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 2 

ABSTRACT 41 

INTRODUCTION 42 

Millions of patients attend emergency departments (EDs) around the world every year. 43 

Patients are triaged on arrival by a trained nurse who collects structured data and an 44 

unstructured free-text history of presenting complaint. Natural language processing (NLP) 45 

uses various computational methods to analyse and understand human language, and has 46 

been applied to data acquired at ED triage to predict various outcomes. The objective of this 47 

systematic review is to evaluate how NLP has been applied to ED triage, assess if NLP based 48 

models outperform humans or current risk stratification techniques, and assess if 49 

incorporating free-text improve predictive performance of models when compared to 50 

predictive models that use only structured data.  51 

 52 

METHODS 53 

All English language peer-reviewed research that applied an NLP technique to free-text 54 

obtained at ED triage was eligible for inclusion. We excluded studies focusing solely on 55 

disease surveillance, and studies that used information obtained after triage. We searched the 56 

electronic databases MEDLINE, Embase, Cochrane Database of Systematic Reviews, Web of 57 

Science, and Scopus for medical subject headings and text keywords related to NLP and 58 

triage. Databases were last searched on 01/01/2022. Risk of bias in studies was assessed 59 

using the Prediction model Risk of Bias Assessment Tool (PROBAST). Due to the high level 60 

of heterogeneity between studies, a metanalysis was not conducted. Instead, a narrative 61 

synthesis is provided.  62 

 63 

RESULTS 64 
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In total, 3584 studies were screened, and 19 studies were included. The population size varied 65 

greatly between studies ranging from 1.8 million patients to 762 simulated encounters.  The 66 

most common primary outcomes assessed were prediction of triage score, prediction of 67 

admission, and prediction of critical illness. NLP models achieved high accuracy in 68 

predicting need for admission, critical illness, and mapping free-text chief complaints to 69 

structured fields. Overall, NLP models predicted admission with greater accuracy than 70 

emergency physicians, outperformed abnormal vital sign trigger and triage score at predicting 71 

critical illness, and were more accurate than nurses at assigning triage scores in two out of 72 

three papers. Incorporating both structured data and free-text data improved results when 73 

compared to models that used only structured data. The majority of studies were (79%) were 74 

assessed to have a high risk of bias, and only one study reported the deployment of an NLP 75 

model into clinical practice.   76 

 77 

CONCLUSION 78 

Unstructured free-text triage notes contain valuable information that can be used by NLP 79 

models to predict clinically relevant outcomes. The use of NLP at ED triage appears feasible 80 

and could allow for early and accurate prediction of multiple important patient-oriented 81 

outcomes. However, there are few examples of implementation of into clinical practice, most 82 

research in retrospective, and the potential benefits of NLP at triage are yet to be realised. 83 

 84 

 85 

 86 

 87 

 88 

 89 
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INTRODUCTION 90 

Millions of patients attend emergency departments (EDs) around the world every year.1 91 

Queues for care are common, so patients are often triaged on arrival to the ED by a trained 92 

nurse. Triage is central to the practice of emergency medicine.2 In the face of excess demand, 93 

triage allows EDs to allocate their finite resources in an equitable, efficient, and standardised 94 

way.3,4 Triage systems in current use include the Emergency Severity Index (ESI), 95 

Australasian Triage Scale (ATS), Manchester Triage Scale (MTS), and the Korean Triage 96 

and Acuity Scale (KTAS).3,5 Triage systems aim to aid emergency care providers in making a 97 

structured decision regarding the urgency of care that a patient requires, and in doing so, 98 

identify and prioritise those patients with time-sensitive care needs.3,4 However, urgency of 99 

care does not necessarily reflect severity of illness (as judged by morbidity or mortality). For 100 

example, a young patient with a known history of recurrent renal calculi who presents with 101 

severe flank pain may be appropriately triaged as high urgency to receive analgesia, but will 102 

most likely have a good clinical outcome, whereas an elderly patient with undifferentiated 103 

abdominal pain may be triaged as a lower urgency but have higher risk of morbidity and 104 

