUPs can be classified into meaningful subtypes with the potential to aid97

clinical decision making.98

Results99

OncoNPC accurately classifies 22 known cancer types100

We developed OncoNPC (Oncology NGS-based Primary cancer type Classifier), a molecular can-101

cer type classifier trained on multicenter targeted panel sequencing data (Fig. 1). OncoNPC utilized102

all somatic alterations including mutations (single nucleotide variants and indels), mutational signa-103

tures, copy number alterations, as well as patient age at sequencing and sex to jointly predict cancer104

type using a XGBoost algorithm (see Methods). Importantly, no other aspects of tumor morphol-105

ogy, pathology, or patient demographics were used so as not to bias the classifier towards known106

cancers. OncoNPC was trained and validated on the processed data consisting of 29,176 primary107
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and metastasis tumor samples from 22 known cancer types collected at the DFCI, MSK, and VICC108

(see Table 1 for details). Across all 22 cancer types, OncoNPC achieved a weighted F1 score of 0.784109

on the held-out test tumor samples consisting of 7,289 tumor samples (weighted precision and recall110

: 0.789 and 0.791, respectively). Across 10 cancer groups (grouped by sites and treatment options111

(Table 1), OncoNPC achieved an overall weighted F1 score of 0.824 (weighted precision and recall :112

0.829 and 0.826, respectively). Despite the evident class imbalance across cancer types, OncoNPC113

showed well-balanced precision across the cancer types (Fig. 2a) and cancer groups (Fig. 2b).114

Thresholding on prediction confidence (pmax, the maximum posterior probability across all labels)115

further increased the performance: weighted F1 score of 0.830 with 91.6 % remaining samples at116

pmax ≥ 0.5 and 0.942 with 65.2 % remaining samples at pmax ≥ 0.9 (Fig. 2c, 2d). While rarer cancer117

types had generally lower overall performance, increasing the pmax threshold reduced this difference118

between common/rare cancer types (Fig. 2c, 2d). At pmax ≥ 0, common cancer types in the upper119

quartile in terms of the number of tumor samples (NSCLC, BRCA, COADREAD, DIFG, PRAD,120

and PAAD) had a mean F1 of 0.84 while rare cancer types in the lower quartile (WDTC, MNGT,121

GINET, PANET, AML, and NHL) had a mean F1 of 0.58, whereas at pmax ≥ 0.9 common and rare122

cancer had a mean F1 of 0.95 and 0.86, respectively. This demonstrates that the OncoNPC was123

still able to do high-quality predictions for a subset of tumor samples in rare cancer types, for which124

training data was limited.125

OncoNPC achieved robust performance against potential dataset shifts due to the factors includ-126

ing cancer center, biopsy site type, sequence panel version, and patient ethnicity (Fig. 2e). OncoNPC127

showed comparable performance for tumor samples from DFCI (AUC-PR, area under the precision128

recall curve = 0.89, n = 3,690) and those from MSK (AUC-PR = 0.85, n = 3,331). OncoNPC129

performance for those from VICC was slightly lower (AUC-PR = 0.76, n = 268). OncoNPC showed130

comparable performance for primary tumor samples (AUC-PR = 0.87, n = 4,525) and metastatic131

tumor samples (AUC-PR = 0.87, n = 2,605), demonstrating its capability to predict the primary132

cancer site of metastatic cancers without loss of performance. To assess the OncoNPC performance133

over time, we investigated its performance across sequence panel versions utilized at DFCI, as the134

panel version is a proxy for sequence dates of tumor samples (see Table 1). The OncoNPC perfor-135

mance on tumor samples from earlier versions of DFCI sequence panels (OncoPanel v1 : AUC-PR136

= 0.82, n = 414 and OncoPnael v2 : AUC-PR = 0.89, n = 1,050) was slightly lower than the per-137

formance on the tumor samples from the most recent panel (OncoPanel v3 : AUC-PR = 0.91, n =138

2,226) which also contained the largest number of genes. As all tumor samples have been collected139

from OncoPanel v3 since October 2016, we expect our model to make high-quality predictions in140

a prospective setting. Finally, OncoNPC demonstrated consistent performance across patient eth-141

nicity, an important consideration to avoid introducing algorithmic disparities. See Supplementary142

Fig. S1a for more detailed center-specific OncoNPC performance.143

Applying OncoNPC to CUP tumor samples144

We applied OncoNPC to classify 971 CUP tumors from patients who were admitted to DFCI and145

sequenced as part of routine clinical care. Compared to the held-out cohort of Cancer with Known146
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Primary (CKP; n = 7,289), OncoNPC classifications for CUPs had prediction probabilities lower147

than those of the DFCI held-out cohort of Cancer with Known Primary (CKP; n = 3,690), but148

comparable to those of the DFCI held-out cohort of CKPs including other cancer types (n = 8,025),149

indicating that CUPs may contain other hard-to-classify cancer types: mean prediction probabil-150

ity 0.764 (95% C.I. 0.750 - 778) for CUPs versus 0.881 (95% C.I. 0.875 - 0.887) for the held-out151

CKPs at DFCI and 0.769 (95% C.I. 0.764 - 0.774) for all held-out CKPs at DFCI (Fig. S1 and152

Supplementary Fig. S1b). However, more than half of the CUP tumors (518/971) could still be153

classified with high confidence (i.e., prediction probability > 0.8), and multiple classified types had154

distributions of posterior probabilities comparable to their corresponding CKPs: Non-small Cell155

Lung Cancer (NSCLC), Invasive Breast Carcinoma (BRCA), Pancreatic Adenocarcinoma (PAAD),156

Prostate Adenocarcinoma (PRAD), and Gastrointestinal Neuroendocrine Tumors (GINET). Inter-157

estingly, CUPs with predicted GINET were highly confident, despite their small number of tumor158

samples in the training cohort (n = 359; 0.99% of the training cohort), suggesting some rarer cancer159

types may nevertheless be confidently identifiable. As shown in Fig. 3b, the most common CUP can-160

cer types were Non-small Cell Lung Cancer (NSCLC), Pancreatic Adenocarcinoma (PAAD), Invasive161

Breast Carcinoma (BRCA), Esophagogastric Adenocarcinoma (EGC), and Colorectal Adenocarci-162

noma (COADREAD); of which NSCLC, BRCA, and COADREAD were also the most common163

CKP types. These rates are broadly consistent with prior findings that the most frequently revealed164

underlying primary cancers for CUPs by autopsy include lung, large bowel, and pancreas cancers165

[18]. Finally, comparable rates were observed upon applying OncoNPC to 581 CUP tumors at MSK166

(Supplementary Fig. S4)167

Explaining OncoNPC cancer type predictions168

OncoNPC learns complex non-linear relationships between input somatic variants and clinical fea-169

tures and provides interpretable primary cancer type predictions, where impact of each input feature170

on a prediction is quantified as a SHAP value [19]. We investigated the most impactful features in171

predicting each cancer type across the CKP and CUP cohorts to evaluate face validity of OncoNPC172

(see Fig. 3d for the top 3 most frequent cancer types in the cohort: NSCLC, BRCA, and PAAD, and173

Supplementary Fig. S2 and S3 for other cancer types). For NSCLC, the most important features174

were EGFR mutation and SBS4, a tobacco smoking-associated mutation signature [20], for CKP175

tumor samples and CUP with NSCLC predicted tumor samples, respectively; both consistent with176

the known etiology of lung cancer. Somatic mutation in the EGFR gene is frequently observed in177

NSCLC tumors and the gene itself is a well-known therapeutic target for patients with NSCLC [21,178

22]. Carcinogens in tobacco smoke have been known to cause lung cancer [23]. For BRCA, the179

most important feature for both CKP and CUP was sex, as expected, followed by CNA events in180

GATA3 and CCND1 genes, known drivers and prognostic indicators in breast cancer [24, 25]. For181

PAAD, KRAS mutation was significantly more common than the population averages and by far182

the most important somatic feature. Mutations in the KRAS gene occur frequently among patients183

with colorectal cancer and are known to have prognostic significance [26, 27].184

