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21 Abstract

22 When a standardized diagnostic test fails to locate the primary site of a metastatic cancer,

23 it is diagnosed as a cancer of unknown primary (CUP). CUPs account for 3-5% of all cancers

24 but do not have established targeted therapies, leading to typically dismal outcomes. Here, we

25 develop OncoNPC, a machine learning classifier of CUP, trained on targeted next generation

26 sequencing data from 34,567 tumors across 22 primary cancer types collected as part of routine

27 clinical care at three institutions under AACR Project GENIE initiative [1]. OncoNPC achieved

28 a weighted F1 score of 0.94 for high confidence predictions on known cancer types (65% of

20 held-out samples). To evaluate its clinical utility, we applied OncoNPC to 971 CUP tumor

30 samples from patients treated at the Dana-Farber Cancer Institute (DFCI). OncoNPC CUP
1
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31 subtypes exhibited significantly different survival outcomes, and identified potentially actionable
32 molecular alterations in 23% of tumors. Importantly, patients with CUP, who received first
33 palliative intent treatments concordant with their OncoNPC predicted sites, showed significantly
34 better outcomes (Hazard Ratio 0.348, 95% C.I. 0.210 - 0.570, p-value 2.32x107°) after accounting
385 for potential measured confounders. As validation, we showed that OncoNPC CUP subtypes
36 exhibited significantly higher polygenic germline risk for the predicted cancer type. OncoNPC
37 thus provides evidence of distinct CUP subtypes and offers the potential for clinical decision
38 support for managing patients with CUP.

» Introduction

a0  When a standardized diagnostic work-up, including radiology and pathology review, fails to locate
a1 the primary site of a metastatic cancer, it is diagnosed as a cancer of unknown primary (CUP). CUP
a2 represents about 3-5% of all cancers worldwide |2] and is characterized by aggressive progression
. and poor prognosis (survival of 6 to 16 months [3]). The hidden nature of the primary cancer
aa  types for a CUP limits treatment options since clinical responses to some treatments are known to
«s  vary based on patients’ tumor types (e.g., identical BRAF V600 mutations targetable in melanoma
s but no colorectal cancer[4]). Emerging cancer treatments targeting actionable molecular alterations
a7 are typically developed for specific cancer types: HER2 in breast cancer and EGFR mutation or
ss  ALK/ROSI rearrangement in Non-small cell lung cancer (NSCLC) [5], and are thus inaccessible to
s CUP patients. Accurately identifying the latent primary site for CUPs and demonstrating clinical
so benefit from site-specific therapies may thus open many existing treatment options for patients with
51 CUP.

52 Pathology review plays a key role in determining primary cancer types of malignant tumors based
53 on immunohistochemistry (IHC) results as well as tumor morphology and clinical findings; however,
sa pathological diagnosis can be challenging for highly metastatic or poorly differentiated tumors. For
ss  known cancer types, prior studies showed that an IHC-based diagnostic work-up correctly identified
se 77 - 86% of primary tumors, which further decreased to 60 - 71% for metastatic tumors [6]. For
sz patients with CUP, THC results suggestive of a single primary diagnosis account for only 25% of
ss tumors [3]. The subjective nature of pathological interpretation and guidelines, as well as the
so  variability in IHC staining techniques across institutions thus makes it challenging to establish
s consistent protocols for CUP diagnosis [7].

61 Molecular tumor profiling has been proposed as an alternative for CUP primary classification
e due to its quantitative nature and high accuracy on tumors with known cancer types [8-H12]. Such
63 tools rely on microarray DNA methylation [§], whole genome sequencing (WGS) [9, [12], or RNA-
e seq data [11] to train machine learning classifiers using reference data from known-primary tumors.
es However, molecular sequencing remains prohibitive and not integrated into the existing standard
ee of care, limiting the translational potential of such methods. Recently, key work by Penson et
ez al. [10] demonstrated that accurate primary cancer type classifications could be made from next
es generation sequencing (NGS) of targeted panels, now routinely collected at many cancer centers and

e applicable to hundreds of thousands of tumors |1]. However, its clinical utility in diagnosing and
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7o aiding treatment for patients with CUP was not systematically investigated.

7 Several recent studies have investigated the potential clinical benefit of molecular CUP clas-
72 sification, in non-randomized prospective studies |13H15] as well as the randomized clinical trials
73 [16]. These trials have often struggled to recruit sufficient numbers of representative patients and
za explore the full range of available therapies. A recent randomized phase II trial [16] did not find
7s significant improvement in 1-year survival for the treatment group receiving site-specific therapy
ze guided by molecular profiling. However, this study was limited by a small number of patients (n =
7z 101) recruited over 7 years, with few common solid tumor types and well-established therapies [17].
zs  Assessing the clinical benefits of molecular CUP classification thus poses both an opportunity for
7o precision medicine and a major challenge for conventional randomized studies.

80 In contrast to prospective trials, retrospective Electronic Health Records (EHR) data can cap-
s1 ture a larger and more heterogeneous patient population, despite potential biases due to informative
s2 missingness and unobserved heterogeneity. Coupling EHR data with tumor sequencing can offer
s3 insights into the molecular mechanisms of CUPs and their relationship to clinical outcomes. As
sa panel sequencing is often part of the standard of care, such insights also have the potential to assist
ss diagnostic efforts and clinical management within existing molecular workflows. Here, we utilized
ss multi-center, Next Generation Sequencing (NGS) targeted panel sequencing data from 36,445 tumor
ez samples with known primary cancers to train and evaluate a machine learning classifier predicting a
ss primary cancer type of a given tumor sample. We applied this classifier, named OncoNPC (Oncology
8o INGS-based Primary cancer type Classifier), to 971 patients with CUP with clinical follow up at the
eo Dana-Farber Cancer Institute (DFCI). Using the OncoNPC cancer type predictions, we identified
o1 CUP subtypes that shared specific characteristics with their corresponding predicted primaries in-
o2 cluding: significant differences in clinical outcomes, elevated germline risk, and prognostic somatic
o3 alterations. 23% of OncoNPC classified CUP tumors had actionable somatic variants enabled by
oa their corresponding OncoNPC cancer type predictions. Finally, using EHR-based treatment and
os survival data, we showed that site-specific treatments concordant with the OncoNPC cancer type
o6 predictions led to longer survival than those discordant with the cancer type predictions. Our find-
o7 ings suggest that many CUPs can be classified into meaningful subtypes with the potential to aid

os clinical decision making.

» Results

1w OncoNPC accurately classifies 22 known cancer types

101 We developed OncoNPC' (Oncology NGS-based Primary cancer type Classifier), a molecular can-
102 cer type classifier trained on multicenter targeted panel sequencing data (Fig. . OncoNPC utilized
103 all somatic alterations including mutations (single nucleotide variants and indels), mutational signa-
104 tures, copy number alterations, as well as patient age at sequencing and sex to jointly predict cancer
105 type using a XGBoost algorithm (see Methods). Importantly, no other aspects of tumor morphol-
106 0gy, pathology, or patient demographics were used so as not to bias the classifier towards known

107 cancers. OncoNPC was trained and validated on the processed data consisting of 29,176 primary
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10s  and metastasis tumor samples from 22 known cancer types collected at the DFCI, MSK, and VICC
100 (see Table for details). Across all 22 cancer types, OncoNPC achieved a weighted F1 score of 0.784
110 on the held-out test tumor samples consisting of 7,289 tumor samples (weighted precision and recall
1a @ 0.789 and 0.791, respectively). Across 10 cancer groups (grouped by sites and treatment options
uz  (Table , OncoNPC achieved an overall weighted F1 score of 0.824 (weighted precision and recall :
13 0.829 and 0.826, respectively). Despite the evident class imbalance across cancer types, OncoNPC
11 showed well-balanced precision across the cancer types (Fig. and cancer groups (Fig. [2b).
15 Thresholding on prediction confidence (ppmaz, the maximum posterior probability across all labels)
ue further increased the performance: weighted F1 score of 0.830 with 91.6 % remaining samples at
17 Prag > 0.5 and 0.942 with 65.2 % remaining samples at ppqq > 0.9 (Fig. 2d 2d). While rarer cancer
us  types had generally lower overall performance, increasing the p;,q, threshold reduced this difference
110 between common /rare cancer types (Fig. . At pae > 0, common cancer types in the upper
120 quartile in terms of the number of tumor samples (NSCLC, BRCA, COADREAD, DIFG, PRAD,
122 and PAAD) had a mean F1 of 0.84 while rare cancer types in the lower quartile (WDTC, MNGT,
122 GINET, PANET, AML, and NHL) had a mean F1 of 0.58, whereas at p,q; > 0.9 common and rare
123 cancer had a mean F1 of 0.95 and 0.86, respectively. This demonstrates that the OncoNPC was
124 still able to do high-quality predictions for a subset of tumor samples in rare cancer types, for which
125 training data was limited.

