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Abstract 

INTRODUCTION: Alzheimer’s disease (AD) is heterogeneous, both clinically and 

neuropathologically. We investigated whether polygenic risk scores (PRSs) integrated with 

transcriptome profiles from AD brains can explain AD clinical heterogeneity. 

METHODS: We conducted co-expression analysis and identified gene-sets (modules) which 

were preserved in three AD transcriptome datasets and associated with AD-related 

neuropathological traits for neuritic plaques (NPs) or neurofibrillary tangles (NFTs). We 

computed the module-based PRS (mbPRS) for each module and tested associations for mbPRSs 

with cognitive test scores, cognitively-defined AD subgroups, and brain imaging data.  

RESULTS: Of the modules significantly associated with NPs and/or NFTs, the mbPRSs from 

two modules (M6 and M9) showed distinct associations with language and visuospatial 

functioning as well as their matching AD-subgroups and brain atrophy at specific regions.  

DISCUSSION: Our findings demonstrate that polygenic profiling based on co-expressed gene-

sets can explain heterogeneity in AD patients, enabling to genetically-informed patient 

stratification and precision medicine in AD. 
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Alzheimer disease, co-expression network, cognitive performance, precision medicine, module-based 
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1. BACKGROUND 

Late onset Alzheimer disease (AD) is a complex disorder with clinical and neuropathological 

heterogeneity [1, 2]. Types of clinical heterogeneity include progression rate, predominant 

cognitive symptoms, and whether psychotic symptoms manifest [1]. AD neuropathology can 

also be varied with complications of other neuropathological traits beyond plaques and tangles [1, 

2]. Clinical and neuropathological heterogeneity may have contributed to the repeated failure of 

AD clinical trials [3]. Classification of heterogeneous AD patients into biologically-relevant 

subgroups may improve our understanding of biological mechanisms underlying the variability 

of cognitive symptoms and trajectories of decline, as well as lead to development of subgroup-

specific treatment options [4].  

Different AD subtypes have been previously proposed based on neuropsychological and 

neuropathological characteristics [5-7], domain-specific cognitive functions, MRI brain imaging 

data [4], and metabolic profiling [8]. However, our understanding of molecular mechanisms 

underlying disease heterogeneity is still limited. Recent report illustrates that genetic variants 

with large effect sizes can distinguish six cognitively-defined subgroups of AD when compared 

with elderly controls [9]. A previous study showed that polygenic risk scores (PRSs) derived 

from clusters (i.e., gene-sets) in genome-wide association studies (GWASs) of type 2 diabetes 

(T2D)-related phenotypes have successfully classified T2D patients into different subtypes [10]. 

These studies demonstrate that PRSs from biologically connected gene-sets may explain disease 

heterogeneity and improve scientific understanding of biological mechanisms underlying disease 

subtypes. In addition, co-expression network analyses have shown to be useful for identifying 

biologically-connected and disease-relevant gene-sets using transcriptome data [11, 12]. Taken 

together, these findings led to the hypothesis that network analysis utilizing transcriptome data of 
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AD brains could capture biologically relevant gene-sets responsible for distinct disease subtypes 

and PRSs derived from the gene-sets could explain clinical heterogeneity of AD.  

In this study, we identified modules (sets of biologically relevant genes) by coexpression 

analysis and thereby generated module-based PRSs of AD patients. Then, using domain-specific 

cognitive functions, previously defined AD cognitive subgroups, and brain imaging data, we 

evaluated whether the module-based PRSs can explain cognitive impairment heterogeneity 

among the AD patients 

  

2. METHODS 

2.1. Sources of RNA sequencing data in autopsied AD brains for network analysis 

Discovery coexpression analysis were performed using previously generated gene expression 

data from the dorsolateral prefrontal cortex (DLPFC) area of 65 autopsy-confirmed non-Hispanic 

white AD cases from the Framingham Heart Study and Boston University Alzheimer’s Disease 

Research Center (FHS/BUADRC) [13]. Details of procedures for quality control (QC) of RNA 

sequencing (RNA-Seq) data and neuropathological AD diagnosis are presented in 

Supplementary Information and previously reported elsewhere [13]. Additional RNA-Seq 

datasets  for validation were obtained from the CommonMind portal (http://www.synapse.org) 

including post-QC normalized gene expression data (version #1) from the DLPFC area of 363 

neuropathologically-confirmed AD cases in the Religious Orders Study and Rush Memory and 

Aging Project (ROSMAP) [14] and from temporal cortex area of 82 autopsy-confirmed AD 

cases in the Mayo Clinic Study of Aging (MAYO) [15].  