OncoNPC provides intuitive illustrations of an explanation for individual-level predictions (Fig.185
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3e). As an example, we show the explained classification for a tumor sample biopsied from the186

liver of the 76 year-old male patient and subsequently diagnosed with CUP. From the chart review,187

we found that the patient reported a 60-pack year smoking history, as well as having lived near a188

tar and chemical factory as a child. Despite the CUP diagnosis, OncoNPC confidently classified189

the primary site as NSCLC with posterior probability of 0.98. SBS4, a tobacco smoking-associated190

mutation signature, was significantly enriched in the patient’s tumor sample, which has, by far,191

the most impact on the prediction; followed by SBS24 mutation signature associated with known192

exposures to aflatoxin [20]; and KRAS mutation. Note that inhalation of aflatoxin has been linked193

to cause primary lung cancer [28–30], and KRAS mutation is one of the most common drivers194

of NSCLC [31, 32]. The feature interpretation analysis demonstrated that OncoNPC was able to195

capture biologically consistent, cancer-type specific signals from interpretable somatic mutation and196

clinical features at an individual tumor level as well as a cohort level.197

Germline PRS-based validation on CUP tumor samples198

We hypothesized that, if OncoNPC was accurately identifying latent primary cancers, the classified199

CUP cancer types would exhibit increased germline risk for the corresponding cancers. To that end,200

we imputed common germline variation for each CUP patient and quantified their polygenic risk201

scores (PRS) across 8 common cancers using external cancer GWAS data (see Methods). PRSs are202

a continuous estimate of the underlying germline liability for a given cancer and orthogonal from the203

somatic data used to train OncoNPC. As hypothesized, patients with CUP had a significantly higher204

mean germline PRS for the OncoNPC predicted cancers (Fig. 3c and see Supplementary Fig. S6205

for cancer type-specific analysis) compared to other cancer types. The magnitude of the difference206

(i.e., ∆̂PRS) increased for more confident OncoNPC predictions (∆̂PRS = 0.142, 95% C.I. 0.0494 –207

0.235, Wald test p-value: 2.66×10−3 and ∆̂PRS = 0.204, 95% C.I. 0.0655 – 0.344, Wald test p-value:208

3.98 × 10−3 at pmax threshold = 0.0 and pmax threshold = 0.9, respectively). As a negative control,209

the same analysis conducted with randomly shuffled OncoNPC labels showed no enrichment. As a210

positive control, the same analysis conducted on CKPs, with available imputed PRS (n = 11,332),211

also demonstrated a highly significant germline enrichment, as expected. Notably, the enrichment for212

CUPs was in between that of CKPs and random tumors, suggesting that while OncoNPC classified213

CUPs are genetically correlated with CKPs, they still exhibit additional heterogeneity.214

OncoNPC-based risk stratification among patients with CUP215

To demonstrate clinical utility of OncoNPC, we examined if OncoNPC cancer type predictions can216

stratify risk among patients with CUP. Using overall survival, we identified subtypes which had217

significant prognostic differences in median survival based on the OncoNPC classifications (Figure218

4a, Chi-squared test, p-value: 4.90× 10−14). Overall, the poorest prognosis was observed in patients219

with CUP predicted to be Esophagogastric Adenocarcinoma (EGC) and Pancreatic Adenocarci-220

noma (PAAD): median survival 8.44 months for the combined cohort (95% C.I. 5.39 - 10.5, n =221

107). The most favorable prognosis was observed in patients with CUP predicted to be Head and222

Neck Squamous Cell Carcinoma (HNSCC), Gastrointestinal Neuroendocrine Tumors (GINET), and223
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Pancreatic Neuroendocrine Tumors (PANET): median survival 48.2 months for HNSCC (95% C.I.224

19.6 - not estimable, n = 41) and not estimable median survival (i.e. the estimated survival curve225

never reached the median) for the combined GINET and PANET cohort (n = 57), respectively.226

Our identified favorable subtypes are consistent with established favorable CUP subtypes such as227

poorly or well differentiated neuroendocrine carcinomas of unknown primary and squamous cell car-228

cinoma of non-supraclavicular cervical lymph nodes [33]. OncoNPC subtypes can thus be leveraged229

to meaningfully stratify patients by expected median survival.230

CUP-CKP metastatic survival comparison231

We investigated if cancer-specific prognosis is shared between CUP predicted cancer and their cor-232

responding CKP metastatic cancers. Utilizing overall survival data linked to the National Death233

Index and in-house follow-up data (see Methods), we found that median survival times of CUP-234

metastatic CKP pairs were significantly correlated across the cancer types (Spearman’s ρ: 0.964,235

p-value: 4.54 × 10−4; Fig. 4b). This significant relationship provides evidence that genetics-based236

OncoNPC predictions capture prognostic signals specific to each predicted cancer type. While corre-237

lated, median survival times were significantly lower for patients with CUP compared to those with238

metastatic CKP: CUP median survival 14.0 months (95% C.I. 11.9 - 15.8, n = 685) vs. metastatic239

CKP median survival 23.1 months (95% C.I. 21.8 - 24.2, n = 7,797). This is expected as CUPs240

are an advanced metastatic cancer with limited treatment options [33]. The absolute difference in241

median survival was significant across all predicted CUP - metastatic CKP pairs with the exception242

of Pancreatic Adenocarcinoma (CUP PAAD median survival 8.61 months 95% C.I. 5.09 - 10.8 vs.243

metastatic CKP PAAD median survival 6.73 months 95% C.I. 5.98 - 8.02), known to be a particularly244

deadly cancer type.245

Shared prognostic somatic variants in CUP-metastatic CKP pairs246

We aimed to identify prognostic somatic variants shared between OncoNPC CUP subtypes and their247

corresponding metastatic CKP cancers. Three out of 14 tested CUP-metastatic CKP pairs (NSCLC,248

PAAD, and COADREAD) exhibited shared prognostic somatic variants significantly associated with249

overall survival with nominal p-value cut-off at 0.05 (Fig. 4c and 4d). In patients with known250

or classified NSCLC, three somatic mutations were associated with poor survival in both groups:251

SMARCA4 (CUP: H.R. 1.86, 95% C.I. 1.19 - 2.89, p-value 6.23 × 10−3, CKP mets: H.R. 1.73,252

95% C.I. 1.44 - 2.09, p-value 9.30 × 10−9), STK11 (CUP: H.R. 1.76, 95% C.I. 1.14 - 2.71, p-value253

1.05 × 10−2, CKP mets: H.R. 1.43, 95% C.I. 1.22 - 1.68, p-value 1.00 × 10−5), and KEAP1 (CUP:254

H.R. 1.83, 95% C.I. 1.18 - 2.85, p-value 6.82 × 10−3, CKP mets: H.R. 1.40, 95% C.I. 1.18 - 1.66,255

p-value 1.27 × 10−4). These associations of somatic mutations in SMARCA4, STK11, and KEAP1256

genes with overall survival are well established for NSCLC [34–36]. Interestingly, a CNA event in257

NKX2-1 was associated with improved survival in the patients from the NSCLC pair (CUP: H.R.258

0.542, 95% C.I. 0.326 - 0.901, p-value 1.83 × 10−2, CKP mets: H.R. 0.770, 95% C.I. 0.662 - 0.894,259

p-value 6.28 × 10−4), consistent with prior meta-analyses [37]. In patients with known or classified260

COADREAD tumors, SBS10b mutation signature, linked to polymerase epsilon exonuclease domain261
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mutations [20], was associated with longer overall survival (CUP: H.R. 0.371, 95% C.I. 0.148 - 0.928,262

p-value 3.41 × 10−2, CKP mets: H.R. 0.495, 95% C.I. 0.255 - 0.958, p-value 3.68 × 10−2). Finally, in263

patients with known or classified PAAD tumors, the SBS29 mutation signature (commonly found in264

tumor samples from individuals with a tobacco chewing habit [20]) was associated with poor survival265

in CUPs but nominally protective in metastatic CKPs (CUP: H.R. 2.66, 95% C.I. 1.02 - 6.93, p-value266

4.46 × 10−2, CKP mets: H.R. 0.657, 95% C.I. 0.438 - 0.986, p-value 4.28 × 10−2). Although these267

somatic associations remain to be validated in independent cohorts, by categorizing patients with268

CUP based on their OncoNPC predictions, we were able to identify prognostic somatic variants,269

consistent with recent research findings.270

Identifying actionable somatic variants in CUP tumors based on OncoNPC271

predictions272

We investigated if OncoNPC classifications could identify genetically driven, site-specific treatment273

options that are typically available for cancers with known primaries. We utilized OncoKB [38] as274

a knowledge base and considered three different categories of actionable somatic variants: onco-275

genic mutation, amplification, and fusion (see Methods). OncoNPC cancer type predictions enabled276

identification of actionable somatic variants across CUP tumor samples (total 22.8% of the eligible277

CUP tumor samples; see Fig. 5a and Fig. 5b). The majority of actionable somatic variants for278

patients with CUP were oncogenic mutations (183 counts; 87.1%), followed by amplifications (22279

counts; 9.52%) and fusions (7 counts; 3.33%) as shown in Fig. 5a. The four most frequent oncogenic280

mutations were in PIK3CA, KRAS, ALK, and ERBB2 genes, occurring in CUP tumor samples281

classified as BRCA (PIK3CA and ERBB2 genes) and NSCLC (KRAS, ALK, and ERBB2 genes).282