mortality. No triage tool is perfect, and all have issues with sensitivity and specificity 105 

resulting in over and under-triage, particularly for certain demographic groups and 106 

conditions.6-8 There is opportunity to improve triage performance in identifying patients with 107 

critical illness, and for improving triage accuracy and the consistency of triage categorisation 108 

between healthcare workers.3  109 

 110 

Machine learning (ML) is a subfield of artificial intelligence (AI), that uses various methods 111 

to automatically deduce patterns in data, then makes predictions.9 These patterns are learned 112 

from the data rather than being explicitly pre-programmed by humans. ML models are 113 

iteratively improved through a process called training. In supervised ML training, the model's 114 
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predicted output is compared to a "ground truth", and the error between the predicted value 115 

and ground truth is progressively reduced through the training process.9 ML models have the 116 

potential to improve risk stratification and outcome prediction in the ED setting.10-12  117 

 118 

Triage has been identified as a promising area to apply ML in the ED.13, 14 ML has previously 119 

been applied successfully to structured data acquired at triage (such as patient age and vital 120 

signs) to predict outcomes including need for admission and intensive care.15, 16 Triage nurses 121 

routinely collect structured data and an unstructured free-text history of presenting complaint, 122 

capturing their impression and subjective assessment about the presentation. This free-text 123 

may be more expressive, nuanced, and contain a higher level of information than structured 124 

data.17 Prior work has suggested that incorporating free-text may improve the performance of 125 

ML at ED triage and is an important area for future research despite the challenges of 126 

incorporating free-text data into models.18-20 127 

 128 

Natural language processing (NLP) uses computational methods to analyse and understand 129 

human language and its structure.21 Early NLP techniques were relatively simple. For 130 

example, a “bag-of-words” model bases its decision on the relative frequencies of words in 131 

the text, ignoring their order.22 These early models often lacked the ability to assess context, 132 

negations, and as a result had numerous limitations.23 Significant advancements in NLP have 133 

been made over the last few years through the use of Deep Learning (DL), a subfield of 134 

ML.24, 25 DL models pass data through multiple processing layers and in doing so, achieve 135 

increasingly abstract representations of the input data, enabling them to learn complex 136 

functions.26 Massive DL based NLP models have recently been developed.27-29 These models 137 

have been trained on datasets containing billions of words and have achieved high levels of 138 

performance.27-29 Some large, pre-trained models, such as Bidirectional Encoder 139 
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Representations from Transformers (BERT) are publicly available.27 Using a pre-trained 140 

model allows researchers to take a high performing model as their starting point, and then 141 

customise it to their unique needs through fine tuning the model on their local data. For 142 

example, Tahayori et al. were able to accurately predict admission from ED using only free-143 

text triage notes and a BERT based NLP model.30 Multimodal models integrate NLP with 144 

other types of ML to analyse combinations of both free-text data and structured data (such as 145 

age and vital signs).  146 

 147 

Objectives 148 

This systematic review aims to evaluate the applications of NLP at ED triage by answering 149 

the following questions:  150 

1. How has NLP been applied to ED triage? 151 

2. Do NLP based models outperform humans or current risk stratification techniques? 152 

3. Does incorporating free-text improve predictive performance of ML models when 153 

compared to ML models that use only structured data? 154 

 155 

METHODS 156 

A systematic review protocol was prepared in accordance with PRISMA-P guidelines and 157 

registered with the International Prospective Register of Systematic Reviews (PROSPERO) 158 

on 04/10/2021 (Registration ID: CRD42021276980).31,32 All English language peer-reviewed 159 

research that applied an NLP technique to free-text obtained at ED triage were eligible for 160 

inclusion. As this study aims to broadly assess the capability of NLP at triage, all outcomes 161 

and comparators were included. We excluded studies focusing solely on disease surveillance, 162 

and studies that used information obtained after triage (such as emergency physician clinical 163 

notes and investigations performed within the ED). 164 
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 165 

We searched PubMed (MEDLINE), Embase, Cochrane Database of Systematic Reviews, 166 