2.2. Identifying Preserved and AD-associated Modules 
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Co-expression gene-sets (i.e., modules) were generated using the transcriptome data from the 65 

AD brains in FHS/BUADRC using the Weighted Gene Co-expression Network Analysis 

(WGCNA) approach, which computes pairwise correlations for all gene pairs and clusters genes 

by the correlated expression levels [16]. Transcriptome data of AD-free controls were not 

included in our coexpression study because our interest is to identify gene-sets related with the 

disease heterogeneity, not the disease risk (e.g., cases versus controls). Details of co-expression 

module construction are presented in Supplementary Information and previously described 

[17]. Preservation of the discovery modules was evaluated in the two independent validation 

datasets, including ROSMAP and MAYO Clinic, using z-summary statistics [16]. We considered 

a module to be preserved if z-summary scores greater than 5.0 in both validation datasets [16]. 

Among the preserved modules, we selected AD-associated modules by enrichment analyses 

using gene-sets for AD phenotypes including AD-related neuropathological traits including 

neuritic plaques (NP) and neurofibrillary tangles (NFT) [18] and AD-risk [19]. We used AD 

associated genes for enrichment analyses that contained at least one single nucleotide 

polymorphism (SNP) with P<10-3 located within +/- 20 kilobases from the gene for one of the 

AD phenotypes (NP, NFT, or AD-risk). Significant enrichment P-values<0.05 were applied 

using the Fisher’s exact test after false discovery rate (FDR) correction. Based on the result from 

the enrichment analysis for each module, we assigned the AD phenotypes (NP, NFT, or AD-risk) 

for which the module was most significantly enriched and used to calculate module based 

polygenic risk scores. The selected AD-associated modules were considered to generate module 

based polygenic risk scores. 

We also examined expression coherence and cellular identifies of genes in each of the AD-

associated modules using single cell RNA-seq data in five different cell types (astrocytes, 
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microglia, oligodendrocytes, endothelia, and neurons) from the temporal lobe area (Gene 

Expression Omnibus ID: GSE67835) [20] and single nucleus RNA-seq data in seven cell types 

(astrocytes, microglia, oligodendrocytes, pericytes, endothelia, and excitatory/inhibitory neurons) 

from the prefrontal cortex in the ROSMAP [21]. Details of methods for deriving cell-type-

specific gene-sets and their expression profiling are presented in Supplementary Information 

and reported elsewhere [13]. Enrichment of cell-type-specificity for each AD-associated module 

was tested using the Fisher’s exact test.  

2.3. Genotypic and phenotypic data in ADNI 

The Alzheimer’s Disease Neuroimaging Initiative (ADNI) is a longitudinal study assessing 

clinical, neuroimaging, genetic, and biomarker data from participants in various stages of 

cognitive impairment including cognitively normal (CN), mild cognitive impairment (MCI), and 

AD. Genetic and phenotypic data of ADNI participants were obtained from the LONI website 

(http://adni.loni.usc.edu). We used the ADNI genetic data for computing mbPRSs and phenotype 

data for evaluating the relationships between mbPRSs and cognitive impairment heterogeneity. 

Genome-wide genotype data from two different arrays (ADNI-1, n=679 and ADNI-GO/2, n=397) 

were imputed using the Haplotype Reference Consortium data. Details of quality control (QC), 

imputation, and population substructure procedures are described in the Supplementary 

Information. Characteristics of the sample after QC are presented in Table S1.  

Since clinical spectrum of AD can be largely affected by impairment of specific cognitive 

functions [22], we hypothesized that deficits in particular cognitive domains explain at least in 

part disease heterogeneity (i.e., cognitive impairment heterogeneity). To explore this 

heterogeneity, we used domain-specific cognitive tests at the last exam from the ADNI dataset 

(Table S1): logical memory immediate (LIMMTOTAL) and delayed (LDELTOTAL) recall tests 
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for memory; trail marking test A/B (TRAASCOR and TRABSCOR) for executive functioning; 

category fluency animal score (CATANIMSC) and Boston naming test total (BNTTOTAL) 

score for language; and clock test total score (COPYSCORE) for visuospatial functioning. 

Cognitive test scores were adjusted for age, sex, and education using linear regression, and the 

residuals derived from the regression models were ranked-transformed as previously described 

[17]. 

 2.4. Computing and assessing polygenic risk scores for AD-associated modules in ADNI 

We selected SNPs in each AD-associated module from the enrichment analysis for the assigned 

AD phenotype and generated module based polygenic risk scores (mbPRSs) using effect 

estimates of the selected SNPs for the assigned AD phenotype (NP, NFT, and AD-risk) from the 

enrichment analysis. For comparison, we also generated PRSs for three AD phenotypes (NP, 

NFT, and AD-risk) in a conventional approach, which aggregates effect estimates of SNPs with 

P<0.001 across the genome (i.e., genome-wide PRS [gwPRS]). Details about computing these 

two types of PRSs (gwPRS and mbPRSs) are included in the Supplementary Information.  