126 OncoNPC achieved robust performance against potential dataset shifts due to the factors includ-
127 ing cancer center, biopsy site type, sequence panel version, and patient ethnicity (Fig. . OncoNPC
128 showed comparable performance for tumor samples from DFCI (AUC-PR, area under the precision
120 recall curve = 0.89, n = 3,690) and those from MSK (AUC-PR = 0.85, n = 3,331). OncoNPC
130 performance for those from VICC was slightly lower (AUC-PR = 0.76, n = 268). OncoNPC showed
131 comparable performance for primary tumor samples (AUC-PR = 0.87, n = 4,525) and metastatic
132 tumor samples (AUC-PR = 0.87, n = 2,605), demonstrating its capability to predict the primary
133 cancer site of metastatic cancers without loss of performance. To assess the OncoNPC performance
134 over time, we investigated its performance across sequence panel versions utilized at DFCI, as the
135 panel version is a proxy for sequence dates of tumor samples (see Table [I). The OncoNPC perfor-
13¢ mance on tumor samples from earlier versions of DFCI sequence panels (OncoPanel vl : AUC-PR
137 = 0.82, n = 414 and OncoPnael v2 : AUC-PR = 0.89, n = 1,050) was slightly lower than the per-
138 formance on the tumor samples from the most recent panel (OncoPanel v3 : AUC-PR = 0.91, n =
130 2,226) which also contained the largest number of genes. As all tumor samples have been collected
1o from OncoPanel v3 since October 2016, we expect our model to make high-quality predictions in
11 a prospective setting. Finally, OncoNPC demonstrated consistent performance across patient eth-
142 nicity, an important consideration to avoid introducing algorithmic disparities. See Supplementary

s Fig. [STa] for more detailed center-specific OncoNPC performance.

s Applying OncoNPC to CUP tumor samples

s We applied OncoNPC to classify 971 CUP tumors from patients who were admitted to DFCI and

s sequenced as part of routine clinical care. Compared to the held-out cohort of Cancer with Known
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1z Primary (CKP; n = 7,289), OncoNPC classifications for CUPs had prediction probabilities lower
s than those of the DFCI held-out cohort of Cancer with Known Primary (CKP; n = 3,690), but
140 comparable to those of the DFCI held-out cohort of CKPs including other cancer types (n = 8,025),
150 indicating that CUPs may contain other hard-to-classify cancer types: mean prediction probabil-
11 ity 0.764 (95% C.I. 0.750 - 778) for CUPs versus 0.881 (95% C.I. 0.875 - 0.887) for the held-out
12 CKPs at DFCI and 0.769 (95% C.I. 0.764 - 0.774) for all held-out CKPs at DFCI (Fig. and
153 Supplementary Fig. [S1b]). However, more than half of the CUP tumors (518/971) could still be
1sa  classified with high confidence (i.e., prediction probability > 0.8), and multiple classified types had
15 distributions of posterior probabilities comparable to their corresponding CKPs: Non-small Cell
1se  Lung Cancer (NSCLC), Invasive Breast Carcinoma (BRCA), Pancreatic Adenocarcinoma (PAAD),
157 Prostate Adenocarcinoma (PRAD), and Gastrointestinal Neuroendocrine Tumors (GINET). Inter-
158 estingly, CUPs with predicted GINET were highly confident, despite their small number of tumor
1o samples in the training cohort (n = 359; 0.99% of the training cohort), suggesting some rarer cancer
10 types may nevertheless be confidently identifiable. As shown in Fig. [Bb] the most common CUP can-
161 cer types were Non-small Cell Lung Cancer (NSCLC), Pancreatic Adenocarcinoma (PAAD), Invasive
12 Breast Carcinoma (BRCA), Esophagogastric Adenocarcinoma (EGC), and Colorectal Adenocarci-
163 noma (COADREAD); of which NSCLC, BRCA, and COADREAD were also the most common
16a  CKP types. These rates are broadly consistent with prior findings that the most frequently revealed
1es  underlying primary cancers for CUPs by autopsy include lung, large bowel, and pancreas cancers
1es  |18]. Finally, comparable rates were observed upon applying OncoNPC to 581 CUP tumors at MSK
1z (Supplementary Fig. [S4)

1s  Explaining OncoNPC cancer type predictions

1o OncoNPC learns complex non-linear relationships between input somatic variants and clinical fea-
170 tures and provides interpretable primary cancer type predictions, where impact of each input feature
i on a prediction is quantified as a SHAP value [19]. We investigated the most impactful features in
172 predicting each cancer type across the CKP and CUP cohorts to evaluate face validity of OncoNPC
i3 (see Fig. for the top 3 most frequent cancer types in the cohort: NSCLC, BRCA, and PAAD, and
17a  Supplementary Fig. and for other cancer types). For NSCLC, the most important features
15 were EGFR mutation and SBS4, a tobacco smoking-associated mutation signature [20], for CKP
176 tumor samples and CUP with NSCLC predicted tumor samples, respectively; both consistent with
17z the known etiology of lung cancer. Somatic mutation in the EGFR gene is frequently observed in
1zs - NSCLC tumors and the gene itself is a well-known therapeutic target for patients with NSCLC |21,
1o [22]. Carcinogens in tobacco smoke have been known to cause lung cancer [23]. For BRCA, the
180 most important feature for both CKP and CUP was sex, as expected, followed by CNA events in
182 GATA3 and CCND1 genes, known drivers and prognostic indicators in breast cancer |24, |25]. For
1.2 PAAD, KRAS mutation was significantly more common than the population averages and by far
183 the most important somatic feature. Mutations in the KRAS gene occur frequently among patients
18« with colorectal cancer and are known to have prognostic significance |26}, [27].

185 OncoNPC provides intuitive illustrations of an explanation for individual-level predictions (Fig.
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186 . As an example, we show the explained classification for a tumor sample biopsied from the
17 liver of the 76 year-old male patient and subsequently diagnosed with CUP. From the chart review,
1. we found that the patient reported a 60-pack year smoking history, as well as having lived near a
180 tar and chemical factory as a child. Despite the CUP diagnosis, OncoNPC confidently classified
100 the primary site as NSCLC with posterior probability of 0.98. SBS4, a tobacco smoking-associated
101 mutation signature, was significantly enriched in the patient’s tumor sample, which has, by far,
102 the most impact on the prediction; followed by SBS24 mutation signature associated with known
103 exposures to aflatoxin |20]; and KRAS mutation. Note that inhalation of aflatoxin has been linked
104 to cause primary lung cancer [28H30|, and KRAS mutation is one of the most common drivers
15 of NSCLC |31} [32]. The feature interpretation analysis demonstrated that OncoNPC was able to
106 capture biologically consistent, cancer-type specific signals from interpretable somatic mutation and

107 clinical features at an individual tumor level as well as a cohort level.

1ws Germline PRS-based validation on CUP tumor samples

100 We hypothesized that, if OncoNPC was accurately identifying latent primary cancers, the classified
200 CUP cancer types would exhibit increased germline risk for the corresponding cancers. To that end,
200 we imputed common germline variation for each CUP patient and quantified their polygenic risk
202 scores (PRS) across 8 common cancers using external cancer GWAS data (see Methods). PRSs are
203 a continuous estimate of the underlying germline liability for a given cancer and orthogonal from the
20 somatic data used to train OncoNPC. As hypothesized, patients with CUP had a significantly higher
205 mean germline PRS for the OncoNPC predicted cancers (Fig. and see Supplementary Fig.
206 for cancer type-specific analysis) compared to other cancer types. The magnitude of the difference
207 (Le., APRS) increased for more confident OncoNPC predictions (APRS = 0.142, 95% C.I. 0.0494 —
20e  0.235, Wald test p-value: 2.66 x 1072 and Apgrs = 0.204, 95% C.I. 0.0655 — 0.344, Wald test p-value:
200 3.98 x 1073 at ppayx threshold = 0.0 and ppax threshold = 0.9, respectively). As a negative control,
210 the same analysis conducted with randomly shuffled OncoNPC labels showed no enrichment. As a
211 positive control, the same analysis conducted on CKPs, with available imputed PRS (n = 11,332),
212 also demonstrated a highly significant germline enrichment, as expected. Notably, the enrichment for
213 CUPs was in between that of CKPs and random tumors, suggesting that while OncoNPC classified
214 CUPs are genetically correlated with CKPs, they still exhibit additional heterogeneity.

2 OncoNPC-based risk stratification among patients with CUP

216 1o demonstrate clinical utility of OncoNPC, we examined if OncoNPC cancer type predictions can
217 stratify risk among patients with CUP. Using overall survival, we identified subtypes which had
=18 significant prognostic differences in median survival based on the OncoNPC classifications (Figure
210 Chi-squared test, p-value: 4.90 x 10714). Overall, the poorest prognosis was observed in patients
220 with CUP predicted to be Esophagogastric Adenocarcinoma (EGC) and Pancreatic Adenocarci-
2z noma (PAAD): median survival 8.44 months for the combined cohort (95% C.I. 5.39 - 10.5, n =
222 107). The most favorable prognosis was observed in patients with CUP predicted to be Head and
223 Neck Squamous Cell Carcinoma (HNSCC), Gastrointestinal Neuroendocrine Tumors (GINET), and
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22« Pancreatic Neuroendocrine Tumors (PANET): median survival 48.2 months for HNSCC (95% C.I.
225 19.6 - not estimable, n = 41) and not estimable median survival (i.e. the estimated survival curve
226 never reached the median) for the combined GINET and PANET cohort (n = 57), respectively.
227 Our identified favorable subtypes are consistent with established favorable CUP subtypes such as
228 poorly or well differentiated neuroendocrine carcinomas of unknown primary and squamous cell car-
220 cinoma of non-supraclavicular cervical lymph nodes [33]. OncoNPC subtypes can thus be leveraged

230 to meaningfully stratify patients by expected median survival.