Web of Science, and Scopus for research published from 01/01/2012 to present. Electronic 167 

databases were first searched on 16/09/2021 and last searched on 01/01/2022. We searched 168 

for medical subject headings (MeSH) and text keywords related to NLP and triage. The 169 

search strategy was iteratively developed by the multidisciplinary project team that included 170 

emergency physicians and computer scientists. The MEDLINE search strategy is provided in 171 

Appendix 1, and was adapted to the other databases. Reference lists of the included studies 172 

and the authors’ personal archives were reviewed for further relevant literature.  173 

 174 

Citations and abstracts were screened independently by two reviewers (JS and JL) against the 175 

inclusion and exclusion criteria. Both reviewers were blind to the journal titles, study authors, 176 

and institutions. Full text articles were obtained for any articles identified by one reviewer to 177 

meet inclusion criteria. Two reviewers (JS and JL) then evaluated the full text reports against 178 

the inclusion and exclusion criteria. Data were extracted by JS and JL using a standardised 179 

form that included study country, study design, primary outcome, number of sites, study 180 

population, input data, NLP and ML models used, comparison, and results. The form was 181 

piloted, and calibration exercises were conducted prior to formal data extraction to ensure 182 

consistency between reviewers. In cases of conflict or discrepancy, additional review authors 183 

were involved until a decision was reached. There were no uncertainties that required authors 184 

of the included studies to be contacted. 185 

 186 

Data extracted included the study country, study type, outcomes, population, input data, NLP 187 

technique, ML method, comparisons, results, public availability of datasets, and public 188 

availability of model code. Risk of bias in studies was assessed independently by two authors 189 
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(JS and JL) using the Prediction model Risk of Bias Assessment Tool (PROBAST).33 Due to 190 

the high level of heterogeneity between studies, a metanalysis was not conducted. Instead, a 191 

narrative synthesis is provided to summarise review findings.  192 

 193 

RESULTS 194 

Study selection 195 

This process is summarised in a PRISMA Flow Diagram (Figure 1). There were 5099 records 196 

identified following database searching and a further 11 records identified through other 197 

sources. Following removal of duplicates, 3584 records remained and underwent title and 198 

abstract screening. 3448 records were excluded. The remaining 136 full-text articles were 199 

assessed for eligibility. In total, 117 articles were excluded, and 19 studies remained for 200 

inclusion (Figure 1). There were no unresolved disagreements as to study inclusion or results 201 

of data extraction.  202 

 203 

[Insert Figure 1] 204 

 205 

Characteristics of included studies 206 

A summary of the included studies is shown in Table 1. There were 18 retrospective 207 

studies.17,18, 30, 34-48 One study reported their ML model was developed using retrospective 208 

data then validated using prospective data.49 All used observational cohort designs. Two 209 

studies were international multi-centre studies (USA and Portugal); 11 were conducted in the 210 

USA; 2 were from South Korea; one each from Australia, Brazil, China, and France. The 211 

most common primary outcomes assessed were prediction of triage score (six studies), 212 

prediction of admission (five studies), and prediction of critical illness (three studies). Two 213 

studies predicted need for imaging within the ED, two studies looked at the assignment of 214 
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provider assigned chief complaint label, and one study predicted diagnosis of infection in the 215 

ED.  216 

 217 

The population size varied greatly between studies ranging from 1.8 million patients to 762 218 

simulated encounters.  Four studies used a population of under 100 000, four studies had a 219 

population of between 100 000 and 200 000, six studies had a population of between 200 001 220 

and 300 000, and six studies had a population of over 300 000. Eleven studies used data from 221 

a single site and eight studies used data from multiple sites. The largest number of sites used 222 

was 642 by Zhang et al. 223 

 224 

Fourteen studies applied NLP to free-text history of presenting complaint, seven studies 225 

applied NLP to a free-text chief complaint, two studies applied NLP to a structured chief 226 

complaint label, and one study applied NLP to simulated triage dialogues that had been 227 

transcribed by either a human or an ML model. The other most frequently used input 228 

variables were patient demographics (13 studies), patient vital signs (heart rate, respiratory 229 

rate, oxygen saturation, blood pressure, and temperature) (15 studies), pain score (12 studies), 230 

triage score (10 studies), mode of arrival (10 studies), time of arrival (8 studies) and past 231 

medical history (7 studies). Other input variables included mental status (5 studies), and 232 

blood glucose level (5 studies).  233 

 234 

Prediction of admission 235 

NLP models and multimodal models were able to accurately predict admission at time of 236 

triage for adult and paediatric patients.18, 30, 35, 41, 46  Of the five studies focusing on predicting 237 

admission to hospital, Roquette et al. achieved the highest Area Under the Receiver 238 