After generating those PRSs in ADNI, we evaluated correlations among the mbPRSs and 

gwPRSs. To assess relevance of those PRSs to disease stages/progression, we stratified ADNI 

sample by disease stages (CN, MCI, and AD) at the last exam and compared mean values of 

PRSs between different disease stages. We also tested associations between PRSs and 

conversion status for disease progression (e.g., CN to MCI or AD; MCI to AD) excluding AD at 

baseline using logistic regression models after adjusting for age, sex, the first four PCs and the 

array information.  
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Next, we conducted association tests with mbPRSs or gwPRSs for specific cognitive 

domains using rank-transformed cognitive test scores as quantitative outcomes in linear 

regression models after adjusting the first four PCs and genotype platform as covariates. We 

followed up the nominally significant modules (P<0.05) with domain-specific cognitive test 

scores as cognitive impairment heterogeneity (CIH) modules.  

We also attempted to replicate the associations between mbPRSs of the selected CIH 

modules and domain-specific cognitive test scores among 134 AD cases in FHS (dbGaP Study 

Accession ID:  phs000056.v5.p3). Details of sample characteristics, imputation, computation of 

mbPRSs, and association tests with cognitive test scores in Neuropsychological Test Battery is 

described in the Supplementary Information. 

2.5. Validating CIH modules with cognitively-defined AD subgroups in ADNI 

Previously, 672 AD cases in ADNI have been classified into cognitively-defined subgroups 

based on relative impairments at the time of AD diagnosis [9], consisting of 196 as AD-Memory, 

16 as AD-Executive functioning, 52 as AD-Language, 91 as AD-Visuospatial functioning, and 

317 other domains (Table S2). Details about these cognitively-defined subgroups are presented 

in Supplementary Information and reported elsewhere [9]. We evaluated whether mbPRSs of 

CIH modules are linked into one of the four cognitively-defined subgroups (AD-Memory, AD-

Executive, AD-Language, and AD-Visuospatial domains). Each subject was assigned into a 

membership of one subgroup (coded as 1), and otherwise for the other subgroups (coded as 0) 

without overlapping subjects between subgroups. We tested association between mbPRSs and a 

dichotomized membership of cognitively-defined subgroups in a logistic regression model 

adjusting for age, sex, the first four PCs, and genotype platform as covariates.  
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2.6. Brain imaging (MRI) data analysis with mbPRSs of the CIH modules in ADNI 

To understand the relationships between our CIH modules and brain atrophy at specific locations, 

we tested the association between mbPRSs and surface-based cortical thickness of AD patients 

using general linear models after adjusting age, sex, magnetic field strength, and intracranial 

volume as covariates [23]. Detail information about brain imaging data processing for surface-

based measure of cortical thickness in ADNI are described elsewhere [23].  

2.7. Biological functions of genes in the CIH modules 

Gene-ontology (GO) analyses were conducted to discern biological pathways of AD-associated 

genes in CIH modules using the Ingenuity Pathway Analysis software (QIAGEN, Redwood, CA). 

We also looked up associations between the CIH module-genes and AD-related 

neuropathological traits including Consortium to Establish a Registry for Alzheimer’s Disease 

(CERAD) score and Braak stage, and quantitative measures of proteins including Aβ42, 

phosphorylated Tau at 181 (pTau181) and 231 (pTau231), postsynaptic density protein 95 

(PSD95), C4a, C4b, and PPP2CA/B from prefrontal cortex area of autopsied brains 

(FHS/BUADRC) [13].  

 

3. RESULTS 

3.1. AD-associated modules in AD brains were preserved in independent studies  

Eighty-three modules were identified in the discovery dataset (FHS/BUADRC), and 29 of these 

modules were preserved in the two validation datasets (Figure 1A). Fourteen of the 29 preserved 

modules (M1-M14) contained genes that were significantly enriched in at least one of the AD 
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gene-sets (NP, NFT, or AD-risk) with FDR<0.05 (Figure 1B and Table 1). Interestingly, only 

four modules (M1-3 and M11) were nominally enriched in the AD-risk gene-set, and all 14 

modules were at least three orders of magnitude more significantly enriched in either NP or NFT 

gene-sets (Table 1). These findings may imply that our modules derived from the transcriptome 

datasets of AD brains (without AD-free controls) would capture the gene-sets for underlying 

changes in AD pathology, rather than the overall disease risk. Therefore, we linked one 

phenotype, either NP or NFT, but not AD-risk to each of those fourteen modules according to its 

most significantly enriched gene-set, and the GWAS summary data of the linked phenotype (NP 

or NFT) is utilized for computing each of fourteen different mbPRSs (NP-linked modules: M2, 

M5, M6, M10, and M13; NFT-linked modules: M1, M3, M4, M7-9, M11, M12, and M14).  