Overall, among the eligible CUPs whose prediction confidences are greater than 0.5 (N = 794; see283

Supplementary Fig. S5 for more details on the exclusion criteria), OncoNPC predictions identified284

actionable somatic variants for 11.5% of the CUP tumor samples for Level 1 therapeutic level (FDA-285

approved drugs), 3.63% for Level 2 (Standard care), 6.64% for Level 3 (Clinical evidence), and 1.00%286

for Level 4 (Biological evidence), summing up to the total 22.8% of the eligible CUP tumor samples287

(Fig. 5b).288

Survival benefit of treatment concordance with OncoNPC predictions289

We performed retrospective survival analysis to investigate whether patients with CUP achieved290

clinical benefit when treated in concordance with their OncoNPC classifications. We restricted to291

a cohort of 158 patients with CUP, received first treatment at DFCI with a palliative intent (see292

the exclusion criteria in Supplementary Fig. S5). Each case was then manually chart reviewed293

by a certified oncologist to determine whether the treatment administered was concordant with the294

OncoNPC prediction per National Comprehensive Cancer Network (NCCN) guidelines or standard of295

care (see Methods, Fig. 5c, and Fig. 5d). Strikingly, patients with CUP who received first palliative296

treatments concordant with their OncoNPC predicted cancer types exhibited significantly better297

survival than those who received discordant treatments as shown in Fig. 5e and 5f (multivariable Cox298

regression: H.R. 0.348, 95% C.I. 0.210 - 0.570, p-value 2.32× 10−5, Proportional Hazard assumption299
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test [39]: Chi-squared test with 17 degrees of freedom p-value 0.156, IPTW Kaplan-Meier estimator :300

weighted log-rank test p-value 4.25×10−10). Finally, after stratifying by OncoNPC predicted cancers301

and repeating the IPTW Kaplan-Meier analysis, we found that the treatment concordant group had302

improved survival across cancer cohorts (breast, GI, and others), with the exception of the lung303

cancer cohort (Supplementary Fig. S7).304

We note that as this was not a randomized analysis, a potential concern may be systematic305

differences between the concordant and discordant groups leading to a significant prognostic but306

not predictive difference [40]. For example, treatment discordant patients may have systematically307

more advanced/de-differentiated tumors and thus exhibit poorer survival regardless of their treat-308

ment regimen. (see Table 2 for comparison of the two groups across the measured covariates). To309

minimize biases from potential confounders and move towards a predictive estimate of treatment310

concordance on patient survival, we adopted two estimation strategies: multivariable Cox regression311

[41] (i.e., covariate adjustment) and Inverse Probability of Treatment Weighted (IPTW) Kaplan-312

Meier estimator [42] (see Methods), which have recently been employed to emulate estimates from313

randomized trials [43, 44]. In both multivariable Cox regression and IPTW Kaplan-Meier estimator314

strategies, patients treated like their OncoNPC predicted cancer types (i.e. those in the concor-315

dant treatment group) consistently showed significantly better survival compared to those in the316

discordant treatment group. The multivariable Cox regression (Fig. 5e) additionally identified sig-317

nificant hazardous effects of age, gastrointestinal (GI) cancer types predicted by OncoNPC, and318

bone metastasis (H.R. 1.27, 95% C.I. 1.02 – 1.58, p-value 3.10 × 10−2, H.R. 4.20, 95% C.I. 2.06 –319

8.55, p-value 7.78× 10−5, and H.R. 3.73, 95% C.I. 1.84 – 7.59, p-value 2.71× 10−4, respectively), and320

significantly protective effects of tumor mutational burden (TMB), as well as adenocarcinoma and321

neuroendocrine tumor group determined by the histopathology results (H.R. 0.537, 95% C.I. 0.388322

- 0.742, p-value 1.64× 10−4, H.R. 0.439, 95% C.I. 0.272 - 0.710, p-value 7.85× 10−4 and H.R. 0.0854,323

95% C.I. 0.0298 - 0.245, p-value 4.79 × 10−6, respectively). In the IPTW Kaplan-Meier analysis, we324

found that treatment concordance with the OncoNPC prediction was associated with Gastrointesti-325

nal (GI) cancer types (coefficient 1.916, 95% C.I. 0.627 - 3.205, p-value 3.57 × 10−3), whereas male326

sex and OncoNPC prediction uncertainty (i.e., entropy of predicted probability distribution over the327

considered cancer types) were inversely associated with receiving concordant treatment (coefficient328

-1.259, 95% C.I. -2.283 - -0.234, p-value 1.61 × 10−2, and coefficient -1.693, 95% C.I. -2.458 - -0.927,329

p-value 1.46×10−5) (see Supplementary Fig. S8). These associations with treatment concordance are330

consistent with likely GI CUPs being more clinically identifiable and low OncoNPC confidence CUPs331

being less clinically identifiable. We note, however, that the IPTW approach specifically adjusts for332

these systematic differences when estimating the effect of treatment concordance on survival.333

Discussion334

Our work provides unique insights into the genetic and prognostic landscapes of CUP tumor samples335

by utilizing routinely collected EHR and multicenter NGS tumor panel sequencing data. We have336

developed OncoNPC, a machine learning model for molecular classification of tumor samples based337

on the NGS panel data. When evaluated with the held-out multicenter test data, OncoNPC provided338

9

 . CC-BY 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 26, 2022. ; https://doi.org/10.1101/2022.12.22.22283696doi: medRxiv preprint 

https://doi.org/10.1101/2022.12.22.22283696
http://creativecommons.org/licenses/by/4.0/


robust and interpretable predictions. Applying OncoNPC to CUP tumor samples, we demonstrated339

that the OncoNPC CUP subtypes showed significantly higher germline PRS risk for their predicted340

cancer. To our knowledge, this is the first evidence of germline genetic correlation between CUPs341

and corresponding known primaries, and lends orthogonal support to the molecular classification of342

CUPs into subtypes. We demonstrated clinical utility of the OncoNPC CUP subtypes by showing343

significant survival differences across subtypes, and, within subtypes, potentially actionable somatic344

alterations in 11.5% (Level 1 therapeutic level) and 22.8% (all levels) of tumors. Finally, in a345

retrospective analysis, we showed that patients with CUP, that had been treated in a consistent346

manner with their OncoNPC classification, achieved significantly longer survival than those treated347

in an inconsistent manner (multivariable Cox regression: H.R. 0.348, 95% C.I. 0.210 - 0.570, p-value348

2.32×10−5). Our findings suggest that CUP tumors share a genetic and prognostic architecture with349

known cancer types, and may benefit from molecular classification with OncoNPC for prognosis as350

well as treatment decision-making.351

The question of whether CUP tumors consist of heterogeneous latent primaries or are a unique352

cancer type in and of themselves has been actively investigated [18, 45, 46]. Prior studies have353

demonstrated accurate classification of known tumors using Whole-Genome Sequencing [12], NGS354

panels [10], RNA-seq [11], methylation [8], and other platforms [47, 48]. However, these algorithms355

typically applied classification to metastatic tumors of known types and did not investigate the356

clinical implications for CUPs at large scale. Moran et al., [8] observed a nominally significant357

difference in survival between patients with CUP who received site-specific treatments concordant358

with their molecular primary site predictions and those who received empiric treatments. While359

promising, it remains unknown whether this difference is due to accurate classification for the site-360

specific group or systematically worse outcomes for the empirically treated group, which is typically361

a more challenging patient population [49]. To explicitly distinguish these scenarios, our analysis362

instead restricted to a CUP cohort wherein all patients received site-specific treatments as the363

first palliative-intent therapy and estimated a significant survival benefit of concordant treatment364

vs. discordant treatment (excluding the empirically treated group). Our findings were obtained365

after adjusting for left-truncation for sequencing time and measured potential confounders through366

covariate adjustment as well as propensity score weighting, which have been recently employed to367

mimic clinical trials in Real World data [43, 44]. Although we cannot rule out potential biases from368

unmeasured confounders, our cohort includes more heterogeneous populations compared to recruited369

cohorts in randomized controlled trials (RCT), and the proposed intervention (concordant treatment370

vs. discordant treatment) is challenging to ethically evaluate through RCTs, necessitating the use371

of retrospective causal inference.372

Our study has several limitations. Firstly, although we utilized multicenter NGS tumor panel373

sequencing data to train OncoNPC model for cancer type prediction, we utilized retrospective EHR374