Operating Characteristic Curve (AUC) using a gradient boosting model (AUC 0.89). 239 
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Tahayori et al. achieved a similar AUC (0.88) using only free-text history of presenting 240 

complaint. Tahayori et al. were the only authors that compared their model to emergency 241 

physician performance. Their model achieved a higher accuracy than five emergency 242 

consultants (0.83 vs 0.78) and higher specificity (0.86 vs 0.77), but lower sensitivity (0.72 vs 243 

0.9). Roquette et al. and Zhang et al. both compared ML models trained using structured data 244 

only with ML models that incorporated both structured data and text data. They found that 245 

the addition of text data results in a small improvement when compared to the use of 246 

structured data alone.  247 

 248 

Prediction of critical illness 249 

Multimodal models were able to accurately predict critical illness in adult patients, defined as 250 

ICU admission, cardiopulmonary arrest within 24 hours, or death within 24 hours of  251 

triage.43-45 Of the three studies that predicted critical illness at triage, Fernandes et al. 252 

achieved the highest AUC (0.96) in predicting in-hospital death or cardiopulmonary arrest 253 

within 24 hours of triage using an extreme gradient boosting model. They found no 254 

difference in AUC when using clinical variables only or clinical variables and structured 255 

chief complaint processed by NLP. Joseph et al. found their NLP model (AUC 0.857) 256 

significantly outperformed an abnormal vital sign trigger (AUC 0.521) and ESI score ≤ 2 257 

(AUC 0.672) in predicting critical illness. The addition of free-text data improved the 258 

performance of their neural network model (from AUC 0.820 to AUC 0.857). 259 

 260 

Prediction of triage score 261 

NLP has been applied in multiple triage systems. NLP models and multimodal models were 262 

able to accurately assign triage categories using structured and free-text data.17, 36-38, 47, 48 263 

Wang et al. achieved the highest performance in predicting ESI using their "DeepTriager" 264 
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model (AUC 0.96). Kim et al. achieved an AUC of 0.89 in assigning a KTAS category to 265 

auto-transcribed simulated triage dialogue. This was only slightly lower than the performance 266 

achieved using human-transcribed simulated triage dialogue (AUC 0.90). Three studies 267 

compared the accuracy of triage scores assigned by multimodal models incorporating NLP to 268 

triage scores assigned by nurses.17, 36, 47 Such models were more accurate than nurses in two 269 

out of three papers.36, 47 The addition of text data compared to structured data alone improved 270 

performance in assigning triage score.36, 37 271 

 272 

Prediction of provider-assigned chief complaint  273 

NLP models and multimodal models incorporating NLP were able to accurately map free-274 

text history of presenting complaint to structured chief complaints.42, 49 Chang et al. (2020) 275 

used BERT to accurately predict provider-assigned chief complaint labels (Top-5 structured 276 

label AUC 0.92). Greenbaum et al. (2019) iteratively developed their own structured 277 

ontology and were eventually able to map 97.2% of presentations to their structured ontology 278 

using their NLP based predictive model.  279 

 280 

Prediction of investigations  281 

Multimodal models incorporating NLP were able to predict diagnostic imaging performed in 282 

the ED.39, 40 Zhang et al. developed a model to predict need for advanced diagnostic imaging 283 

(computed tomography, ultrasound, magnetic resonance imaging) in the ED, and obtained an 284 