All 14 AD-associated modules were significantly enriched in specific cell-types, where these 

results were consistent between temporal lobe and prefrontal cortex regions (Figure 1B and 

Table S3). M1 to M4 were predominantly enriched in excitatory neurons (best P with M2 from 

prefrontal cortex=4.4x10-188), M6 and M7 in astrocytes (best P with M7 from prefrontal cortex 

=1.3x10-97), M10 in endothelia (P from temporal lobe=9.9x1087), and M11 in microglia (P from 

temporal cortex=1.7x10-129). The other five modules (M5, M8, M9, M12 and M13) were 

significantly enriched in more than one cell type, while M5 and M8 (astrocytes), M9 (endothelia), 

M12 (neurons), and M13 (microglia) were significantly enriched in at least one cell type in both 

brain regions. 

3.2. Module-based PRSs explained heterogeneity in cognitive functions among AD Patients 

For each of 14 modules, we extracted module-SNPs and their effect estimates on the module-

assigned phenotype for computing mbPRS in the ADNI GWAS sample. Of the 14 modules, we 

computed mbPRSs of the nine NFT-linked modules (M1, M3, M4, M7-9, M11, M12, and M14) 
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using effects of module SNPs on NFT, while mbPRSs of the remaining five NP-linked modules 

(M2, M5, M6, M10, and M13) using NP. Three modules including M2, M13, and M14 were 

excluded due to their low standard error (<0.05) and/or their extremely skewed distributions for 

the following analyses (Table S4).  

In comparison, we observed that three gwPRSs were significantly correlated with mbPRSs of 

the M3, M11, and M12 modules (correlation r2
≥0.1), while the rest eight mbPRSs were not 

correlated with each other (r2<0.01). The mean values of all three gwPRSs were sequentially 

increased from CN to MCI and AD (Figure 1C). In contrast, the mean values of mbPRS were 

varied across the disease stages, which the mean values of modules (M3-6, and M10) were 

smaller in MCI or AD stages than in the CN stage (Figure 1C). For the disease progression, two 

gwPRSs (NFT and AD-risk) and three mbPRSs (M3, M11, and M12) were significantly 

associated with the progressions from CN to both MCI and AD (Figure 1D). None of PRSs were 

associated with the progression from MCI to AD. Interestingly, NFT-gwPRS and M9-mbPRS 

were associated with the progression from CN to MCI, and M6-mbPRS was associated with the 

progression from CN to AD. All three gwPRSs were significantly associated with most cognitive 

test scores, except for the visuospatial domain (COPYSCORE), with the consistent effect 

directions across cognitive tests. This indicates that the gwPRSs are not likely to differentiate 

cognitive impairment heterogeneity among AD cases (Figure 1E).  

Five mbPRSs from M3, M6, M9, M11, and M12 were robustly associated (P-value<0.05) 

with at least two cognitive domains, while five mbPRSs from M1, M4, M5, M8, and M10 

showed no association (P-value>0.05) with any cognitive test scores (Figure 1E and Table S5). 

Of the 5 mbPRSs with robust associations for cognitive domains, mbPRSs of M3 and M11 were 
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strongly associated with the 3 cognitive domains except for the visuospatial functioning, 

indicating that mbPRSs from M3 and M11 would not differentiate the cognitive impairment 

heterogeneity. The M6-mbPRS was nominally associated with all two language-domain test 

scores (BNTTOTAL P-value=0.03 and CATANIMSC P-value=0.01). Although the M9-mbPRS 

was associated with cognitive test scores of multiple domains, the M9-mbPRS showed 

association with the visuospatial functioning (COPYSCORE P-value=0.05), which is distinctive 

across all pairs of associations between PRS and cognitive scores. The M12-mbPRSs were 

strongly associated with language (best P with BNTTOTAL=2.2x10-6) and memory (best P with 

LIMMTOTAL=4.4x10-6) domains (Table 2). Therefore, we prioritized M6, M9, and M12 as 

CIH modules and attempted to validate the associations between mbPRSs of the CIH modules 

(M6, M9, and M12) and the cognitive test scores among the AD cases in FHS (Table S6). We 

observed nominally significant associations (P<0.05) between the M6-mbPRS and two language-

domain cognitive test scores in the FHS AD cases (BNT30 P-value=0.03 and BNT30cue P-

value=0.03; Table S7). Although we did not find associations of the rest two modules (M9 and 

M12) with the cognitive test scores in FHS, the three CIH modules (M6, M9, and M12) were 

further tested with cognitively-defined subgroups [9] and brain atrophy among AD patients.  