data from a single institution for the downstream clinical analyses. As a result, these analyses may375

be susceptible to systematic ascertainment patterns or biases specific to a tertiary academic cancer376

center. Replication of our clinical findings in other institutions is thus necessary to generalize our377

results. Secondly, we considered only the 22 most common cancer types in the cohort as classification378

labels (68.1 % of all tumor samples at DFCI, and 69.9 % across all three centers). As a result, if a379
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CUP tumor sample harbors a distinct yet not modeled primary cancer type, then the tumor sample380

will likely have high uncertainty in the prediction (see Supplementary Fig. S1b). Nevertheless, prior381

work has shown that the majority of resolvable primary sites of CUP tumor samples were from382

common cancers (e.g., lung, pancreas, and GI) [18], consistent with our findings. As more diverse383

tumor samples are collected across multiple institutions, our model can be augmented to robustly384

predict rare cancer types as well. Thirdly, our classifier and analyses relied on data from panel385

sequencing assays targeting 300-500 genes, which are inherently only sensitive to coding mutations386

and deep copy number alterations in the targeted genes. Other features captured by whole-genome387

sequencing or molecular assays may thus achieve better classification performance. Our focus in this388

work was on assays that are in routine clinical use as those are linked to Real World clinical data389

and offer the most immediate translational potential.390

Our findings strongly suggest that routinely collected targeted tumor panel sequencing data have391

clinical utility in assisting diagnostic work-up and prognosis, and may additionally inform treatment392

decisions. To date, clinical sequencing is primarily used for identification of known biomarkers and393

corresponding clinical trial enrollment [50–53], and our findings additionally support use of panel394

sequencing for diagnosis. Conventional IHC-based pathology reviews are often unable to identify a395

primary diagnosis for advanced metastatic tumor samples [3, 6], particularly in community clinics396

where resources are limited. And in many cases, patients do not receive the complete diagnostic397

work-up that is recommended for CUPs [54]. As a result, oncologists resort to empiric treatment398

regimens to treat many patients with CUP [18] even when targeted therapies would otherwise be399

the standard of care for a corresponding known primary. In future work, we envision a multimodal400

framework that incorporates molecular sequencing together with patient pathology images [48],401

physiological data, and clinical notes to directly predict optimal treatment regiments rather than402

just cancer types. Our work thus paves a way for incorporating routine panel sequencing data into403

clinical decision support tools for clinically challenging cases.404

Methods405

Patients and tumor samples406

We used the next generation sequencing (NGS) targeted panel sequencing data collected at three407

institutions in routine clinical care as part of the AACR project GENIE [1]: Dana-Farber Can-408

cer Institute (DFCI, n=18,816), Memorial Sloan Kettering Cancer (MSK, n=16,294) center, and409

Vanderbilt-Ingram Cancer Center (VICC, n=1,335). The collected tumor samples represented 22410

different cancer types and included 971 total samples from cancer of unknown primary (CUP). Na-411

tional Death Index (NDI) and clinical death and last clinical appointment records were available412

for 20,281 DFCI patients (n = 16,376 for CKP and n = 838 for CUP). Demographic details of the413

patients and tumor samples can be found in Table 1.414

The cancer centers, DFCI, MSK, and VICC, were chosen because of similar genomic data char-415

acterization of their sequence panels in terms of coverage and alteration types [1]. DFCI samples416

were sequenced using a custom, hybridization-based panel called OncoPanel which targeted exons of417
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275-447 genes across three panel versions [1, 52]. MSK samples were sequenced using a custom panel418

called MSK-IMPACT which targeted 341-468 genes across 3 panel versions [1, 51]. VICC samples419

were sequenced using custom panels called VICC-01-T5A and VICC-01-T7, which targeted 322 and420

429 genes, respectively [1]. All panels were capable of detecting single nucleotide variants (SNVs),421

small indels, copy number alterations, and structural variants [1].422

The DFCI CUP cohort consisted of 971 sequenced tumor samples (from 962 patients) with423

a cancer diagnosis of CUP and the following detailed cancer type: Adenocarcinoma, Not Other-424

wise Specified (NOS) (n = 345), Cancer of Unknown Primary, NOS (n = 194), Squamous Cell425

Carcinoma, NOS (n = 114), Poorly Differentiated Carcinoma, NOS (n = 118), Neuroendocrine426

Tumor/Carcinoma, NOS (n = 170), Small Cell Carcinoma of Unknown Primary (n = 16), Undiffer-427

entiated Malignant Neoplasm (n = 12), and Mixed Cancer Types (n = 2). For downstream clinical428

analyses, we applied additional exclusion criteria, described in Supplementary Fig. S5.429

Developing OncoNPC cancer type classifier430

We used a gradient tree boosting framework (XGBoost [55]) to develop OncoNPC for predicting431

cancer types from molecular features. In this framework, decision trees for the input features are432

sequentially added to an existing ensemble of the trees, such that the algorithm fits the new tree to433

the residuals from the ensembles with regularization on the tree structure. As the trees (a.k.a. weak434

learners) are added, the model learns optimal weights to combine their predictions and produces the435

improved outcome from the combined ensemble [55]. Owing to its high performance and scalability,436

the XGBoost method has been used across a wide range of applications in the healthcare space437

[56–58].438

OncoNPC was trained and evaluated using tumors from 22 known cancer types split into 29,176439

training samples and 7,289 test samples. Hyper-parameter selection was conducted using random440

search [59] with 10-fold cross validation within the training set while utilizing weighted F1 score as an441

evaluation metric. The optimal hyper-parameters were then selected and the model was evaluated442

on the held-out test set (n = 7,289). To predict primary sites of CUP tumors, the model was443

then re-trained on all CKP tumor samples and applied to the CUP tumors to estimate posterior444

probabilities across the 22 different cancer labels. For each tumor sample, a cancer type with the445

highest probability was chosen as the predicted primary site.446

Feature selection and OncoNPC model interpretation447

The OncoNPC model was trained on somatic variant features from tumor sequencing data, as448

well as patient age at sequencing and sex. Other demographic/clinical features were intentionally449

not used so as not to bias the model toward cancer types with more available information. Somatic450

variant features included: mutations (i.e., single nucleotide variants (SNV) and indels), Copy Number451

Alteration (CNA) events, and mutational signatures [60]. For each gene, the total count of a somatic452

mutation (i.e., single nucleotide variants and indels) was encoded as a positive integer feature. The453

presence of a CNA event for each gene was encoded as a categorical variable with 5 levels: -2 (deep454

loss), -1 (single-copy loss), 0 (no event), 1 (low-level gain), and 2 (high-level amplification); note455
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that CNA events data for tumor samples from MSK and VICC were encoded as -2 (deep loss), 0456

(no event), and 2 (high-level amplification). Each of 60 different mutation signatures was inferred as457

the dot product of the weights derived from [60] and 96 single base substitutions in a trinucleotide458

context. The single base substitutions were computed using the deconstructSigs R library [61].459

See Supplementary Table S1 for the full set of features.460

To identify important features in the OncoNPC’s predictions, we used the recently proposed461

feature interpretation tool for tree-based models, called TreeExplainer [19] (Python package shap).462

TreeExplainer uses an efficient polynomial time algorithm (O(TLD2), T : number of trees, L :463

number of leaves, D : maximum depth) to approximate Shapley values which capture the impact464

of each feature on each individual model prediction. The Shapley value assigned to each feature465

is modeled as the average change in the model’s conditional expectation function over all possible466

feature orderings when introducing the corresponding feature into the model; it is formulated as467

ES[f(X)∣do(XS = xS)], where S is the set of features, X is a random variable for the feature to468

perturb, and do notation [62] reflects the causal feature perturbation formulation. See [19] for more469

details on the algorithm and its properties.470

Applying TreeExplainer on the model outcome at each fold across the 10-fold cross-fitting pro-471

cedure, we obtained out-of-sample local explanations for all individual model predictions of primary472

cancer types. By combining local explanations of correct predictions for each cancer type, we charac-473

terized the cancer type in terms of the most important or predictive features based on their Shapley474

values, which provided insights into the somatic variants and clinical features most relevant to the475

classification of each cancer type.476

Germline PRS-based validation on CUP tumor samples477

To validate the OncoNPC predictions for CUP tumor samples (which do not otherwise have a ground478

truth), we utilized germline Polygenic Risk Scores (PRS) which were never available to OncoNPC479

for training. Germline imputation from the off-target tumor sequencing data was conducted as480

previously described in [63]. Using weights from external GWAS data, we imputed PRS for Non-481

Small Cell Lung Cancer (NSCLC), Invasive Breast Carcinoma (BRCA), Colorectal Adenocarcinoma482