AUC 0.78 using a “bag-of-words” model. Zhang et al. were also able to predict the need for 285 

any diagnostic imaging in a paediatric population with an AUC 0.824. The inclusion of 286 

unstructured variables improved performance slightly in both cases.  287 

 288 

Identifying infection 289 
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Horng et al. (2017) found that the incorporation of free-text data improves the discriminatory 290 

ability (increase in AUC from 0.67 to 0.86) for identifying sepsis (defined by ICD-9-CM 291 

code) in the ED at triage. 292 

 293 

Multimodal models  294 

Eleven papers compared ML models that used only structured data to multimodal models that 295 

incorporated both structured data and free-text data.34-40, 43-46 The best performing model in 296 

each of these papers incorporated free-text. The largest improvement in model performance 297 

from incorporating free-text was found by Horng et al. (increase in AUC from 0.67 to 0.86 298 

for identifying infection). The addition of free-text did not improve model AUC in one case, 299 

however, did improve model average precision.44 There were no cases where the 300 

incorporation of free-text into the model resulted in worse performance. Six papers assessed 301 

models that used only free-text, with no structured data.30, 36,  37, 39, 40, 42 Tahayori et al. were 302 

able to use only free-text data to predict admission with high accuracy (83%). Zhang et al. 303 

used free-text to predict performance of diagnostic imaging. Gligorijevic’s “Deep Attention” 304 

models using only unstructured data outperformed those using only structured data. 305 

Incorporating both structured data and free-text data improved results when compared to 306 

models that used only free-text data, though often only a small improvement was found.  307 

 308 

Modern NLP compared to traditional NLP 309 

Three papers directly compared modern NLP based on DL to more traditional ML techniques 310 

such as bag-of-words and topic modelling.30, 38, 48 Modern DL based NLP outperformed 311 

traditional ML based NLP in two cases.30, 38 In contrast, Kim et al. found that a BERT based 312 

DL model did not perform better than ML based models, though their population was 313 

relatively small. Chang et al. compared the performance of multiple modern DL based 314 
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models, finding BERT slightly outperformed Embeddings from Language Models (ELMo) 315 

and Long Short-Term Memory (LSTM) networks in mapping free-text chief complaints to 316 

structured fields.  317 

 318 

Integration into practice 319 

Greenbaum et al. was the only study that reported the deployment of an NLP based model 320 

into clinical practice. Greenbaum et al. aimed to increase the ease of high-quality structured 321 

data collection at triage through the use of an NLP based model. Their model used both free-322 

text triage notes and structured data to provide contextual autocomplete of chief complaint 323 

label, and also show the user a list of the top five most likely chief complaints. Prior to 324 

implementation of their model, 26.2% of patient encounters resulted in structured data 325 

capture. Following implementation this increased to 97.2%. The authors aggregated multiple 326 

incidents of unscheduled downtime that occurred throughout the study to assess the impact of 327 

their model. When ML based autocomplete was not operational (and instead alphabetised 328 

autocomplete was shown), the percent of encounters that resulted in structure data capture 329 

decreased from 97.2% to 89.2%. The number of keystrokes typed for each presenting 330 

problem decreased from 11.6 pre-implementation to 0.6 post implementation. Contextual 331 

autocomplete was associated with qualitatively more complete and higher quality structured 332 

documentation of chief complaints.  333 

 334 

Study quality—Risk of bias within and across studies 335 

A summary of the PROBAST assessment is provided in Table 2. Overall, 15 studies were 336 

considered to have a high risk of bias. Four studies were assessed as having a low risk of bias. 337 

One study had high applicability concerns and 18 studies had low applicability concerns. The 338 

 . CC-BY-NC 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 21, 2022. ; https://doi.org/10.1101/2022.12.20.22283735doi: medRxiv preprint 

https://doi.org/10.1101/2022.12.20.22283735
http://creativecommons.org/licenses/by-nc/4.0/


 14

four studies assessed as having low risk of bias also had low applicability concerns. No 339 

studies referred to a previously published or publicly registered protocol.  340 

 341 

Availability of datasets and code 342 

Availability of study datasets and code is shown in Table 3. Data was publicly available for 343 

three studies (all by Zhang et al.) and was available on request from study authors for a 344 

further four studies.30, 34, 35 39, 40 43, 44 One study reported plans to release a modified de-345 

identified dataset, however at the time of this review this is still pending approvals.45 The 346 

model code was publicly available for two studies.42, 45 Notably, the code repository from 347 