3.3. Module-based PRS associations with cognitively-defined AD subgroups and brain atrophy 

Of the three CIH mbPRSs, mbPRSs of M6 and M9 showed nominal associations at P<0.05 

with odds ratio (OR)>1.0 with the cognitively-defined subgroups for AD-Language (OR=5.5; 

P=0.01) and AD-Visuospatial functioning (OR=1.9; P=0.04), respectively (Table 3), but M12-

mbPRS was associated with none of subgroups. In contrast, the gwPRSs for NP and AD-risk 

failed to differentiate any of the subgroups, and only NFT-gwPRS was nominally associated with 

the AD-Memory subgroup (OR=1.01; P=0.04). 
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We observed that mbPRSs of M6 and M9 were significantly associated with cortical 

thickness at specific brain locations (M6: bilateral frontal, parietal, and temporal lobes; M9: 

bilateral frontal lobes; Figure 2A). Interestingly, higher M6-mbPRS and lower M9-mbPRS, 

which were associated with better cognitive functions in our study, were significantly associated 

with larger cortical thickness, which represent less brain atrophy (Figure 2A). Particularly, the 

M6-mbPRS was strongly linked to the brain atrophy at the Wernicke area where lesions have 

been associated with severe impairments of word comprehension [24].  

3.4. Functional profiling of M6 and M9 

Among the module-genes in M6 and M9, we focused on the GWAS genes (i.e., seed genes) with 

a SNP with P<0.001 for NP or NFT (# of GWAS genes, M6=16 and M9=11; Figure 2B and 

Table S8). The seed genes in M6 were significantly enriched in pathways (Figure 2C and Table 

S9) including morphology of nervous system (P=4.0x10-8), abnormal morphology of nervous 

system (P=7.8x10-7) and differentiation of astrocytes (P=8.4x10-5), and the M9 seed genes were 

in vascular system including development of vasculature (P=3.8x10-9), angiogenesis (P=3.0x10-

8), and vasculogenesis (P=2.5x10-7) (Figure 2C and Table S8). 

According to our previous report [13], the majority of the seed genes in M6 (best: DOCK1, 

P=3.0x10-7) and M9 (best: SLC25A30, P=6.3x10-6) were up-regulated in AD compared with 

control brains (Table S10). In addition, we observed significant associations between expression 

levels of the seed genes in M6 and M9 and AD-related protein levels (Figure 2D and Table S10). 

The seed genes in M6 were significantly associated (P<0.05) with CERAD scores, Braak stages, 

Aβ42, pTau181/tTau ratio, pTau231/tTau ratio, C4a, C4b, and PSD95 (Table S11), which the most 

significant association was observed with expression of ADCY2 with pTau181/tTau ratio (P-

value=1.1x10-3). The expressions of the seed genes in M9 were nominally significant with Braak 
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stages, Aβ42, pTau231/tTau ratio, and C4a levels with the best P-value between expression of 

DISC1 and C4a (P-value=1.0x10-3).  

 

4. DISCUSSION 

4.1. Key findings 

The goals of this study were to identify gene-sets responsible for the biological mechanisms 

underlying AD heterogeneity and to test use of genetic information (e.g., PRS) derived from the 

gene-sets for prediction of individual risks to clinical AD-subgroups. We generated modules 

(gene-sets) that were commonly observed in multiple transcriptome datasets of AD brains. We 

closely evaluated biological coherence (e.g., cellular identifies) and disease relevance of the 

modules using profiling of human brain cell types and genetics of AD neuropathology. Then, we 

selected the CIH modules (M6, M9, and M12), which are likely to explain the disease 

heterogeneity in cognitive impairment of the AD patients, by testing with domain-specific 

cognitive test scores in ADNI (clinic-based study), and association with M6-mbPRS was 

replicated in FHS (population-based study). This demonstrates the concept we proposed in the 

current manuscript can be generalizable and applicable to diverse populations, although not all 

the modules are available in all populations. We attempted to validate whether those CIH 

modules differentiate cognitively-defined AD subgroups and found that the two CIH modules 

(M6 and M9), which showed associations with cognitive test scores for language and 

visuospatial domains, respectively, markedly recognized the matching AD subgroups (AD-

Language and AD-Visuospatial). Furthermore, we found that those CIH modules (M6 and M9) 

were also linked to atrophy in specific brain areas (M6: Wernicke’s area in temporoparietal 
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cortex; M9: frontal cortex) which were previously reported to underpin for language 

comprehension [24, 25] and visuospatial deficit [26].  

4.2. Advantage of mbPRSs for AD subgrouping 

The three gwPRSs for NP, NFT, and AD-risk showed high correlations each other and 

largely similar patterns from associations with disease conversion and cognitive test scores. In 

contrast, our mbPRSs showed almost no correlations each other and are associated with the 

disease progression at certain stages and performance of specific cognitive domains. These 

findings after comparing our novel mbPRSs and traditional gwPRSs demonstrate that mbPRSs 

would be more useful for explaining the phenotypic heterogeneity in AD patients, while gwPRSs 

(i.e., traditional PRS) would be more relevant to predict the overall disease risk. Our mbPRSs 

successfully distinguish differences in clinical (cognitive domains) and structural brain imaging 

patterns, indicating representation of different disease mechanisms and thereby would be 

effective tools for dissecting the disease heterogeneity. The gwPRSs for NP and AD-risk failed 

to recognize the AD subgroups. Only the gwPRS for NFT discerned the most typical cognitive 

subgroup, AD-Memory domain. However, newly identified mbPRSs for the M6 an M9modules 

recognized different types of AD subgroups. This indicates that the conventional gwPRS 

approach is less likely to recognize differences between AD subtypes. Further, these results 

support our hypothesis that subgrouping genetic markers from gene-sets responsible for a distinct 

disease mechanism leading to an AD subtype is important for precision medicine and genome-

guided clinical trials. 