(COADREAD), Diffuse Glioma (DIFG), Melanoma (MEL), Ovarian Epithelial Tumor (OVT), Renal483

Cell Carcinoma (RCC), and Prostate Adenocarcinoma (PRAD). Pearson correlation between the484

PRS from off-target tumor data versus matched germline SNP array was previously shown to be485

higher than 0.9 without observable outliers [63].486

We hypothesized that germline PRS specific to the underlying primary cancer type of a CUP487

tumor sample would be enriched in a manner similar to how the PRS specific to CKP tumor sample488

with the same primary cancer type is enriched. To that end, given the set of 8 different cancer types489

C we have the imputed PRS available for, we first restricted the cohort of CUP tumor samples to490

those with OncoNPC predictions in C (NCUP,C = 505). Then, we obtained standardized germline491

PRS values for the chosen CUP tumor samples over all the cancer types in C. Finally, we defined492

∆̂PRS as the estimated mean difference between the PRS specific to the predicted primary cancer493

type C (i.e. concordant PRS; PRSC) and average of PRSs corresponding to the rest of the cancer494
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types (i.e. discordant PRS; PRSD, where D ∈ C ∖C) as follows495

∆̂PRS = Ê[PRSC − ÊD[PRSD ∣C]] =
1

NCUP,C

NCUP,C

∑
i

(PRSci −
1

∣C ∖ ci∣
∑

di∈C∖Ci

PRSdi) (1)

. As a true positive reference, we repeated the above procedure for the CKP tumor samples.496

Finally, as a true negative null, we estimated ∆̂PRS−random, where the concordant cancer type was497

randomly assigned. We then repeated the random assignment 100 times to obtain estimated mean498

and standard errors.499

Survival function estimation500

National Death Index (NDI) and in-house clinical records were available for 20,281 DFCI patients501

(n = 16,376 for CKP and n = 838 for CUP). A patient’s lost to follow-up date was determined502

at either the last NDI update date (12/31/2020) or their corresponding last contact date from the503

in-house records, whichever date is later. A patient’s death date was determined from the in-house504

records, or the NDI data if the patient was lost to follow-up.505

CUP-metastatic CKP survival comparison506

We estimated median survival times of patients across CUP - metastatic CKP pairs using the507

Kaplan-Meier estimator [64] to account for patients lost to follow-up. For the CUP cohort, we508

excluded patients with CUP that were lost to follow up at the time of tumor sequencing and those509

whose primary cancer types were predicted with low probability (see Supplementary Fig. S5). The510

resulting CUP cohort (n = 685), was then restricted to OncoNPCcancer types with more than511

35 CUP patients. For the CKP metastatic cohort, we excluded patients lost to follow up at the512

tumor sequencing time in the same manner and chose patients with one of the known cancers,513

where either the biopsy was metastatic or the patient had an ICD-10 code indicative of secondary514

malignant neoplasms within a year prior to sequencing dates. A total of 521 and 5,937 patients were515

thus retained from the CUP cohort and metastatic CKP cohort, respectively: Non-Small Cell Lung516

Cancer (NSCLC; nCUP = 200, nmet-CKP = 1,559), Pancreatic Adenocarcinoma (PAAD; nCUP = 80,517

nmet-CKP = 357), Invasive Breast Carcinoma (BRCA; nCUP = 67, nmet-CKP = 1,656), Colorectal518

Adenocarcinoma (COADREAD; nCUP = 54, nmet-CKP = 1,198), Head and Neck Squamous Cell519

Carcinoma (HNSCC; nCUP = 44, nmet-CKP = 216), Esophagogastric Adenocarcinoma (EGC; nCUP520

= 40, nmet-CKP = 336), and Ovarian Epithelial Tumor (OVT; nCUP = 36, nmet-CKP = 615). Note521

that patients with CUP, whose predicted cancer type is Gastrointestinal Neuroendocrine Tumors522

(GINET; nCUP = 39, nCKP = 118), were excluded due to the fact that the estimated survival function523

for the CUP cohort never reached 50 percent.524

OncoNPC-based risk stratification among patients with CUP525

To identify OncoNPC CUP subtypes with significant prognostic differences, we estimated survival526

functions for 7 common OncoNPC subtypes with more than 35 CUP patients: NSCLC, PAAD,527

BRCA, HNSCC, EGC, GINET, and Pancreatic Neuroendocrine Tumor (PANET). Patients that528
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were lost to follow up at time of sequencing were again excluded, as were CUPs with an OncoNPC529

prediction probability lower than 0.5 (i.e., same criteria as the CUP - metastatic CKP survival com-530

parison analysis). We merged subtypes with similar morphology and estimated survival functions:531

PAAD and EGC; GINET and PANET. To statistically test survival differences between these 5532

groups, we utilized Chi-squared test with 4 degrees of freedom.533

Identifying prognostic somatic variants shared in CUP-metastatic CKP534

pairs535

To identify prognostic somatic variants shared between CUP/metastatic-CKP pairs, we again re-536

stricted to the 7 common OncoNPC subtypes with at least 35 CUP patients: NSCLC, PAAD,537

BRCA, COADREAD, HNSCC, EGC, GINET, and OVT. For somatic variants, we utilized the same538

processed features utilized in the OncoNPC model training (see Methods: Feature selection and539

OncoNPC model interpretation). To ensure sufficient statistical power, we restricted to candidate540

somatic variants (i.e., mutated genes and CNA genes) present in at least 15 samples in a given On-541

coNPC subtype and corresponding metastatic CKP cohort, as well as all 96 mutational signatures.542

After selecting the cancer types to consider in the CUP-metastatic CKP pairs and candidate543

somatic variants for each pair, we iteratively tested each feature for association with survival in544

each OncoNPC subtype and in each corresponding metastatic CKP cohort. A multivariable Cox545

Proportional Hazard regression [41] model was used with time-to-death from sequencing as the546

outcome. To adjust for baseline effects, we included age at sequencing, sex, tumor sequencing panel547

version, mutational burden (i.e., sum of total somatic mutations in each tumor sample), and CNA548

burden (i.e., sum of total CNA events in each tumor sample) as covariates. Finally, to identify549

shared prognostic somatic variants for each CUP-metastatic CKP pair, we retained somatic variants550

which passed Schoenfield residuals-based proportional hazard tests (lifelines Python library [65]:551

p-value threshold: 0.05) and were nominally significant (p < 0.05) for both CUP and CKP cancer552

types in each pair.553

Actionable somatic variants in CUP tumors554

We estimated the frequency of known, actionable somatic alterations in each OncoNPC CUP subtype555

using the OncoKB knowledge base [38]. OncoNPC CUP predictions with a probability greater than556

0.5 were retained (see Supplementary Fig. S5). We considered 3 different types for somatic variants:557

oncogenic mutations such as indels, missense mutations, and splice site mutations, amplifications558

such as high-level amplifications, and finally fusions such as gene-gene and gene-intergenic fusions as559

specified in OncoKB. For each actionable somatic variant, we assigned one of the four therapeutic560

levels: level 1 for FDA-approved drugs, level 2 for standard care drugs, level 3 for drugs supported561

by clinical evidence, and level 4 for drugs supported by biological evidence.562
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Estimating impacts of treatment concordance on survival of patients with563

CUP564

We estimated the impact of the concordance between treatment and OncoNPC CUP predictions on565

a mortality outcome in a retrospective survival analysis. We utilized the in-house patient follow-up566

and treatment data to identify patients with CUP who received first treatment at DFCI with a567

palliative intent (Supplementary Fig. S5 for the exclusion criteria). Each patient was reviewed by568

a trained oncologist to determine whether the OncoNPC predicted cancer type was concordant or569

discordant with the first line of treatment received, per National Comprehensive Cancer Network570