2 CUP-CKP metastatic survival comparison

232 We investigated if cancer-specific prognosis is shared between CUP predicted cancer and their cor-
233 responding CKP metastatic cancers. Utilizing overall survival data linked to the National Death
23 Index and in-house follow-up data (see Methods), we found that median survival times of CUP-
235 metastatic CKP pairs were significantly correlated across the cancer types (Spearman’s p: 0.964,
26 p-value: 4.54 x 1074; Fig. . This significant relationship provides evidence that genetics-based
237 OncoNPC predictions capture prognostic signals specific to each predicted cancer type. While corre-
238 lated, median survival times were significantly lower for patients with CUP compared to those with
230 metastatic CKP: CUP median survival 14.0 months (95% C.I. 11.9 - 15.8, n = 685) vs. metastatic
20 CKP median survival 23.1 months (95% C.I. 21.8 - 24.2, n = 7,797). This is expected as CUPs
2a1 are an advanced metastatic cancer with limited treatment options [33]. The absolute difference in
2a2  median survival was significant across all predicted CUP - metastatic CKP pairs with the exception
2a3  of Pancreatic Adenocarcinoma (CUP PAAD median survival 8.61 months 95% C.I. 5.09 - 10.8 vs.
2aa  metastatic CKP PAAD median survival 6.73 months 95% C.I. 5.98 - 8.02), known to be a particularly
245 deadly cancer type.

2s  Shared prognostic somatic variants in CUP-metastatic CKP pairs

27 We aimed to identify prognostic somatic variants shared between OncoNPC CUP subtypes and their
2as  corresponding metastatic CKP cancers. Three out of 14 tested CUP-metastatic CKP pairs (NSCLC,
20 PAAD, and COADREAD) exhibited shared prognostic somatic variants significantly associated with
2so  overall survival with nominal p-value cut-off at 0.05 (Fig. and . In patients with known
251 or classified NSCLC, three somatic mutations were associated with poor survival in both groups:
22 SMARCA4 (CUP: H.R. 1.86, 95% C.I. 1.19 - 2.89, p-value 6.23 x 1073, CKP mets: H.R. 1.73,
23 95% C.I. 1.44 - 2.09, p-value 9.30 x 107%), STK11 (CUP: H.R. 1.76, 95% C.I. 1.14 - 2.71, p-value
2sa 1.05x 1072, CKP mets: H.R. 1.43, 95% C.I. 1.22 - 1.68, p-value 1.00 x 10™°), and KEAP1 (CUP:
s H.R. 1.83, 95% C.I. 1.18 - 2.85, p-value 6.82 x 1073, CKP mets: H.R. 1.40, 95% C.I. 1.18 - 1.66,
26 p-value 1.27 x 10™*). These associations of somatic mutations in SMARCA4, STK11, and KEAP1
257 genes with overall survival are well established for NSCLC [34-36|. Interestingly, a CNA event in
2ss NKX2-1 was associated with improved survival in the patients from the NSCLC pair (CUP: H.R.
20 0.542, 95% C.I. 0.326 - 0.901, p-value 1.83 x 1072, CKP mets: H.R. 0.770, 95% C.I. 0.662 - 0.894,
260 p-value 6.28 x 107™*), consistent with prior meta-analyses [37]. In patients with known or classified

260 COADREAD tumors, SBS10b mutation signature, linked to polymerase epsilon exonuclease domain
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262 mutations [20], was associated with longer overall survival (CUP: H.R. 0.371, 95% C.I. 0.148 - 0.928,
263 p-value 3.41 x 1072, CKP mets: H.R. 0.495, 95% C.I. 0.255 - 0.958, p-value 3.68 x 1072). Finally, in
26 patients with known or classified PAAD tumors, the SBS29 mutation signature (commonly found in
265 tumor samples from individuals with a tobacco chewing habit [20]) was associated with poor survival
266 in CUPs but nominally protective in metastatic CKPs (CUP: H.R. 2.66, 95% C.I. 1.02 - 6.93, p-value
267 4.46 x 1072, CKP mets: H.R. 0.657, 95% C.I. 0.438 - 0.986, p-value 4.28 x 1072). Although these
26s  somatic associations remain to be validated in independent cohorts, by categorizing patients with
260 CUP based on their OncoNPC predictions, we were able to identify prognostic somatic variants,

270 consistent with recent research findings.

. ldentifying actionable somatic variants in CUP tumors based on OncoNPC

222 predictions

273 We investigated if OncoNPC classifications could identify genetically driven, site-specific treatment
a7a  Options that are typically available for cancers with known primaries. We utilized OncoKB [38] as
275 a knowledge base and considered three different categories of actionable somatic variants: onco-
276 genic mutation, amplification, and fusion (see Methods). OncoNPC cancer type predictions enabled
277 identification of actionable somatic variants across CUP tumor samples (total 22.8% of the eligible
278 CUP tumor samples; see Fig. and Fig. [bb). The majority of actionable somatic variants for
2o patients with CUP were oncogenic mutations (183 counts; 87.1%), followed by amplifications (22
280 counts; 9.52%) and fusions (7 counts; 3.33%) as shown in Fig. The four most frequent oncogenic
21 mutations were in PIK3CA, KRAS, ALK, and ERBB2 genes, occurring in CUP tumor samples
2s2  classified as BRCA (PIK3CA and ERBB2 genes) and NSCLC (KRAS, ALK, and ERBB2 genes).
283 Overall, among the eligible CUPs whose prediction confidences are greater than 0.5 (N = 794; see
28  Supplementary Fig. for more details on the exclusion criteria), OncoNPC predictions identified
2ss  actionable somatic variants for 11.5% of the CUP tumor samples for Level 1 therapeutic level (FDA-
s approved drugs), 3.63% for Level 2 (Standard care), 6.64% for Level 3 (Clinical evidence), and 1.00%
2s7  for Level 4 (Biological evidence), summing up to the total 22.8% of the eligible CUP tumor samples

288 (Flg ' .

20 Survival benefit of treatment concordance with OncoNPC predictions

200 We performed retrospective survival analysis to investigate whether patients with CUP achieved
201 clinical benefit when treated in concordance with their OncoNPC classifications. We restricted to
202 a cohort of 158 patients with CUP, received first treatment at DFCI with a palliative intent (see
203 the exclusion criteria in Supplementary Fig. . Each case was then manually chart reviewed
20a by a certified oncologist to determine whether the treatment administered was concordant with the
205 OncoNPC prediction per National Comprehensive Cancer Network (NCCN) guidelines or standard of
206 care (see Methods, Fig. and Fig. . Strikingly, patients with CUP who received first palliative
207 treatments concordant with their OncoNPC predicted cancer types exhibited significantly better
20e  survival than those who received discordant treatments as shown in Fig. and (multivariable Cox
200 regression: H.R. 0.348, 95% C.I. 0.210 - 0.570, p-value 2.32 x 1072, Proportional Hazard assumption
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s00  test [39]: Chi-squared test with 17 degrees of freedom p-value 0.156, IPTW Kaplan-Meier estimator:
son  weighted log-rank test p-value 4.25x10710). Finally, after stratifying by OncoNPC predicted cancers
302 and repeating the IPTW Kaplan-Meier analysis, we found that the treatment concordant group had
s03 improved survival across cancer cohorts (breast, GI, and others), with the exception of the lung
30 cancer cohort (Supplementary Fig. .

308 We note that as this was not a randomized analysis, a potential concern may be systematic
306 differences between the concordant and discordant groups leading to a significant prognostic but
sz not predictive difference [40]. For example, treatment discordant patients may have systematically
s0s more advanced/de-differentiated tumors and thus exhibit poorer survival regardless of their treat-
300 ment regimen. (see Table 2] for comparison of the two groups across the measured covariates). To
310 minimize biases from potential confounders and move towards a predictive estimate of treatment
s concordance on patient survival, we adopted two estimation strategies: multivariable Cox regression
a1z [41] (i.e., covariate adjustment) and Inverse Probability of Treatment Weighted (IPTW) Kaplan-
a1z Meier estimator [42] (see Methods), which have recently been employed to emulate estimates from
s randomized trials [43] [44]. In both multivariable Cox regression and IPTW Kaplan-Meier estimator
a5 strategies, patients treated like their OncoNPC predicted cancer types (i.e. those in the concor-
a6 dant treatment group) consistently showed significantly better survival compared to those in the
a1z discordant treatment group. The multivariable Cox regression (Fig. additionally identified sig-
a1 nificant hazardous effects of age, gastrointestinal (GI) cancer types predicted by OncoNPC, and
s1e bone metastasis (H.R. 1.27, 95% C.I. 1.02 — 1.58, p-value 3.10 x 1072, H.R. 4.20, 95% C.I. 2.06 —
20 8.55, p-value 7.78 x 107°, and H.R. 3.73, 95% C.I. 1.84 — 7.59, p-value 2.71 x 1074, respectively), and
321 significantly protective effects of tumor mutational burden (TMB), as well as adenocarcinoma and
;22 neuroendocrine tumor group determined by the histopathology results (H.R. 0.537, 95% C.I. 0.388
23 - 0.742, p-value 1.64 x 1074, H.R. 0.439, 95% C.I. 0.272 - 0.710, p-value 7.85 x 10~* and H.R. 0.0854,
s2a 95% C.I. 0.0298 - 0.245, p-value 4.79 x 1079, respectively). In the IPTW Kaplan-Meier analysis, we
s2s  found that treatment concordance with the OncoNPC prediction was associated with Gastrointesti-
s2s  nal (GI) cancer types (coefficient 1.916, 95% C.I. 0.627 - 3.205, p-value 3.57 x 1073), whereas male
327 sex and OncoNPC prediction uncertainty (i.e., entropy of predicted probability distribution over the
328 considered cancer types) were inversely associated with receiving concordant treatment (coefficient
320 -1.259, 95% C.I. -2.283 - -0.234, p-value 1.61 x 1072, and coefficient -1.693, 95% C.I. -2.458 - -0.927,
s30  p-value 1.46x107°) (see Supplementary Fig. . These associations with treatment concordance are
331 consistent with likely GI CUPs being more clinically identifiable and low OncoNPC confidence CUPs
332 being less clinically identifiable. We note, however, that the IPTW approach specifically adjusts for