There have been huge efforts to improve predicting and distinguishing disease subtypes using 

polygenic profiling for early detection of subjects at risk [27-29]. Polygenic risk scores can be 

also useful to predict expected development of a disease or treatment responses in particular 
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patient subgroups [30]. Our module-based polygenic profiling has innovative features compared 

to those previously conducted co-expression studies [11, 12] and conventional PRS approaches 

for AD [29-32]. First, our co-expression modules were developed from only AD brains 

excluding CN and MCI brains, while previous co-expression studies used transcriptome data of 

AD cases together with controls [11, 12]. Biological processes underlying disease heterogeneity 

in AD brains may be different from CN or MCI brains [33, 34].  Inclusion of non-AD 

transcriptome data would well differentiate gene-sets relevant to the disease risk but not explain 

disease heterogeneity. Second, previous polygenic profiling studies have generated PRSs by 

aggregating genetic estimates of genome-wide or most significant SNPs, which may have 

improved prediction rates [30] but cannot explain specific biological functions. In contrast, our 

mbPRSs are derived from biologically coherent gene-sets, which enable us to interpret biological 

functions of the modules and thereby provide insights on functional/mechanistic pathways for 

the AD subtypes. A previous study demonstrated genomic annotations at the single tissue level 

can improve our understanding on the etiology of complex human diseases [35]. A recent 

simulation study with failed AD trials confirms that the main failure reason is because variability 

between individuals’ in trials masks efficacy [3]. Therefore, our mbPRSs relevant to cell/tissue-

level transcriptome profiles, brain imaging data, and cognitively-defined subgroups can be 

utilized for studying disease subtypes, prognosis, and response of treatment. 

4.3. Role of omics and genetic profiling in AD subgrouping 

Profiling using the omics data including transcriptome data at the tissue- or the cell-level 

helped identify clinically and neuropathologically heterogeneous modules but also understand 

the biological functions of the modules. For example, the identified M6 module-genes were 

enriched for astrocytes, neuritic plaque scores, and language domain of cognitive function. This 
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confirms the previous report that astrocytes are involved in amyloid clearance [36] and damaged 

astrocytes impact language domain among AD patients [37]. Our discovery showed that M9 

module-genes are linked to endothelial cells, Braak stages, and visuospatial functioning in this 

study. Increased vascular inflammation in endothelial cells has been observed among AD 

patients with poor short-term visuospatial functioning [38].  

Genes in the M6 and M9 modules have been previously reported for association with 

neurodegenerative diseases. Most of genes in the two modules have biological functions relevant 

to the nervous system or have been previously reported in genetic or experimental studies for 

neurodegenerative diseases.  For example, SLC6A11 in M6 has been targeted for drug 

development of different neurodegenerative diseases including epilepsy [39]. GLIS3 in M9 has 

been associated with T2D [40, 41] and a longer life expectancy [42]. SNPs from GLIS3 in M9 

showed genome-wide significant associations from GWASs for amyloid-β and phosphorylated 

tau proteins in cerebrospinal fluid (CSF) [43].  

4.4. Limitations 

Our study has several limitations. First, the sample size of discovery AD brains was modest. 

Therefore, we did not have statistical power for explaining the subtle phenotypic variations 

among AD patients, which might lead to detect modules associated with a few specific cognitive 

domains. In addition, our current study exclusively relied on cognitive test scores for prioritizing 

CIH modules, which may not be useful for detecting unknown or brain imaging-based subtypes 

of the disease. We also acknowledge that our findings in ADNI may not represent AD 

heterogeneity in other populations. However, since one of modules was replicated in an 

independent study (FHS), there are shared mechanisms across diverse populations. Since we 

focused on AD patients, our sample size of AD subgroups remained underpower, so we could 
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not apply multiple testing correction in current study. This limitation was mitigated by 

replicating one of the mbPRSs in FHS. Second, we could apply and attempt to validate our 

module-based approach in other AD GWAS sample with different types of AD subgroups based 

on CSF biomarker [44] or brain imaging data [1], but the sample sizes of those datasets available 

to the public will be extremely limited. Third, most of previously defined cognitive subgroups in 

ADNI were predominantly classified as subgroups of memory (31.8%), while subgroups for 

executive functioning (2%) was relatively limited, which may lead to no significant associations 

between PRSs and uncommon subgroups (e.g., AD-Executive). Moreover, it will be necessary to 

repeat analyses in independent samples to validate our findings as well as our approach. In 

general, the datasets with GWAS for enough AD patients with carefully classified clinical 

phenotypes and clinically and/or pathologically defined subtypes were extremely limited. 