(NCCN) guidelines or standard of care, in most reasonable situations, and within the clinical context571

delineated in the medical record. See Supplementary Section: Determining treatment-OncoNPC572

concordance for more details, and Supplementary Table S3 for clinical information, including primary573

cancer diagnosis, biopsy site, and first chemotherapy plan at DFCI, of patients with CUP in the574

analysis.575

As we were interested in the counterfactual causal impact of the OncoNPC-treatment concor-576

dance, we utilized the principles of causal inference to account for potential patient heterogeneity577

and confounding. Specifically, we estimated the effect of treatment concordance specified by the578

indicator variable, A, which was 1 when the first palliative treatment for a patient with CUP was579

concordant with the corresponding OncoNPC prediction and 0 otherwise. Our analyses make the580

following identifiability assumptions:581

• Conditional ignorability : Ai ⊧T
ai

i ∣Xi, where Ai ∈ 0,1. It means that given patient i’s a set of582

covariates Xi, the patient’s treatment concordance Ai is as good as random.583

• Consistency : T ai

i = Ti, which means that a counterfactual outcome T ai

i for patient i is the584

observed outcome for the patient with a treatment concordance ai.585

• Overlap : P (0 < p(Xi) < 1) = 1 where p(Xi) = P (Ai = 1∣Xi), which means all patients have a586

strictly positive probability for receiving concordant treatment (Ai = 1).587

In addition to the above identifiability assumptions, we made independent censoring (i.e. Ci ⊧Ti∣Xi)588

and independent entry assumption given the covariates (i.e. Ei ⊧Ti∣Xi).589

We adopted two different estimation strategies to obtain the impact of treatment concordance:590

semi-parametric Cox Proportional Hazard estimator adjusted with a set of measured confounders591

X [41] and non-parametric Kaplan Meier estimator adjusted with Inverse Probability Treatment592

Weighting (IPTW). We formulated an IPTW, wi for each sample as wi =
P (A=ai)

P (Ai=ai∣Xi) [42] and593

estimated P (A) non-parametrically and P (A∣X) using a logistic regression model (R glm package594

[66]) in a 10-fold cross-fitting. A set of measured confounders (i.e., Xi) included patients’ sex,595

age, OncoNPC prediction uncertainty (in entropy of posterior distribution over 22 cancer types),596

sequencing panel (i.e., OncoPanel) version, mutational burden, CNA burden, subsets of OncoNPC597

predicted cancer types and metastasis sites, and finally pathological histology (e.g., adenocarcinoma598

tumor or neuroendocrine tumor). Since patients with CUP who met the treatment criteria (i.e.,599

follow-up start time) but did not receive clinical panel sequencing (i.e., entry time) could not be600
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included in the analysis, we adjusted for the left truncation by defining the risk set R(t) at time t,601

which corresponds to the set of patients followed up in the analysis up to time t as follows602

R(t) = {i∣Ei ≤ t ≤ Ti}

, where Ei is the entry time of patient i. With the independent entry assumption as stated before,603

we obtained survival function from Kaplan-Meier estimator as follows604

Ŝ(t) = ∏
i∶Ti≤t

(1 −
∑k∶Tk=Ti

wk

∑j∶j∈R(Ti)wj
)

. In this formulation, each individual is weighted by the corresponding IPTW, wi, and we obtained605

two different survival functions for the treatment concordant and discordant groups. The adjusted606

Kaplan-Meier estimator provides a consistent estimate of impact of the treatment concordance under607

the assumptions stated above [42]. Once we obtained the survival estimates for the two groups, we608

used a weighted log-rank test [67] to test for a significant difference in survival.609

In the Cox proportional hazard regression framework, we estimated the hazard function of patient610

i as follows: λ(t∣Ai,Xi)) = λ0(t)exp(αAi +β
TXi), where α,Ai ∈ R and β,Xi ∈ Rm (m is the number611

of measured confounders). Under the above identifiability assumptions and validity of the estimation612

model, eα is the hazard ratio capturing the causal effect of the treatment concordance A. Finally,613

under the assumption of no ties between event times across the patients, the parameters α and β614

are estimated by maximizing the following partial likelihood615

L(α,β) = ∏
i∶δi=1

exp(αAi + βXi)

∑j∶j∈R(Ti) exp(αAj + βXj)

[41].616
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Supplementary Note626

Determining treatment-OncoNPC concordance627

Concordance of OncoNPC predicted cancer type with a first palliative treatment assignments at628

DFCI was classified in one of five categories: 1) “TRUE”: the OncoNPC cancer type matched629

the clinically proven/suspected tumor type and the predicted treatment matched the treatment630

received, which was dictated by NCCN guidelines and/or standard of care, within the clinical context631

provided by the medical record; 2) “FALSE”: the OncoNPC cancer type did not match the clinically632

proven/suspected cancer type and the predicted treatment was not appropriate per NCCN guidelines633

or standard of care, in most reasonable situations, and within the context of the medical record; 3)634

“SOFT FALSE”: the OncoNPC cancer type did not match the clinically proven/suspected cancer635

type, but the treatment received was not chosen based on NCCN guidelines or standard of care, owing636

to the unique clinical context provided by the medical record, 4) “EMPIRIC”: treatment received was637

empiric treatment for cancer of unknown primary (e.g., carboplatin/taxol or gemcitabine/cisplatin)638

with the corresponding clinical rationale; in cases where patients received these regimens but not639

with the clinical intent of empiric CUP treatment (i.e., as regimens intended for treating other tumor640

types), the predicted treatment was not labeled as “EMPIRIC” and the case was instead evaluated641

in context of the proven/suspected tumor type. In our analysis, we considered the TRUE group642

as the concordant group, and FALSE and SOFT FALSE groups as the discordant group. We did643

not include the EMPIRIC group, which is typically a more challenging patient population with644

systematically worse outcomes [49].645

Code Availability646

Please see https://github.com/itmoon7/onconpc for the pre-processing script, the trained OncoNPC647

model, and other reference materials.648
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Figure and Table Legends649

Figure 1. Overview of model development and analysis workflow. (a) OncoNPC, a650

XGBoost-based classifier, was trained and evaluated using 36,729 tumor samples across 22 cancer651

types from Cancers of Known Primary (CKP) collected from three different cancer centers. (b)652

OncoNPC performance was evaluated on the held-out tumor samples (n = 7,289). (c) OncoNPC653

was applied to 971 CUPs at a single institution to predict primary cancer types. OncoNPC pre-654

dicted CUP subtypes were then investigated for association with: (d) elevated germline risk, (e)655

actionable molecular alterations, (f) overall survival, and (g) prognostic somatic features. (h) A656

subset of CUP patients with detailed treatment data were evaluated for treatment-specific outcomes.657

658

Figure 2. Cancer type prediction performance of OncoNPC. (a),(b) The normalized con-659

fusion matrix of OncoNPC classification performance on the held-out test set (n = 7,289) for (a)660

22 detailed cancer types and (b) 10 broad cancer groups based on site and treatment (see Table 1).661

The sensitivity for each cancer type or cancer group is shown below each confusion matrix and the662

sample size is shown to the left of each confusion matrix. (c), (d) The performance (by F1 score)663

of OncoNPC on the test set across cancer types (c) and groups (d) at 4 different prediction confi-664

dences (i.e., minimum pmax thresholds). Each dot size is scaled by the proportion of tumor samples665

retained. (e) Precision-recall curves showing the performance of the OncoNPC across different co-666

horts in the test set by: cancer center, biopsy site type, sequence panel version, and ethnicity (color667

coded), with the yellow dotted curve corresponding to the baseline performance on the full test set.668

669

Figure 3. Applying OncoNPC to CUP tumor samples and interpreting cancer type pre-670

dictions. (a) Empirical distributions of prediction probabilities for correctly predicted, held-out671

CKP tumor samples (n = 3,429) and CUP tumor samples (n = 934) across CKP cancer types (blue)672

and their corresponding OncoNPC predicted cancer types for CUP tumors (green). Only OncoNPC673

classifications with at least 20 CUP tumor samples are shown. (b) Proportion of each CKP cancer674

type and the corresponding OncoNPC predicted CUP cancer type. All training CKP tumor samples675

(n = 36,445) and all held-out CUP tumor samples (n = 971) are shown. For both (a) and (b), the676

cancer types (x-axis) are ordered by the number of CKP tumor samples in each cancer type. (c)677

Germline Polygenic Risk Score (PRS) enrichment of the CKP tumor samples (n = 11,332) and CUP678

tumor samples with available PRS data (n = 505) averaged across 8 cancer types. The magnitude of679

the enrichment is quantified by ∆̂PRS: the mean difference between the concordant (i.e. OncoNPC680

matching) cancer type PRS and mean of PRSs of discordant cancer types (see Methods). ∆̂PRS681

is shown for CKPs in blue (for reference) and CUPs in green. As a negative control, ∆̂PRS−random682

is also shown after permuting the OncoNPC labels. (d) Top 15 most important features based on683

mean absolute SHAP values (i.e., µ̂(∣SHAP∣) [19]) for the top 3 most frequent cancer types in the684

cohort: Non-Small Cell Lung Cancer (NSCLC), Invasive Breast Carcinoma (BRCA), and Pancre-685

atic Adenocarcinoma (PAAD). The carrier rate for each feature in corresponding CKP and CUP686

cancer cohorts as well as the entire CKP and CUP cohorts are shown as bars going downwards687

and star-shaped markers, respectively. For mutation signature features that have continuous values,688
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individuals with feature values one standard deviation above the mean were treated as positives and689

the rest as negative. For age, individuals above the population mean were treated as positives and690

the rest as negatives. (e) Explanation of OncoNPC cancer type prediction for a sample patient with691