;33 these systematic differences when estimating the effect of treatment concordance on survival.

s Discussion

s3s Our work provides unique insights into the genetic and prognostic landscapes of CUP tumor samples
336 by utilizing routinely collected EHR and multicenter NGS tumor panel sequencing data. We have
337 developed OncoNPC, a machine learning model for molecular classification of tumor samples based
sz on the NGS panel data. When evaluated with the held-out multicenter test data, OncoNPC provided
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330 robust and interpretable predictions. Applying OncoNPC to CUP tumor samples, we demonstrated
30 that the OncoNPC CUP subtypes showed significantly higher germline PRS risk for their predicted
sa1 cancer. To our knowledge, this is the first evidence of germline genetic correlation between CUPs
sz and corresponding known primaries, and lends orthogonal support to the molecular classification of
sas CUPs into subtypes. We demonstrated clinical utility of the OncoNPC CUP subtypes by showing
saa  significant survival differences across subtypes, and, within subtypes, potentially actionable somatic
sas  alterations in 11.5% (Level 1 therapeutic level) and 22.8% (all levels) of tumors. Finally, in a
sae  retrospective analysis, we showed that patients with CUP, that had been treated in a consistent
sz manner with their OncoNPC classification, achieved significantly longer survival than those treated
;s In an inconsistent manner (multivariable Cox regression: H.R. 0.348, 95% C.I. 0.210 - 0.570, p-value
a0 2.32x107°). Our findings suggest that CUP tumors share a genetic and prognostic architecture with
50 known cancer types, and may benefit from molecular classification with OncoNPC for prognosis as
51 well as treatment decision-making.

352 The question of whether CUP tumors consist of heterogeneous latent primaries or are a unique
ss3 cancer type in and of themselves has been actively investigated |18 45, [46]. Prior studies have
s« demonstrated accurate classification of known tumors using Whole-Genome Sequencing [12], NGS
sss panels [10], RNA-seq |11], methylation [8], and other platforms [47, 48]|. However, these algorithms
a6 typically applied classification to metastatic tumors of known types and did not investigate the
ss7  clinical implications for CUPs at large scale. Moran et al., [8] observed a nominally significant
sss  difference in survival between patients with CUP who received site-specific treatments concordant
sso  with their molecular primary site predictions and those who received empiric treatments. While
30 promising, it remains unknown whether this difference is due to accurate classification for the site-
se1  specific group or systematically worse outcomes for the empirically treated group, which is typically
sz a more challenging patient population [49]. To explicitly distinguish these scenarios, our analysis
ses  instead restricted to a CUP cohort wherein all patients received site-specific treatments as the
sea  first palliative-intent therapy and estimated a significant survival benefit of concordant treatment
ses  vs. discordant treatment (excluding the empirically treated group). Our findings were obtained
ses  after adjusting for left-truncation for sequencing time and measured potential confounders through
se7 covariate adjustment as well as propensity score weighting, which have been recently employed to
ses  mimic clinical trials in Real World data [43] [44]. Although we cannot rule out potential biases from
se0 unmeasured confounders, our cohort includes more heterogeneous populations compared to recruited
s cohorts in randomized controlled trials (RCT), and the proposed intervention (concordant treatment
srn vs. discordant treatment) is challenging to ethically evaluate through RCTs, necessitating the use
s72  of retrospective causal inference.

373 Our study has several limitations. Firstly, although we utilized multicenter NGS tumor panel
s7za sequencing data to train OncoNPC model for cancer type prediction, we utilized retrospective EHR
szs data from a single institution for the downstream clinical analyses. As a result, these analyses may
376 be susceptible to systematic ascertainment patterns or biases specific to a tertiary academic cancer
s7z center. Replication of our clinical findings in other institutions is thus necessary to generalize our
szs results. Secondly, we considered only the 22 most common cancer types in the cohort as classification
s labels (68.1 % of all tumor samples at DFCI, and 69.9 % across all three centers). As a result, if a
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ss0  CUP tumor sample harbors a distinct yet not modeled primary cancer type, then the tumor sample
ss1 will likely have high uncertainty in the prediction (see Supplementary Fig. . Nevertheless, prior
.2 work has shown that the majority of resolvable primary sites of CUP tumor samples were from
ss3  common cancers (e.g., lung, pancreas, and GI) [18], consistent with our findings. As more diverse
ss«  tumor samples are collected across multiple institutions, our model can be augmented to robustly
sss  predict rare cancer types as well. Thirdly, our classifier and analyses relied on data from panel
s sequencing assays targeting 300-500 genes, which are inherently only sensitive to coding mutations
sz and deep copy number alterations in the targeted genes. Other features captured by whole-genome
s sequencing or molecular assays may thus achieve better classification performance. Our focus in this
sse  work was on assays that are in routine clinical use as those are linked to Real World clinical data
se0 and offer the most immediate translational potential.

301 Our findings strongly suggest that routinely collected targeted tumor panel sequencing data have
se2  clinical utility in assisting diagnostic work-up and prognosis, and may additionally inform treatment
303 decisions. To date, clinical sequencing is primarily used for identification of known biomarkers and
s0a corresponding clinical trial enrollment [50H53], and our findings additionally support use of panel
ses  sequencing for diagnosis. Conventional IHC-based pathology reviews are often unable to identify a
s0s primary diagnosis for advanced metastatic tumor samples |3} 6], particularly in community clinics
sez  where resources are limited. And in many cases, patients do not receive the complete diagnostic
s0s  work-up that is recommended for CUPs [54]. As a result, oncologists resort to empiric treatment
300 Tegimens to treat many patients with CUP [18] even when targeted therapies would otherwise be
a0 the standard of care for a corresponding known primary. In future work, we envision a multimodal
201 framework that incorporates molecular sequencing together with patient pathology images [48],
w02 physiological data, and clinical notes to directly predict optimal treatment regiments rather than
a3 just cancer types. Our work thus paves a way for incorporating routine panel sequencing data into

s0a clinical decision support tools for clinically challenging cases.

s Methods

ws Patients and tumor samples

207 We used the next generation sequencing (NGS) targeted panel sequencing data collected at three
s0s institutions in routine clinical care as part of the AACR project GENIE [1|: Dana-Farber Can-
a0 cer Institute (DFCI, n=18,816), Memorial Sloan Kettering Cancer (MSK, n=16,294) center, and
a0 Vanderbilt-Ingram Cancer Center (VICC, n=1,335). The collected tumor samples represented 22
aun different cancer types and included 971 total samples from cancer of unknown primary (CUP). Na-
a1z tional Death Index (NDI) and clinical death and last clinical appointment records were available
a1z for 20,281 DFCI patients (n = 16,376 for CKP and n = 838 for CUP). Demographic details of the
a4 patients and tumor samples can be found in Table

a15 The cancer centers, DFCI, MSK, and VICC, were chosen because of similar genomic data char-
a6 acterization of their sequence panels in terms of coverage and alteration types |1]. DFCI samples

a7 were sequenced using a custom, hybridization-based panel called OncoPanel which targeted exons of
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s 275-447 genes across three panel versions |1} [52]. MSK samples were sequenced using a custom panel
a0 called MSK-IMPACT which targeted 341-468 genes across 3 panel versions |1, [51]. VICC samples
420  were sequenced using custom panels called VICC-01-T5A and VICC-01-T7, which targeted 322 and
a2 429 genes, respectively |1]. All panels were capable of detecting single nucleotide variants (SN'Vs),
422 small indels, copy number alterations, and structural variants [1].

423 The DFCI CUP cohort consisted of 971 sequenced tumor samples (from 962 patients) with
424 a cancer diagnosis of CUP and the following detailed cancer type: Adenocarcinoma, Not Other-
a2 wise Specified (NOS) (n = 345), Cancer of Unknown Primary, NOS (n = 194), Squamous Cell
a2s Carcinoma, NOS (n = 114), Poorly Differentiated Carcinoma, NOS (n = 118), Neuroendocrine
sz Tumor/Carcinoma, NOS (n = 170), Small Cell Carcinoma of Unknown Primary (n = 16), Undiffer-
a2s entiated Malignant Neoplasm (n = 12), and Mixed Cancer Types (n = 2). For downstream clinical
420 analyses, we applied additional exclusion criteria, described in Supplementary Fig.

0 Developing OncoNPC cancer type classifier

1 We used a gradient tree boosting framework (XGBoost [55]) to develop OncoNPC for predicting
432 cancer types from molecular features. In this framework, decision trees for the input features are
433 sequentially added to an existing ensemble of the trees, such that the algorithm fits the new tree to
a3a  the residuals from the ensembles with regularization on the tree structure. As the trees (a.k.a. weak
435 learners) are added, the model learns optimal weights to combine their predictions and produces the
a3s  improved outcome from the combined ensemble [55]. Owing to its high performance and scalability,
a3z the XGBoost method has been used across a wide range of applications in the healthcare space
as  [56H58].