However, efforts to subgroup AD cases in additional datasets are ongoing. Also, the GWAS 

summary statistics for AD neuropathological traits (NP and NFT) in this study were generated 

based on genotype imputation using a previous reference panel (1000 genome) [18], which may 

affect quality and accuracy of our gene-sets and PRSs. However, we used common SNPs 

(MAF>5%) for constructing gene-sets and PRSs, and the imputation qualities of common SNPs 

are still relatively acceptable even in the previous reference panel [45]. Therefore, potential 

problems caused by low imputation quality would be largely limited in our study. 

Future work in other independent GWAS sample with cognitively-defined subgroups (or 

relevant subgroups based on cognitive tests) will be required to validate our module-based 

prediction of AD subtypes. Furthermore, linking genetics of various disease-related phenotypes 

to the target disease would enhance to dissect the disease heterogeneity [10]. Other AD-related 

GWAS summary data including cerebral amyloid angiopathy, hypertension, cholesterol, and 
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insulin resistance can be added for extending AD phenotype gene-sets, which will lead us to 

detect novel gene-sets and to recognize other subgroups beyond AD-Language/Visuospatial 

domains. 

4.5. Conclusion 

In conclusion, PRSs developed using biologically coherent gene-sets and disease-related 

phenotypes can successfully differentiate cognitively-defined subgroups and brain region 

specific atrophy, which likely represent mechanistic pathways responsible for disease subtypes. 

Classification of patients using genetic information will allow patient subgrouping and target 

prioritization for the subgroups, which may eventually lead to precision medicine in AD. Our 

study warrants in extensive validations in large datasets. 
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Figure Legends 

Figure 1. A. Schematic of our study design of constructing co-expression modules (sets of 

genes), selecting AD-associated modules, and building module-based polygenic risk scores 

(mbPRSs) for explaining the AD heterogeneity, which were tested and evaluated with gene-sets 

for AD-related neuropathological traits (NP and NFT human brain cell-types, cognitive test 

scores, cognitively-defined AD subgroups, and brain MRI imaging data. B. Enrichment strength 

of the eleven AD-associated modules with AD phenotypes (NP, NFT, and AD-risk) and cell type 

specific gene-sets in temporal lobe and dorsal lateral prefrontal cortex (DLPFC). The darker 

color indicates the more significant enrichment P-value. Heatmaps of C. mean values of PRSs 

across the disease stages including clinical normal (CN), mild cognitive impairment (MCI), and 

AD (the darker color indicates the larger mean value of the PRS.); D. associations between PRSs 

and disease progression (CN to MCI, CN to AD, MCI to AD) (the darker color indicates the 

more significant P-value); E. associations between PRSs and seven test scores for four cognitive 

domains (executive functioning, visuospatial functioning, language, memory). Red and blue 
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mean positive and negative effect directions, respectively. Dots in the cells indicate the strength 

of associations). 

Figure 2. M6 and M9 were selected as cognitive impairment heterogeneity (CIH) modules. A. P-

value map (threshold at p<0.05; the darker blue color indicates significant P-value.) showing 

association between cerebral cortical thickness and module-based polygenic risk scores for M6 

and M9. B. Co-expression network of genes in M6 and M9. C. Biological functions (gene 

ontology) of M6 and M9. D. Associations of the expression levels of genes in M6 and M9 with 

AD risk and AD-related biomarkers (previously published [13]).  
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 Table 1. AD associated preserved networks in AD brains 

Module 
Z-summary   Enrichment P-value 

ROSMAP MAYO   NP NFT AD-RISK 

M1 40.56 20.71 
 

3.74X10-6 3.26X10-9 0.04 

M2 37.45 20.68 
 

3.50X10-8 2.57X10-7 0.002 

M3 35.48 18.59 
 

5.38X10-5 8.36X10-7 0.01 

M4 32.32 18 
 

3.42X10-2 1.25X10-5 0.07 

M5 29.83 15.91 
 

1.46X10-6 2.92X10-4 0.40 

M6 26.56 14.46 
 

4.70X10-6 0.09 0.09 

M7 25.84 14.23 
 

2.65X10-3 2.47X10-4 0.12 

M8 20.52 14.07 
 

0.47 0.02 0.20 

M9 20.51 12.71 
 

4.34X10-3 8.89X10-4 0.37 

M10 18.25 12.64 
 

0.02 0.16 0.16 

M11 17.32 11.81 
 

8.70X10-4 7.48X10-4 0.01 

M12 17.06 10.55 
 

1.00 0.05 0.95 
M13 15.57 8.59 

 
0.02 0.03 0.81 

M14 14.79 7.81   0.06 0.04 0.48 
 
Module is a co-expressed gene network in the discovery from the Framingham Heart Study and 
Boston University Alzheimer’s Disease Center (FHS/BUADRC) study. 
 