CUP. The patient is a 76 year-old male, with a tumor biopsy from the liver. The pie chart on the692

left shows the Top 10 important features across three different feature categories (i.e., CNA events,693

somatic mutation, and mutation signatures), and the scatter plot on the right shows their SHAP694

values and feature values. The size of each dot is scaled by corresponding absolute SHAP value.695

696

Figure 4. Consistent survival and prognostic biomarkers between OncoNPC classifi-697

cations and known cancers. (a) Survival stratification for patients with CUP based on their698

OncoNPC predicted cancer types. The Kaplan-Meier estimator [64] was used to estimate survival699

probability for each predicted cancer type over the follow-up time of 60 months from sequence date,700

with statistical significance assessed by Chi-square test. (b) Correspondence between median sur-701

vival time (in months) of CUP predicted cancer types (x-axis) and those of metastatic CKP cancer702

types (y-axis): Spearman’s rho 0.964 (p-value: 4.54×10−4). The size of each dot reflects the p-value703

of log-rank test for significant difference in median survival between CUP - metastatic CKP pairs.704

Only cancer types with at least 30 CUP tumor samples having OncoNPC probabilities greater than705

0.5 are shown. (c), (d) Prognostic somatic variants significantly associated with overall survival,706

shared between three different CUP (c)-metastatic CKP (d) pairs (NSCLC, PAAD, and COAD-707

READ; indicated by point shape). Variant types are indicated by colors: red for somatic mutations,708

green for CNAs, and blue for mutation signatures.709

710

Figure 5. Potential for clinical decision support among OncoNPC classified CUPs. (a)711

The number of CUP tumor samples with actionable targets, based on OncoKB [38], across actionable712

somatic variants (mutations, amplifications, and fusions). Each bar corresponds to an actionable713

target, color-coded by the number of each OncoNPC classified CUP carrier. Note that each tumor714

sample may contain more than one actionable somatic variant. (b) Proportions of CUP tumor715

samples with actionable somatic variants (Naction) to the total number of patients (Ntotal) across716

OncoNPC predicted cancer types. Proportions for 4 different therapeutic levels based on OncoKB717

[38], are shown in each bar: Level 1 - FDA-approved drugs, Level 2 – standard of care drugs, Level718

3 - drugs supported by clinical evidence, and Level 4 - drugs supported by biological evidence. (c),719

(d) Treatment diagrams for a group of patients with CUP who received treatments that were concor-720

dant with the OncoNPC classification (c) and the remaining CUP patients who received discordant721

treatments (d). OncoNPC classification is shown on the left and treatment groups are shown on722

the right, with each patient connected from left to right. (e) Forest plot of a multivariable Cox723

Proportional Hazards Regression on patients in the CUP cohort with first-line palliative treatment724

records at DFCI (n = 159; see Appendix Fig. S5 for the exclusion criteria). Treatment concordance725

(colored in blue), encoded as 1 when the first treatment a patient received at DFCI is concordant726

with their corresponding OncoNPC prediction and 0 otherwise, was significantly associated with727

mortality of patients in the cohort (H.R. 0.321, 95% C.I. 0.165 - 0.620, p-value: < 0.001). (f)728

Estimated survival curves for patients with CUP in the concordant treatment group (shown in blue)729
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and discordant treatment group (shown in red), respectively. To estimate the survival function for730

each group, we utilized Inverse Probability of Treatment Weighted (IPTW) Kaplan-Meier estimator731

while adjusting for left truncation until time of sequencing (see Methods). Statistical significance of732

the survival difference between the two groups was estimated by a weighted log-rank test [68].733

734

Table 1. Demographic details of the patients and tumor samples across DFCI, MSK, and VICC.735

736

Table 2. Demographic details of patients wit CUP in the concordant and discordant treatment737

groups.738

739

Supplementary Figure S1. OncoNPC prediction performances and confidences (i.e.,740

pmax) across centers. (a) Center-specific OncoNPC performance (in weighted F1) on the test741

CKP tumor samples (n = 7,289). The figure is a decomposed version of Fig. 2c by cancer center742

(DFCI: ◯, MSK: ◻, VICC: ◇). The performance was evaluated at 4 different prediction confidences743

(i.e., minimum pmax thresholds). Each dot size is scaled by the proportion of tumor samples re-744

tained. See Table S2 for the center-specific number of test CKP tumor samples across cancer types.745

(b), (c) Box plots of prediction confidences (pmax) across (b) DFCI CUP tumors, MSK CUP tu-746

mors, all DFCI CKP tumors, DFCI held-out CKP tumors, and DFCI excluded CKP tumors, and747

(c) DFCI held-out CKP tumors, MSK held-out CKP tumors, and VICC held-out CKP tumors.748

Medians and lower and upper quartiles are shown on the figures along with corresponding number749

of tumor samples as well as means and 95% confidence intervals.750

751

Supplementary Figure S2. Interpreting OncoNPC predictions. Top 15 most important752

features based on mean absolute SHAP values (i.e., µ̂(∣SHAP∣) [19]) for cancer types with at least753

20 CUP tumors samples were classified into.754

755

Supplementary Figure S3. SHAP summary plot [19] for cancer types with at least 20 CUP756

tumors samples were classified into. SAHP values (i.e., impact on OncoNPC predictions) are shown757

on the x-axis, while features values are shown with a color map (from purple to yellow). In each758

plot, CUP and CKP tumor samples were combined into one cohort for the corresponding cancer.759

760

Supplementary Figure S4. Applying OncoNPC to MSK CUP tumor samples. (a) Em-761

pirical distributions of prediction probabilities for correctly predicted, held-out CKP tumor samples762

(n = 3,429) and MSK CUP tumor samples (n = 496) across CKP cancer types (blue) and their763

corresponding OncoNPC predicted cancer types for CUP tumors (green). Only OncoNPC classifi-764

cations with at least 20 CUP tumor samples are shown. (b) Proportion of each CKP cancer type765

and the corresponding OncoNPC predicted CUP cancer type. All training CKP tumor samples (n766

= 36,445) and all MSK CUP tumor samples (n = 581) are shown. For both (a) and (b), the cancer767

types (x-axis) are ordered by the number of CKP tumor samples in each cancer type.768

769

Supplementary Figure S5. Exclusion criteria for downstream clinical analyses.770
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771

Supplementary Figure S6. Germline Polygenic Risk Score (PRS) enrichment of CKP tumor772

samples and CUP tumor samples across 8 different cancer types: (a) Colorectal Adenocarcinoma773

(COADREAD), (b) Diffuse Glioma (DIFG), (c) Invasive Breast Carcinoma (BRCA), (d) Melanoma774

(MEL), (e) Non-Small Cell Lung Cancer (NSCLC), (f) Ovarian Epithelial Tumor (OVT), (g)775

Prostate Adenocarcinoma (PRAD), and (h) Renal Cell Carcinoma (RCC). The magnitude of the776

enrichment is quantified by ∆̂PRS: the mean difference between the concordant (i.e. OncoNPC777

matching) cancer type PRS and mean of PRSs of discordant cancer types (see Methods). ∆̂PRS is778

shown for CKPs in blue (for reference) and CUPs in green.779

780

Supplementary Figure S7. Estimated survival curves for patients with CUP, broken down by781

OncoNPC predicted cancer types: (a) BRCA, (b) Gastrointestinal (GI) group (CHOL, COAD-782

READ, EGC, and PAAD), (c) Lung (NSCLC and PLMESO), and (d) other OncoNPC cancer783

types (BLCA, DIFG, GINET, HNSCC, MEL, OVT, PANET, PRAD, RCC, and UCEC). In each784

figure, the concordant treatment group and discordant treatment group are shown in blue and red,785

respectively. To estimate the survival function for each group, we utilized Inverse Probability of786

Treatment Weighted (IPTW) Kaplan-Meier estimator while adjusting for left truncation until time787

of sequencing (see Methods). Statistical significance of the survival difference between the two groups788

was estimated by a weighted log-rank test [68].789

790

Supplementary Figure S8. Summary of coefficients for estimating treatment-OncoNPC791

concordance. Formally, we estimated out-of-sample P (A∣X), where A corresponds to the treatment-792