430 OncoNPC was trained and evaluated using tumors from 22 known cancer types split into 29,176
a0 training samples and 7,289 test samples. Hyper-parameter selection was conducted using random
aax search [59] with 10-fold cross validation within the training set while utilizing weighted F1 score as an
a2 evaluation metric. The optimal hyper-parameters were then selected and the model was evaluated
23 on the held-out test set (n = 7,289). To predict primary sites of CUP tumors, the model was
aaa then re-trained on all CKP tumor samples and applied to the CUP tumors to estimate posterior
aas  probabilities across the 22 different cancer labels. For each tumor sample, a cancer type with the

aas  highest probability was chosen as the predicted primary site.

w7 Feature selection and OncoNPC model interpretation

aas The OncoNPC model was trained on somatic variant features from tumor sequencing data, as
ae  well as patient age at sequencing and sex. Other demographic/clinical features were intentionally
a0 not used so as not to bias the model toward cancer types with more available information. Somatic
«s1 variant features included: mutations (i.e., single nucleotide variants (SN'V) and indels), Copy Number
a2 Alteration (CNA) events, and mutational signatures [60]. For each gene, the total count of a somatic
«s3 mutation (i.e., single nucleotide variants and indels) was encoded as a positive integer feature. The
asa presence of a CNA event for each gene was encoded as a categorical variable with 5 levels: -2 (deep

a5 loss), -1 (single-copy loss), 0 (no event), 1 (low-level gain), and 2 (high-level amplification); note
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«se  that CNA events data for tumor samples from MSK and VICC were encoded as -2 (deep loss), 0
«s7  (no event), and 2 (high-level amplification). Each of 60 different mutation signatures was inferred as
a8 the dot product of the weights derived from [60] and 96 single base substitutions in a trinucleotide
a0 context. The single base substitutions were computed using the deconstructSigs R library [61].
a0 See Supplementary Table [ST] for the full set of features.

61 To identify important features in the OncoNPC’s predictions, we used the recently proposed
w2 feature interpretation tool for tree-based models, called TreeExplainer [19] (Python package shap).
a3 TreeExplainer uses an efficient polynomial time algorithm (O(TLD?), T : number of trees, L :
s6a number of leaves, D : maximum depth) to approximate Shapley values which capture the impact
w5 of each feature on each individual model prediction. The Shapley value assigned to each feature
w6 is modeled as the average change in the model’s conditional expectation function over all possible
a7 feature orderings when introducing the corresponding feature into the model; it is formulated as
s Eg[f(X)|do(Xs = xg)], where S is the set of features, X is a random variable for the feature to
w0 perturb, and do notation [62] reflects the causal feature perturbation formulation. See [19] for more
470 details on the algorithm and its properties.

471 Applying TreeExplainer on the model outcome at each fold across the 10-fold cross-fitting pro-
a2 cedure, we obtained out-of-sample local explanations for all individual model predictions of primary
473 cancer types. By combining local explanations of correct predictions for each cancer type, we charac-
4o terized the cancer type in terms of the most important or predictive features based on their Shapley
475 values, which provided insights into the somatic variants and clinical features most relevant to the

476 classification of each cancer type.

«» Germline PRS-based validation on CUP tumor samples

azs To validate the OncoNPC predictions for CUP tumor samples (which do not otherwise have a ground
a7e  truth), we utilized germline Polygenic Risk Scores (PRS) which were never available to OncoNPC
a0 for training. Germline imputation from the off-target tumor sequencing data was conducted as
s previously described in [63]. Using weights from external GWAS data, we imputed PRS for Non-
sz Small Cell Lung Cancer (NSCLC), Invasive Breast Carcinoma (BRCA), Colorectal Adenocarcinoma
s (COADREAD), Diffuse Glioma (DIFG), Melanoma (MEL), Ovarian Epithelial Tumor (OVT), Renal
ssa  Cell Carcinoma (RCC), and Prostate Adenocarcinoma (PRAD). Pearson correlation between the
a5 PRS from off-target tumor data versus matched germline SNP array was previously shown to be
s higher than 0.9 without observable outliers [63].

487 We hypothesized that germline PRS specific to the underlying primary cancer type of a CUP
a8 tumor sample would be enriched in a manner similar to how the PRS specific to CKP tumor sample
aso  With the same primary cancer type is enriched. To that end, given the set of 8 different cancer types
a0 C we have the imputed PRS available for, we first restricted the cohort of CUP tumor samples to
a1 those with OncoNPC predictions in C (Ncup,c = 505). Then, we obtained standardized germline
402 PRS values for the chosen CUP tumor samples over all the cancer types in C. Finally, we defined
w3  Apprs as the estimated mean difference between the PRS specific to the predicted primary cancer

s0a  type C (i.e. concordant PRS; PRS¢) and average of PRSs corresponding to the rest of the cancer
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s0s  types (i.e. discordant PRS; PRSp, where D € C \ C) as follows

. R R 1 Ncup,c
Aprs =E[PRSc -Ep[PRSp|C]] = —— > (PRS;,-——— > PRSy) (1)
Ncure 45 IC N cil g, c2c,
we . As a true positive reference, we repeated the above procedure for the CKP tumor samples.

w07 Finally, as a true negative null, we estimated APRS_random, where the concordant cancer type was
w08 randomly assigned. We then repeated the random assignment 100 times to obtain estimated mean

a0 and standard errors.

s0o  Survival function estimation

son  National Death Index (NDI) and in-house clinical records were available for 20,281 DFCI patients
sz (n = 16,376 for CKP and n = 838 for CUP). A patient’s lost to follow-up date was determined
so3 at either the last NDI update date (12/31/2020) or their corresponding last contact date from the
sos in-house records, whichever date is later. A patient’s death date was determined from the in-house

sos records, or the NDI data if the patient was lost to follow-up.

sos  CUP-metastatic CKP survival comparison

soz We estimated median survival times of patients across CUP - metastatic CKP pairs using the
sos Kaplan-Meier estimator [64] to account for patients lost to follow-up. For the CUP cohort, we
soo  excluded patients with CUP that were lost to follow up at the time of tumor sequencing and those
s10 whose primary cancer types were predicted with low probability (see Supplementary Fig. . The
s11 resulting CUP cohort (n = 685), was then restricted to OncoNPCcancer types with more than
s12 35 CUP patients. For the CKP metastatic cohort, we excluded patients lost to follow up at the
s13  tumor sequencing time in the same manner and chose patients with one of the known cancers,
s1a  where either the biopsy was metastatic or the patient had an ICD-10 code indicative of secondary
s1s  malignant neoplasms within a year prior to sequencing dates. A total of 521 and 5,937 patients were
s16  thus retained from the CUP cohort and metastatic CKP cohort, respectively: Non-Small Cell Lung
siz - Cancer (NSCLC; ncyp = 200, npet-cxp = 1,559), Pancreatic Adenocarcinoma (PAAD; ncup = 80,
518 Npet-CKP — 357), Invasive Breast Carcinoma (BRCA; ncup = 67, nmet-ckp = 1,656), Colorectal
s1o Adenocarcinoma (COADREAD; ncup = 54, npet.ckp = 1,198), Head and Neck Squamous Cell
s20 Carcinoma (HNSCC; ncup = 44, nmet-ckp = 216), Esophagogastric Adenocarcinoma (EGC; ncyp
sa1 = 40, nyet-cxp = 336), and Ovarian Epithelial Tumor (OVT; ncup = 36, nmet.cxkp = 615). Note
s22 that patients with CUP, whose predicted cancer type is Gastrointestinal Neuroendocrine Tumors
523 (GINET; ncup = 39, nckp = 118), were excluded due to the fact that the estimated survival function
s2a for the CUP cohort never reached 50 percent.

s2s OncoNPC-based risk stratification among patients with CUP

s26 10 identify OncoNPC CUP subtypes with significant prognostic differences, we estimated survival
sz functions for 7 common OncoNPC subtypes with more than 35 CUP patients: NSCLC, PAAD,
s2s BRCA, HNSCC, EGC, GINET, and Pancreatic Neuroendocrine Tumor (PANET). Patients that
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s20  were lost to follow up at time of sequencing were again excluded, as were CUPs with an OncoNPC
s30  prediction probability lower than 0.5 (i.e., same criteria as the CUP - metastatic CKP survival com-
s31 parison analysis). We merged subtypes with similar morphology and estimated survival functions:
ss2 PAAD and EGC; GINET and PANET. To statistically test survival differences between these 5

s33 groups, we utilized Chi-squared test with 4 degrees of freedom.

s ldentifying prognostic somatic variants shared in CUP-metastatic CKP

ss  pairs

s3s Lo identify prognostic somatic variants shared between CUP /metastatic-CKP pairs, we again re-
s37  stricted to the 7 common OncoNPC subtypes with at least 35 CUP patients: NSCLC, PAAD,
s3s. BRCA, COADREAD, HNSCC, EGC, GINET, and OVT. For somatic variants, we utilized the same
s3e  processed features utilized in the OncoNPC model training (see Methods: Feature selection and
sa0 OncoNPC model interpretation). To ensure sufficient statistical power, we restricted to candidate
sar  somatic variants (i.e., mutated genes and CNA genes) present in at least 15 samples in a given On-
sa2  cONPC subtype and corresponding metastatic CKP cohort, as well as all 96 mutational signatures.
543 After selecting the cancer types to consider in the CUP-metastatic CKP pairs and candidate
saa  SOmatic variants for each pair, we iteratively tested each feature for association with survival in
sas each OncoNPC subtype and in each corresponding metastatic CKP cohort. A multivariable Cox
sae  Proportional Hazard regression [41] model was used with time-to-death from sequencing as the
saz outcome. To adjust for baseline effects, we included age at sequencing, sex, tumor sequencing panel
sas  version, mutational burden (i.e., sum of total somatic mutations in each tumor sample), and CNA
sae  burden (i.e., sum of total CNA events in each tumor sample) as covariates. Finally, to identify
sso  shared prognostic somatic variants for each CUP-metastatic CKP pair, we retained somatic variants
ss2 which passed Schoenfield residuals-based proportional hazard tests (1ifelines Python library [65]:
ss2 p-value threshold: 0.05) and were nominally significant (p < 0.05) for both CUP and CKP cancer

ss3  types in each pair.