Chang et al. was well organised and contained clear instructions for researchers on how to 348 

download their pretrained model and apply it to their own dataset. 349 

 350 

DISCUSSION 351 

NLP at triage 352 

This review finds that NLP has been applied to data available at the time of ED triage to 353 

predict a range of outcomes, with a focus on predicting need for admission and assigned 354 

triage score. The results of this review also highlight that unstructured free-text triage notes 355 

contain valuable information. Through NLP techniques, this information has started to 356 

become accessible to use for automated predictive purposes. The combination of free-text 357 

nursing triage notes with structured data appears to result in the best model performance, 358 

however free-text nursing triage notes alone can be used by NLP algorithms to predict need 359 

for admission and need for diagnostic imaging.18, 30, 39, 40 A benefit of developing models that 360 

require only free-text as an input is that it may allow for easier portability of predictive 361 

models between different triage systems.30  362 

 363 
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Structured data capture 364 

Accurate and consistent structured capture of patients’ presenting complaints is important for 365 

research, service improvement, and public health initiatives.49 Common medical ontologies 366 

also improve system interoperability.50 However collection of structured data is often 367 

difficult, especially when contrasted with the ease and expressiveness of free-text entry.49 In a 368 

rare singular example of NLP being deployed into routine clinical practice at ED triage, 369 

Greenbaum et al. developed, implemented, and prospectively evaluated an NLP driven user 370 

interface to mitigate the challenges of structured data capture.49 Promisingly, they report that 371 

their NLP based contextual auto-predict did not add additional burden to users and made 372 

structured data collection easier than unstructured data collection. Because of this, structured 373 

data collection increased significantly. 374 

 375 

Improving ED workflow and efficiency 376 

ED overcrowding is a serious issue worldwide, with significant negative impact on patient 377 

morbidity and mortality. Having an emergency physician triage patients (or implementing a 378 

rapid assessment zone) enables early senior clinician input and decision making, and can lead 379 

to a reduced patient ED length of stay.51, 52 Patient time spent in the waiting room is likely 380 

underutilised.52 NLP could be applied to triage notes to predict which patients will likely 381 

require investigations such as blood tests or imaging, and in doing so allow for these 382 

investigations to be ordered immediately on arrival, rather than only being ordered after they 383 

are seen by a doctor. An emergency physician could review and then approve or reject 384 

suggested investigations. In this way, applying NLP to triage could leverage the expertise of 385 

the emergency physician.  386 

 387 
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Delays in specialist consultation and subsequent specialist review contribute to reduced ED 388 

throughput, and improvements in the consultation process from the ED have the potential to 389 

reduce ED length of stay.53 Using NLP to identify at the point of triage, patients who are 390 

likely to require admission could assist with hospital resource allocation, improve patient 391 

flow, and allow for anticipation of system stressors, such as worsening access block.18, 30 Bed 392 

allocation could begin at the time of patient triage, rather than hours into a patient’s ED 393 

stay.30 To fully realise the potential of predicting admission at triage, the NLP model would 394 

need to be supported by other infrastructure. For example, an “early admission team” could 395 

review patients who are flagged as very likely to be admitted, or stable patients not needing 396 

acute resuscitation could be diverted away from the ED and sent to the appropriate specialty 397 

team.  398 

 399 

NLP compared to humans 400 

Human performance may be a reasonable baseline for ML models to meet to be considered 401 

accurate enough for implementation into clinical practice. Few studies have compared NLP 402 

models at triage to human performance. Such comparisons will be crucial in future work. 403 

Tahayori et al. was the only study that compared results from NLP models to emergency 404 

physicians.30 Ivanov et al., Sterling et al, and Gligorijevic et al. compared NLP based models 405 

to nurses in assigning triage scores and found model accuracy was similar to nurses.17, 36, 47  406 

 407 

Interpretability 408 

Few papers attempted to address human interpretability of models. While DL has been 409 

criticised as being a "black box", there is ongoing work to develop more “explainable AI”.54, 410 