OncoNPC concordance, using a logistic regression model in a 10-fold cross-fitting. The coefficients793

were obtained from the first fold. See Methods: Estimating impacts of treatment concordance on794

survival of patients with CUP for more details.795

796

Supplementary Table S1. A full set of 861 somatic input features for OncoNPC, abstracted from797

the next generation NGS targeted panel sequencing data. The features belong to three different798

categories (shown as columns of the table): somatic mutations (i.e., single nucleotide variants and799

indels: 316 features), Copy Number Alterations (CNA: 491 features), and mutational signatures800

(54 features). Note that we included patients’ sex and age in addition to the somatic features. See801

Methods for more details on how the features were encoded.802

803

Supplementary Table S2. Center-specific number of held-out CKP tumor samples across cancer804

types and prediction confidence (i.e., pmax) thresholds.805

806

Supplementary Table S3. Clinical information of patient with CUP in the treatment concordance807

analysis (n = 158).808

809
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Table 1

DFCI MSK VICC DFCI CUP

Number of patients 18,106 15,151 1,310 962
Patients age at sequence (95 % C.I.) 60.7 (60.5 - 60.9) 60.2 (60.0 - 60.4) 58.3 (57.6 - 59.0) 61.9 (61.1 - 62.7)

Sex; male-female ratio 43.8 - 56.2 43.5 - 56.5 44.5 - 55.5 50.0 - 50.0

Patients ethnicity (proportion %)

White 16,105 (88.9 %) 11,575 (76.4 %) 1,089 (83.1 %) 853 (88.7 %)
Black 538 (3.0 %) 866 (5.7 %) 72 (5.5 %) 38 (4.0 %)
Asian 554 (3.1 %) 956 (6.3 %) 17 (1.3 %) 34 (3.5 %)

Hispanic 379 (2.1 %) 744 (4.9 %) 14 (1.1 %) 15 (1.6 %)
Others 530 (2.9 %) 1010 (6.7 %) 118 (9.0 %) 22 (2.2 %)

Sequenced Tumor Samples

Total number of samples 18,816 16,294 1,335 971

Panel version (proportion %; 95% sequence date range)

v1
OncoPanel v1

1,924 (10.2 %; 2013-8-20 - 2014-8-17)
MSK-IMPACT341

1,803 (11.1 %; Not available)
VICC-01-T5A

307 (23.0 %; Not available)
OncoPanel v1

47 (4.8 %; 2013-9-8 - 2014-8-12)

v2
OncoPanel v2

5,304 (28.2 %; 2014-9-28 - 2016-10-5)
MSK-IMPACT410

6,917 (42.5 %; Not available)
VICC-01-T7

1,028 (77.0 %; Not available)
OncoPanel v2

203 (20.9 %; 2014-11-5 - 2016-10-5)

v3
OncoPanel v3

11,588 (61.6 %; 2016-11-11 - 2021-1-6)
MSK-IMPACT468

7,574 (46.5 %; Not available)
OncoPanel v3

721 (74.3 %; 2016-12-14 - 2020-12-23)

Biopsy site type

Primary 11,662 (62.0 %) 9,576 (58.8 %) 622 (46.6 %) .
Metastatic recurrence 5,737 (30.5 %) 6,718 (41.2 %) 637 (47.7 %) .

Local recurrence 673 (3.6 %) Not available 64 (4.8 %) .
Unspecified/others 744 (4.0 %) Not available 12 (0.9 %) .

Cancer group OncoTree Cancer type Predicted cancer type

Lung (Thoracic)
Non-Small Cell Lung Cancer (NSCLC) 3,489 (18.5 %) 3,183 (19.5 %) 137 (10.3 %) 280 (28.8 %)

Pleural Mesothelioma (PLMESO) 258 (1.4 %) 118 (0.7 %) 2 (0.1 %) 9 (0.9 %)

Gastrointestinal

Colorectal Adenocarcinoma (COADREAD) 2,525 (13.4 %) 1,919 (11.8 %) 232 (17.4 %) 63 (6.5 %)
Esophagogastric Adenocarcinoma (EGC) 988 (5.3 %) 495 (3.0 %) 59 (4.4 %) 69 (7.1 %)

Pancreatic Adenocarcinoma (PAAD) 772 (4.1 %) 980 (6.0 %) 53 (4.0 %) 85 (8.8 %)
Cholangiocarcinoma (CHOL) 241 (1.3 %) 338 (2.1 %) 44 (3.3 %) 33 (3.4 %)

Gastrointestinal Neuroendocrine Tumors (GINET) 219 (1.2 %) 76 (0.5 %) 18 (1.3 %) 46 (4.7 %)
Pancreatic Neuroendocrine Tumor (PANET) 121 (0.6 %) 133 (0.8 %) 12 (0.9 %) 23 (2.4 %)

Sarcoma Gastrointestinal Stromal Tumor (GIST) 273 (1.5 %) 217 (1.3 %) 5 (0.4 %) 3 (0.3 %)

Head and Neck
Head and Neck Squamous Cell Carcinoma (HNSCC) 473 (2.5 %) 285 (1.7 %) 20 (1.5 %) 52 (5.4 %)

Well-Differentiated Thyroid Cancer (WDTC) 166 (0.9 %) 166 (1.0 %) 8 (0.6 %) 1 (0.1 %)

Skin Melanoma (MEL) 729 (3.9 %) 619 (3.8 %) 187 (14.0 %) 43 (4.4 %)

Breast Invasive Breast Carcinoma (BRCA) 2,558 (13.6 %) 3,113 (19.1 %) 274 (20.5 %) 85 (8.8 %)

Gynecologic
Ovarian Epithelial Tumor (OVT) 1,213 (6.4 %) 525 (3.2 %) 81 (6.1 %) 58 (6.0 %)
Endometrial Carcinoma (UCEC) 703 (3.7 %) 703 (4.3 %) 34 (2.5 %) 18 (1.9 %)

Hematologic
Acute Myeloid Leukemia (AML) 150 (0.8 %) 1 (0.0 %) 0 (0.0 %) 1 (0.1 %)
Non-Hodgkin Lymphoma (NHL) 110 (0.6 %) 88 (0.5 %) 0 (0.0 %) 1 (0.1 %)

Genitourinary
Prostate Adenocarcinoma (PRAD) 601 (3.2 %) 1,222 (7.5 %) 27 (2.0 %) 27 (2.8 %)

Renal Cell Carcinoma (RCC) 457 (2.4 %) 497 (3.1 %) 39 (2.9 %) 24 (2.5 %)
Bladder Urothelial Carcinoma (BLCA) 550 (2.9 %) 505 (3.1 %) 41 (3.1 %) 21 (2.2 %)

Neuro
Diffuse Glioma (DIFG) 2,041 (10.8 %) 1,069 (6.6 %) 47 (3.5 %) 25 (2.6 %)

Meningothelial Tumor (MNGT) 179 (1.0 %) 42 (0.3 %) 15 (1.1 %) 4 (0.4 %)
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Table 2

Concordant treatment group
(n = 77)

Discordant treatment group
(n = 81)

Sex; male-female ratio 0.442-0.558 0.556-0.444
Age at seqeuncing (95% C.I.) 64 (61.6 - 66.4) 62 (59.4 - 64.6)

Prediction uncertainty
(in entropy; 95% C.I.)

0.550 (0.426 - 0.675) 0.988 (0.850 - 1.127)

OncoPanel version (proportion in %)
v1 1 (1.30%) 1 (1.24%)
v2 9 (11.7%) 15 (18.5%)
v3 67 (87.0%) 65 (80.2%)

Mutational burden (95% C.I.) 0.027 (0.021 - 0.033) 0.033 (0.027 - 0.040)
CNA burden (95% C.I.) 0.201 (0.166 - 0.236) 0.186 (0.155 - 0.217)

Predicted primary cancer groups (proportion in %)
Lung 15 (19.5%) 24 (29.6%)
Breast 5 (6.50%) 11 (13.6%)

GI 33 (42.9%) 16 (19.8%)
Gyn 9 (11.7%) 5 (6.17%)

Others 15 (19.5%) 25 (31.0%)
Metastatic sites (proportion in %)

Brain 4 (5.20%) 8 (9.88%)
Bone 7 (9.10%) 10 (12.3%)

Soft tissue 6 (7.79%) 5 (6.17%)
Others 60 (77.9%) 58 (71.6%)

Histology (proportion in %)
Adenocarcinoma 41 (53.2%) 32 (39.5%)
Neuroendocrine 9 (11.7%) 11 (13.6%)
Squamous cell 2 (2.60%) 6 (7.41%)

Others 25 (32.5%) 32 (39.5%)
Treatment start date (95% C.I.) 2018-4-30 (2017-12-24 - 2018-9-3) 2018-3-1 (2017-10-28 - 2018-7-3)
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