ss«  Actionable somatic variants in CUP tumors

sss  We estimated the frequency of known, actionable somatic alterations in each OncoNPC CUP subtype
sse  using the OncoKB knowledge base [38]. OncoNPC CUP predictions with a probability greater than
ss7 0.5 were retained (see Supplementary Fig. . We considered 3 different types for somatic variants:
sss  oncogenic mutations such as indels, missense mutations, and splice site mutations, amplifications
sso  such as high-level amplifications, and finally fusions such as gene-gene and gene-intergenic fusions as
seo  specified in OncoKB. For each actionable somatic variant, we assigned one of the four therapeutic
ser  levels: level 1 for FDA-approved drugs, level 2 for standard care drugs, level 3 for drugs supported

se2= by clinical evidence, and level 4 for drugs supported by biological evidence.
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sss Hstimating impacts of treatment concordance on survival of patients with
ssa CUP

ses  We estimated the impact of the concordance between treatment and OncoNPC CUP predictions on
ses a mortality outcome in a retrospective survival analysis. We utilized the in-house patient follow-up
sez  and treatment data to identify patients with CUP who received first treatment at DFCI with a
ses palliative intent (Supplementary Fig. for the exclusion criteria). Each patient was reviewed by
seo  a trained oncologist to determine whether the OncoNPC predicted cancer type was concordant or
s70  discordant with the first line of treatment received, per National Comprehensive Cancer Network
s (NCCN) guidelines or standard of care, in most reasonable situations, and within the clinical context
s72 delineated in the medical record. See Supplementary Section: Determining treatment-OncoNPC
s7s concordance for more details, and Supplementary Table[S3for clinical information, including primary
s7a cancer diagnosis, biopsy site, and first chemotherapy plan at DFCI, of patients with CUP in the
575 analysis.

576 As we were interested in the counterfactual causal impact of the OncoNPC-treatment concor-
s77  dance, we utilized the principles of causal inference to account for potential patient heterogeneity
sz and confounding. Specifically, we estimated the effect of treatment concordance specified by the
s7o  indicator variable, A, which was 1 when the first palliative treatment for a patient with CUP was
sso concordant with the corresponding OncoNPC prediction and 0 otherwise. Our analyses make the

ss1 following identifiability assumptions:

582 e Conditional ignorability : A;uT;""|X;, where A; € 0,1. It means that given patient i’s a set of
583 covariates X;, the patient’s treatment concordance A; is as good as random.

584 e Consistency : T;" = T;, which means that a counterfactual outcome 7;" for patient i is the
585 observed outcome for the patient with a treatment concordance a;.

s86 e Overlap : P(0<p(X;)<1)=1 where p(X;) = P(A; = 1|X;), which means all patients have a

587 strictly positive probability for receiving concordant treatment (A; = 1).

sss  In addition to the above identifiability assumptions, we made independent censoring (i.e. C;uT;|X;)
sso  and independent entry assumption given the covariates (i.e. E;uT;|X;).

590 We adopted two different estimation strategies to obtain the impact of treatment concordance:
se1  semi-parametric Cox Proportional Hazard estimator adjusted with a set of measured confounders
so2 X [41] and non-parametric Kaplan Meier estimator adjusted with Inverse Probability Treatment
sos  Weighting (IPTW). We formulated an IPTW, w; for each sample as w; = p(i(,ﬁi:f))g) [42] and
soa  estimated P(A) non-parametrically and P(A|X) using a logistic regression model (R glm package
sos  |66]) in a 10-fold cross-fitting. A set of measured confounders (i.e., X;) included patients’ sex,
sos  age, OncoNPC prediction uncertainty (in entropy of posterior distribution over 22 cancer types),
sor  sequencing panel (i.e., OncoPanel) version, mutational burden, CNA burden, subsets of OncoNPC
sos predicted cancer types and metastasis sites, and finally pathological histology (e.g., adenocarcinoma
see tumor or neuroendocrine tumor). Since patients with CUP who met the treatment criteria (i.e.,

so follow-up start time) but did not receive clinical panel sequencing (i.e., entry time) could not be
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e included in the analysis, we adjusted for the left truncation by defining the risk set R(¢) at time ¢,

eo2 which corresponds to the set of patients followed up in the analysis up to time ¢ as follows

R(t) = {ilE; <t < T3}

e0s , where F; is the entry time of patient . With the independent entry assumption as stated before,

e0a we obtained survival function from Kaplan-Meier estimator as follows

S0)= T1 (1- Zemnt )

i< 2jijeR(T;) Wi

eos . In this formulation, each individual is weighted by the corresponding IPTW, w;, and we obtained
eos two different survival functions for the treatment concordant and discordant groups. The adjusted
ez Kaplan-Meier estimator provides a consistent estimate of impact of the treatment concordance under
sos the assumptions stated above [42]. Once we obtained the survival estimates for the two groups, we
soo used a weighted log-rank test [67] to test for a significant difference in survival.

610 In the Cox proportional hazard regression framework, we estimated the hazard function of patient
e1x i as follows: A\(t|A4;, X;)) = Ao(t)exp(ad; + BT X;), where o, A; € R and 8, X; € R™ (m is the number
ez of measured confounders). Under the above identifiability assumptions and validity of the estimation
ez model, e® is the hazard ratio capturing the causal effect of the treatment concordance A. Finally,
e« under the assumption of no ties between event times across the patients, the parameters o and

e1s are estimated by maximizing the following partial likelihood

exp(ad; + BX;)
L(a,B) =
( ) i:g1 Zj:jeR(Ti) eXP(OéAj +5Xj)

616 I4].|-
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= Supplementary Note

ez Determining treatment-OncoNPC concordance

e2s Concordance of OncoNPC predicted cancer type with a first palliative treatment assignments at
e20 DFCI was classified in one of five categories: 1) “TRUE™ the OncoNPC cancer type matched
e30 the clinically proven/suspected tumor type and the predicted treatment matched the treatment
e31  received, which was dictated by NCCN guidelines and /or standard of care, within the clinical context
es2 provided by the medical record; 2) “FALSE”™: the OncoNPC cancer type did not match the clinically
e33  proven/suspected cancer type and the predicted treatment was not appropriate per NCCN guidelines
e3a or standard of care, in most reasonable situations, and within the context of the medical record; 3)
o35 “SOFT FALSE”™ the OncoNPC cancer type did not match the clinically proven/suspected cancer
e36  type, but the treatment received was not chosen based on NCCN guidelines or standard of care, owing
e37  to the unique clinical context provided by the medical record, 4) “EMPIRIC”: treatment received was
e3s empiric treatment for cancer of unknown primary (e.g., carboplatin/taxol or gemcitabine/cisplatin)
e3s  with the corresponding clinical rationale; in cases where patients received these regimens but not
seo  with the clinical intent of empiric CUP treatment (i.e., as regimens intended for treating other tumor
eax types), the predicted treatment was not labeled as “EMPIRIC” and the case was instead evaluated
es2 in context of the proven/suspected tumor type. In our analysis, we considered the TRUE group
ea3  as the concordant group, and FALSE and SOFT FALSE groups as the discordant group. We did
easa  not include the EMPIRIC group, which is typically a more challenging patient population with

ees  Systematically worse outcomes [49].

ss Code Availability

eez  Please see https://github.com /itmoon’7/onconpc| for the pre-processing script, the trained OncoNPC

sas  model, and other reference materials.
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« Figure and Table Legends

eso  Figure 1. Overview of model development and analysis workflow. (a) OncoNPC, a
es1 XGBoost-based classifier, was trained and evaluated using 36,729 tumor samples across 22 cancer
es2  types from Cancers of Known Primary (CKP) collected from three different cancer centers. (b)
ess OncoNPC performance was evaluated on the held-out tumor samples (n = 7,289). (c¢) OncoNPC
esa  was applied to 971 CUPs at a single institution to predict primary cancer types. OncoNPC pre-
ess  dicted CUP subtypes were then investigated for association with: (d) elevated germline risk, (e)
ess actionable molecular alterations, (f) overall survival, and (g) prognostic somatic features. (h) A

es7  subset of CUP patients with detailed treatment data were evaluated for treatment-specific outcomes.

oo Figure 2. Cancer type prediction performance of OncoNPC. (a),(b) The normalized con-
eso fusion matrix of OncoNPC classification performance on the held-out test set (n = 7,289) for (a)
es1 22 detailed cancer types and (b) 10 broad cancer groups based on site and treatment (see Table .
ez L'he sensitivity for each cancer type or cancer group is shown below each confusion matrix and the
ess sample size is shown to the left of each confusion matrix. (c), (d) The performance (by F1 score)
ssa  of OncoNPC on the test set across cancer types (c¢) and groups (d) at 4 different prediction confi-
ess dences (i.e., minimum p,,,, thresholds). Each dot size is scaled by the proportion of tumor samples
ess retained. (e) Precision-recall curves showing the performance of the OncoNPC across different co-
esz horts in the test set by: cancer center, biopsy site type, sequence panel version, and ethnicity (color

ess coded), with the yellow dotted curve corresponding to the baseline performance on the full test set.