Z-summary is a network preservation score of a module from the discovery to at least one of two 
validation datasets, the Religious Orders Study and Rush Memory and Aging Project (ROSMAP) 
and the Mayo Clinic Study of Aging (MAYO). 
 
Enrichment p-value for a module were computed using genes in the given module containing a 
SNP with P<10-3 from Beecham et al. for neuritic plaque [NP] and neurofibrillary tangles [NFT] 
[18] and from Kunkle et al. for AD-risk [19]. 
 
Fourteen modules were selected when a module in the FHS/BUADRC study was preserved with 
Z-summary>5 in both validation datasets, ROSMAP and MAYO, and significant at p-
value<0.05 with at least one of the gene-sets for NP, NFT, or AD-risk. 
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Table 2. Associations between cognitive test scores and three module-based PRSs 

Cognitive Domain Cognitive Test 
  M6   M9 M12 

  BETA SE P-value   BETA SE P-value BETA SE P-value 

Executive functioning 
TRAASCOR 

 
-0.16 0.12 0.17 

 
0.18 0.06 1.08x10-3 

 
0.02 0.02 0.15 

TRABSCOR   -0.26 0.12 0.03   0.18 0.06 1.58x10-3  0.03 0.02 0.05 

Visuospatial functioning COPYSCORE   0.03 0.12 0.79   -0.12 0.06 0.049 
 

-0.01 0.02 0.77 

Language 

BNTTOTAL 
 

0.26 0.12 0.03 
 

-0.17 0.06 2.57x10-3 
 

-0.08 0.02 2.23x10-6 

CATAANIMSC   0.29 0.12 0.01   -0.11 0.06 0.05  -0.04 0.02 0.01 

Memory 

LDELTOTAL  0.22 0.12 0.06  -0.18 0.06 1.14x10-3  -0.07 0.02 4.55x10-5 

LIMMTOTAL   0.18 0.12 0.12   -0.15 0.06 7.18x10-3 
 

-0.08 0.02 4.42x10-6 

 
LIMMTOTAL and LDELTOTAL: logical memory immediate and delayed recall tests; TRAASCOR and TRABSCOR: trail marking test A/B. CATANIMSC: 
category fluency animal score. BNTTOTAL: Boston naming test total. COPYSCORE: clock test total score 
 
Beta estimates (BETA), standard error (SE), and P-values were calculated with module-based PRSs of the M2, M6, and M9 modules for domain specific 
cognitive functions. 
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Table 3. Membership assignment of three module-based PRSs in four cognitively-defined AD subgroups in ADNI 

Cognitively-defined Subgroups 
  

gwPRS 
 

mbPRS 

NP 
  

NFT 
  

AD-Risk 
  

  M6   M9   M12   

OR (95% CI) P OR (95% CI) P OR (95% CI) P  OR (95% CI) P OR (95% CI) P OR (95% CI) P 

Executive Functioning 0.99 (0.93-1.0) 0.69 1.00 (0.91-1.10) 0.98 1.01 (0.93-1.1) 0.65 
 

0.37 (0.04-3.60) 0.39 0.95 (0.34-2.60) 0.92 1.10 (0.78-1.5) 0.66 

Language 0.99 (0.95-1.0) 0.43 0.99 (0.93-1.01) 0.74 0.97 (0.91-1.0) 0.24 
 

5.50 (1.5-20.0) 0.009 0.81 (0.42-1.50) 0.51 0.92 (0.75-1.1) 0.40 

Memory 1.00 (0.99-1.0) 0.57 1.01 (1.00-1.11) 0.04 1.00 (1.0-1.1) 0.08 
 

0.97 (0.44-2.2) 0.95 1.20 (0.84-1.80) 0.29 1.00 (0.92-1.2) 0.56 

Visuospatial Functioning 1.00 (0.97-1.0) 0.75 0.96 (0.91-1.01) 0.09 0.96 (0.91-1.0) 0.07 
 

0.88 (0.28-2.8) 0.83 1.91 (1.11-3.31) 0.04 1.00 (0.87-1.2) 0.76 

OR: odds ratio. CI: confidence interval. Cognitively-defined AD subgroups in ADNI have been previously defined [9]. Bold values with significance at P<0.01 and OR>1.0 
indicate these modules are likely members of the corresponding cognitively-defined subgroups. 
  

A
ll rights reserved. N

o reuse allow
ed w

ithout perm
ission. 

preprint (w
hich w

as not certified by peer review
) is the author/funder, w

ho has granted m
edR

xiv a license to display the preprint in perpetuity. 
T

he copyright holder for this
this version posted D

ecem
ber 21, 2022. 

; 
https://doi.org/10.1101/2022.12.20.22283737

doi: 
m

edR
xiv preprint 

https://doi.org/10.1101/2022.12.20.22283737


34 
 

Figure 1 
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Figure 2 
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