oo Figure 3. Applying OncoNPC to CUP tumor samples and interpreting cancer type pre-
en dictions. (a) Empirical distributions of prediction probabilities for correctly predicted, held-out
o2 CKP tumor samples (n = 3,429) and CUP tumor samples (n = 934) across CKP cancer types (blue)
er3 and their corresponding OncoNPC predicted cancer types for CUP tumors (green). Only OncoNPC
e7a classifications with at least 20 CUP tumor samples are shown. (b) Proportion of each CKP cancer
es  type and the corresponding OncoNPC predicted CUP cancer type. All training CKP tumor samples
ore (n = 36,445) and all held-out CUP tumor samples (n = 971) are shown. For both (a) and (b), the
o7z cancer types (x-axis) are ordered by the number of CKP tumor samples in each cancer type. (c)
ers  Germline Polygenic Risk Score (PRS) enrichment of the CKP tumor samples (n = 11,332) and CUP
ere tumor samples with available PRS data (n = 505) averaged across 8 cancer types. The magnitude of
eso the enrichment is quantified by Aprs: the mean difference between the concordant (i.e. OncoNPC
o1 matching) cancer type PRS and mean of PRSs of discordant cancer types (see Methods). Apgrs
es2 18 shown for CKPs in blue (for reference) and CUPs in green. As a negative control, ApRs_random
es3 is also shown after permuting the OncoNPC labels. (d) Top 15 most important features based on
ese mean absolute SHAP values (i.e., i(]SHAP|) |19]) for the top 3 most frequent cancer types in the
ess cohort: Non-Small Cell Lung Cancer (NSCLC), Invasive Breast Carcinoma (BRCA), and Pancre-
ess atic Adenocarcinoma (PAAD). The carrier rate for each feature in corresponding CKP and CUP
esz cancer cohorts as well as the entire CKP and CUP cohorts are shown as bars going downwards

ess and star-shaped markers, respectively. For mutation signature features that have continuous values,
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eso individuals with feature values one standard deviation above the mean were treated as positives and
eo0 the rest as negative. For age, individuals above the population mean were treated as positives and
e the rest as negatives. (e) Explanation of OncoNPC cancer type prediction for a sample patient with
ee2 CUP. The patient is a 76 year-old male, with a tumor biopsy from the liver. The pie chart on the
o3 left shows the Top 10 important features across three different feature categories (i.e., CNA events,
eosa somatic mutation, and mutation signatures), and the scatter plot on the right shows their SHAP

eos values and feature values. The size of each dot is scaled by corresponding absolute SHAP value.

ez Figure 4. Consistent survival and prognostic biomarkers between OncoNPC classifi-
es cations and known cancers. (a) Survival stratification for patients with CUP based on their
e0e  OncoNPC predicted cancer types. The Kaplan-Meier estimator [64] was used to estimate survival
700 probability for each predicted cancer type over the follow-up time of 60 months from sequence date,
701 with statistical significance assessed by Chi-square test. (b) Correspondence between median sur-
702 vival time (in months) of CUP predicted cancer types (x-axis) and those of metastatic CKP cancer
703 types (y-axis): Spearman’s rho 0.964 (p-value: 4.54x 107%). The size of each dot reflects the p-value
70a  Of log-rank test for significant difference in median survival between CUP - metastatic CKP pairs.
zes  Only cancer types with at least 30 CUP tumor samples having OncoNPC probabilities greater than
706 0.5 are shown. (c), (d) Prognostic somatic variants significantly associated with overall survival,
707 shared between three different CUP (c)-metastatic CKP (d) pairs (NSCLC, PAAD, and COAD-
70s  READ; indicated by point shape). Variant types are indicated by colors: red for somatic mutations,

700 green for CNAs, and blue for mutation signatures.

71 Figure 5. Potential for clinical decision support among OncoNPC classified CUPs. (a)
712 The number of CUP tumor samples with actionable targets, based on OncoKB |38|, across actionable
z3  somatic variants (mutations, amplifications, and fusions). Each bar corresponds to an actionable
na  target, color-coded by the number of each OncoNPC classified CUP carrier. Note that each tumor
75 sample may contain more than one actionable somatic variant. (b) Proportions of CUP tumor
ne samples with actionable somatic variants (Ngction) to the total number of patients (Nioqr) across
71z OncoNPC predicted cancer types. Proportions for 4 different therapeutic levels based on OncoKB
ns  |38], are shown in each bar: Level 1 - FDA-approved drugs, Level 2 — standard of care drugs, Level
70 3 - drugs supported by clinical evidence, and Level 4 - drugs supported by biological evidence. (c),
720 (d) Treatment diagrams for a group of patients with CUP who received treatments that were concor-
72 dant with the OncoNPC classification (c¢) and the remaining CUP patients who received discordant
722 treatments (d). OncoNPC classification is shown on the left and treatment groups are shown on
723 the right, with each patient connected from left to right. (e) Forest plot of a multivariable Cox
722 Proportional Hazards Regression on patients in the CUP cohort with first-line palliative treatment
725 records at DFCI (n = 159; see Appendix Fig. for the exclusion criteria). Treatment concordance
726 (colored in blue), encoded as 1 when the first treatment a patient received at DFCI is concordant
72z with their corresponding OncoNPC prediction and 0 otherwise, was significantly associated with
72s mortality of patients in the cohort (H.R. 0.321, 95% C.I. 0.165 - 0.620, p-value: < 0.001). (f)

720 Estimated survival curves for patients with CUP in the concordant treatment group (shown in blue)
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730 and discordant treatment group (shown in red), respectively. To estimate the survival function for
731 each group, we utilized Inverse Probability of Treatment Weighted (IPT'W) Kaplan-Meier estimator
732 while adjusting for left truncation until time of sequencing (see Methods). Statistical significance of

733 the survival difference between the two groups was estimated by a weighted log-rank test [68].
7s  Table 1. Demographic details of the patients and tumor samples across DFCI, MSK, and VICC.

7z Table 2. Demographic details of patients wit CUP in the concordant and discordant treatment

738 groups.

70 Supplementary Figure S1. OncoNPC prediction performances and confidences (i.e.,
741 Pmax) across centers. (a) Center-specific OncoNPC performance (in weighted F1) on the test
72 CKP tumor samples (n = 7,289). The figure is a decomposed version of Fig. by cancer center
73 (DFCI: 0, MSK: O, VICC: ¢). The performance was evaluated at 4 different prediction confidences
7as  (i.e., minimum p,q, thresholds). Each dot size is scaled by the proportion of tumor samples re-
7as  tained. See Table[S2]for the center-specific number of test CKP tumor samples across cancer types.
76  (b), (c) Box plots of prediction confidences (pmax) across (b) DFCI CUP tumors, MSK CUP tu-
zaz  mors, all DFCI CKP tumors, DFCI held-out CKP tumors, and DFCI excluded CKP tumors, and
7as (c) DFCI held-out CKP tumors, MSK held-out CKP tumors, and VICC held-out CKP tumors.
7a0  Medians and lower and upper quartiles are shown on the figures along with corresponding number

70 Of tumor samples as well as means and 95% confidence intervals.

72  Supplementary Figure S2. Interpreting OncoNPC predictions. Top 15 most important
73 features based on mean absolute SHAP values (i.e., i(JSHAPJ) [19]) for cancer types with at least

7sa 20 CUP tumors samples were classified into.

76 Supplementary Figure S3. SHAP summary plot |19 for cancer types with at least 20 CUP
757 tumors samples were classified into. SAHP values (i.e., impact on OncoNPC predictions) are shown
7ss on the x-axis, while features values are shown with a color map (from purple to yellow). In each

70 plot, CUP and CKP tumor samples were combined into one cohort for the corresponding cancer.

72 Supplementary Figure S4. Applying OncoNPC to MSK CUP tumor samples. (a) Em-
72 pirical distributions of prediction probabilities for correctly predicted, held-out CKP tumor samples
763 (n = 3,429) and MSK CUP tumor samples (n = 496) across CKP cancer types (blue) and their
7ea corresponding OncoNPC predicted cancer types for CUP tumors (green). Only OncoNPC classifi-
zes cations with at least 20 CUP tumor samples are shown. (b) Proportion of each CKP cancer type
766 and the corresponding OncoNPC predicted CUP cancer type. All training CKP tumor samples (n
o7 = 36,445) and all MSK CUP tumor samples (n = 581) are shown. For both (a) and (b), the cancer

7es  types (x-axis) are ordered by the number of CKP tumor samples in each cancer type.

770 Supplementary Figure S5. Exclusion criteria for downstream clinical analyses.
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2 Supplementary Figure S6. Germline Polygenic Risk Score (PRS) enrichment of CKP tumor
773 samples and CUP tumor samples across 8 different cancer types: (a) Colorectal Adenocarcinoma
77a (COADREAD), (b) Diffuse Glioma (DIFG), (c¢) Invasive Breast Carcinoma (BRCA), (d) Melanoma
7z (MEL), (e) Non-Small Cell Lung Cancer (NSCLC), (f) Ovarian Epithelial Tumor (OVT), (g)
776 Prostate Adenocarcinoma (PRAD), and (h) Renal Cell Carcinoma (RCC). The magnitude of the
-+ enrichment is quantified by Apgrg: the mean difference between the concordant (i.e. OncoNPC
77s  matching) cancer type PRS and mean of PRSs of discordant cancer types (see Methods). Apgs is

77 shown for CKPs in blue (for reference) and CUPs in green.

7zs1  Supplementary Figure S7. Estimated survival curves for patients with CUP, broken down by
752 OncoNPC predicted cancer types: (a) BRCA, (b) Gastrointestinal (GI) group (CHOL, COAD-
723 READ, EGC, and PAAD), (c) Lung (NSCLC and PLMESO), and (d) other OncoNPC cancer
zsa  types (BLCA, DIFG, GINET, HNSCC, MEL, OVT, PANET, PRAD, RCC, and UCEC). In each
7es figure, the concordant treatment group and discordant treatment group are shown in blue and red,
76 respectively. To estimate the survival function for each group, we utilized Inverse Probability of
zsz  Treatment Weighted (IPTW) Kaplan-Meier estimator while adjusting for left truncation until time
zss  Of sequencing (see Methods). Statistical significance of the survival difference between the two groups

780 was estimated by a weighted log-rank test [68].

7e1  Supplementary Figure S8. Summary of coefficients for estimating treatment-OncoNPC
72 concordance. Formally, we estimated out-of-sample P(A|X ), where A corresponds to the treatment-
7es OncoNPC concordance, using a logistic regression model in a 10-fold cross-fitting. The coefficients
7ea  were obtained from the first fold. See Methods: Estimating impacts of treatment concordance on

zes  survival of patients with CUP for more details.

7oz Supplementary Table S1. A full set of 861 somatic input features for OncoNPC, abstracted from
zes the next generation NGS targeted panel sequencing data. The features belong to three different
700 categories (shown as columns of the table): somatic mutations (i.e., single nucleotide variants and
soo indels: 316 features), Copy Number Alterations (CNA: 491 features), and mutational signatures
so1 (b4 features). Note that we included patients’ sex and age in addition to the somatic features. See

so2  Methods for more details on how the features were encoded.

soa  Supplementary Table S2. Center-specific number of held-out CKP tumor samples across cancer

sos types and prediction confidence (i.e., pmax) thresholds.

soz  Supplementary Table S3. Clinical information of patient with CUP in the treatment concordance

sos analysis (n = 158).
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Table 1

DFCI MSK vice DFCI CUP
Number of patients 18,106 15,151 1,310 962
Patients age at sequence (95 % C.1) 60.7 (60.5 - 60.9) 60.2 (60.0 - 60.4) 58.3 (57.6 - 59.0) 61.9 (61.1- 62.7)
Sex; male-female ratio 43.8 - 56.2 3.5 - 56.5 445-55.5 50.0 - 50.0
Patients ethnicity (proportion %)
White 16,105 (88.9 %) 11,575 (76.4 %) 1,089 (83.1 %) 853 (88.7 %)
Black 538 (3.0 %) 866 (5.7 %) 72 (5.5 %) 38 (4.0 %)
Asian 554 (3.1 %) 956 (6.3 %) 17 (1.3 %) 34 (3.5 %)
Hispanic 379 (2.1 %) 744 (4.9 %) 14 (1.1 %) 15 (1.6 %)
Others 530 (2.9 %) 1010 (6.7 %) 118 (9.0 %) 22 (2.2 %)
Sequenced Tumor Samples
Total number of samples 18816 16,204 1,335 971

Panel version (proportion %; 95% sequence date range)

OncoPanel v1

MSK-IMPACT341

VICC-01-T5A

OncoPanel v1

vl
N 1,924 (10.2 %; 2013-8-20 - 2014-8-17) 1,803 (11.1 %; Not available) 307 (23.0 %; Not available) 7 (4.8 %; 2013-9-8 - 2014-8-12)
) OncoPanel v2 MSK-IMPACT410 VICC-01-T7 OncoPanel v2
v
5,304 (28.2 %; 2014-9-28 - 2016-10-5) 6,917 (42.5 %; Not available) 1,028 (77.0 %; Not available) 203 (20.9 %; 2014-11-5 - 2016-10-5)
" OncoPanel v3 MSK-IMPACT468 OncoPanel v3
v 11,588 (61.6 %; 2016-11-11 - 2021-1-6) 7,574 (465 %; Not available) 721 (74.3 %; 2016-12-14 - 2020-12-23)
Biopsy site type
Primary 11,662 (62.0 %) 9,576 (58.8 %) 622 (46.6 %)

Metastatic urrence

5,737 (30.5 %)

6,718 (41.2 %)

637 (47.7 %)

Local recurrence 673 (3.6 %) Not available 64 (4.8 %)
Unspecified /others 744 (4.0 %) Not available 12 (0.9 %)

Cancer group

OncoTree Cancer type

Predicted cance:

type

) Non-Small Cell Lung Cancer (NSCLC) 3489 (18.5 %) 3,183 (19.5 %) 137 (10.3 %) 280 (28.8 %)
Lung (Thoracic) ! i )
Pleural Mesothelioma (PLMESO) 258 (1.4 %) 118 (0.7 %) 2(0.1 %) 9(0.9 %)
Colorectal Adenocarcinoma (COADREAD) 2,525 (13.4 %) 1919 (11.8 %) 232 (17.4 %) 63 (6.5 %)
Esophagogastric Adenocarcinoma (EGC) 988 (5.3 %) 195 (3.0 %) 59 (4.4 %) 69 (7.1 %)
e Pancreatic Adenocarcinoma (PAAD) 772 (4.1 %) 980 (6.0 %) 53 (4.0 %) (x 8%)
Gastrointestinal ’ .
Cholangiocarcinoma (CHOL) 211 (13 %) 338 (2.1 %) 14(3.3 %) 3 (3.4 %)
Jastrointestinal Neuroendocrine Tumors (GINET) 219 (12 %) 6 (0.5 %) 8 (13 %) 16 (47 %)
Pancreatic Neuroendocrine Tumor (PANET) 121 (0.6 %) 133 (0.8 %) 2(0.9 %) 23 (24 %)
Sarcoma Gastrointestinal Stromal Tumor (GIST) 273 (1.5 %) 217 (1.3 %) 5 (0.4 %) 3(0.3 %)
Head and Neck Squamous Cell Carcinoma (HNSCC) 173 (25 %) 285 (1.7 %) 20 (15 %) 52 (5.4 %)
Head and Neck anc meck >4 ;
Well-Differentiated Thyroid Cancer (WDTC) 166 (0.9 %) 166 (1.0 %) 8(0.6 %) 1(01%)
Skin Melanoma (MEL) 729 (3.9 %) 619 (3.8 %) 187 (14.0 %) 13 (1.4 %)
Breast Invasive Breast Carcinoma (BRCA) 2,558 (13.6 %) 3,113 (19.1 %) 274 (205 %) (8.8 %)
] Ovarian Epithelial Tumor (OVT) 1213 (6.4 %) 525 (3.2 %) 1(6.1%) 58 (6.0 %)
Gynecologic ! ; ; (439
Endometrial Carcinoma (UCEC) 703 (3.7 %) 703 (4.3 %) 34 (25 %) 8(19 %)
Acute Myeloid Leukemia (AML) 150 (0.8 %) 1(0.0 %) 000 %) 1(01%)
Hematologic ‘ '
Non-Hodgkin Lymphoma (NHL) 110 (0.6 %) 88 (0.5 %) 0(0.0 %) 1(0.1 %)
Prostate Adenocarcinoma (PRAD) 601 (3.2 %) 1,222 (75 %) 27 (2.0 %) 27 (2.8 %)
Genitourinary Renal Cell Carcinoma (RCC) 457 (24 %) 197 (3.1 %) 39 (2.9 %) 24 (25 %)
Bladder Urothelial Carcinoma (BLCA) 550 (2.9 %) 505 (3.1 %) 1131 %) 21 (2.2 %)
N Diffuse Glioma (DIFG) 2,041 (108 %) 1,069 (6.6 %) 47 (35 %) 25 (2.6 %)
rewe Meningothelial Tumor (MNGT) 179 (1.0 %) 142 (0.3 %) 15 (1.1 %) 4(04%)
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Table 2

Concordant treatment group Discordant treatment group

(n =177) (n = 81)
Sex; male-female ratio 0.442-0.558 0.556-0.444
Age at seqeuncing (95% C.I.) 64 (61.6 - 66.4) 62 (59.4 - 64.6)
Predicti taint
redichion uncertainty 0.550 (0.426 - 0.675) 0.988 (0.850 - 1.127)

(in entropy; 95% C.1.)

OncoPanel version (proportion in %)

v 1 (1.30%) 1 (1.24%)
v2 9 (11.7%) 15 (18.5%)
v3 67 (87.0%) 65 (80.2%)
Mutational burden (95% C.1.) 0.027 (0.021 - 0.033) 0.033 (0.027 - 0.040)
CNA burden (95% C.I.) 0.201 (0.166 - 0.236) 0.186 (0.155 - 0.217)
Predicted primary cancer groups (proportion in %)
Lung 15 (19.5%) 24 (29.6%)
Breast 5 (6.50%) 11 (13.6%)
al 33 (42.9%) 16 (19.8%)
Gyn 9 (11.7%) 5 (6.17%)
Others 15 (19.5%) 25 (31.0%)
Metastatic sites (proportion in %)
Brain 4 (5.20%) 8 (9.88%)
Bone 7(9.10%) 10 (12.3%)
Soft tissue 6 (7.79%) 5 (6.17%)
Others 60 (77.9%) 58 (71.6%)
Histology (proportion in %)
Adenocarcinoma 41 (53.2%) 32 (39.5%)
Neuroendocrine 9 (11.7%) 11 (13.6%)
Squamous cell 2 (2.60%) 6 (7.41%)
Others 25 (32.5%) 32 (39.5%)

Treatment start date (95% C.I.)  2018-4-30 (2017-12-24 - 2018-9-3)  2018-3-1 (2017-10-28 - 2018-7-3)
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