55 Wang et al. show how models could be somewhat more interpretable.38 Their triage model 411 

is able to highlight free-text triage notes, with a darker colour corresponding to the sections 412 
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of text that was more heavily weighted by the model. This provides an initial "sense check" 413 

that humans can then combine with their own experience and knowledge. 414 

 415 

Modern NLP 416 

While it is difficult to compare studies due to their heterogeneity, advanced DL based NLP 417 

appears to outperform traditional NLP. This is certainly the case when compared internally 418 

within studies and is consistent with previous NLP research.56 BERT appears to be the most 419 

popular advanced NLP that has been used. BERT was released in October 2018 and at the 420 

time of release, BERT outperformed other NLP models.27 However, of the 16 papers 421 

published since the release of BERT, only three have used it. Other large models have 422 

subsequently been released. For example, GPT-3 is a 175 billion parameter language model 423 

that was released in 2020 and is reported to outperform BERT in various circumstances.28 424 

Chowdhery et al. have recently published Pathways Language Model (PaLM), a 540-billion 425 

parameter model that achieves further increases in performance.29  426 

 427 

FUTURE DIRECTIONS 428 

Triage is a promising place to start applying NLP in the ED. Large datasets with clearly 429 

labelled outcomes makes triage well suited to applications of ML. Triage information is often 430 

available hours before emergency physician documentation, and accurate predictions made at 431 

triage have the potential to increase healthcare system efficiency.18 There is also the 432 

possibility of close human oversite if deployed in practice. Future work could aim to predict 433 

other important patient-oriented outcomes at the time of triage such as wait times, need for 434 

advanced cardiovascular investigations, or need for surgery.  435 

 436 

Incorporating clinical gestalt 437 
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Sterling et al. 2020 noted the difficulty in capturing the general clinical impression of the 438 

triage nurse.17 Ivanov et al. also noted that important contextual aspects at triage were not 439 

available for consideration by ML models.47 Future work could assess the impact of 440 

incorporating triage nurses’ gestalt into predictive models. This could be expanded to also 441 

capture patients’ predictions regarding their need for admission to hospital. Other contextual 442 

data available at the time of triage such as the number of patients currently waiting, the 443 

number of patients currently in the ED, and number of admitted patients in the hospital could 444 

also be incorporated into ML models.  445 

 446 

Integration with other AI systems 447 

There are opportunities to integrate NLP as part of a larger AI based system. Kim et al. 448 

provides an interesting example of how various AI based technologies can be combined.48 449 

Speech recognition could be used to automatically generate a transcript of the entire triage 450 

conversation, which could then be used by NLP models. However, the performance of speech 451 

recognition technologies would likely deteriorate in a noisy ED, and combining multiple 452 

complex AI based technologies raises the possibility that small initial errors could be 453 

amplified as they propagate through the models. NLP models at triage could also be 454 

integrated with other novel AI based interventions, such as automated monitoring of patients’ 455 

vital signs while they are in the waiting room, or with data entered by patients themselves in 456 

AI based self-triage applications.  457 

 458 

Pre-trained models for ED triage 459 

Publicly available large DL based language models have often been trained on corpuses 460 

containing text from newspapers, books, and websites.27, 28 Triage notes are often quite short 461 

and contain a number of unique and idiosyncratic abbreviations and acronyms not common in 462 
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everyday English language.17, 30 The benefits of applying DL based NLP models to triage 463 

notes may yet to be fully realised, as they were not developed for triage specific purposes. 464 

DL based NLP models that have been fine-tuned on large corpuses of medical text have been 465 

released, however they have not been applied to ED triage. Large publicly available clinical 466 

databases such as MIMIC-IV that contain ED triage notes with linked outcomes are likely to 467 

be helpful in further model development and may facilitate direct comparisons between 468 

models developed by different research groups.57, 58 Triage focused NLP research could also 469 

benefit from groups sharing large language models that have been pre-trained on triage data. 470 

These models could be used as starting points by others, though it is unknown whether such 471 

models’ performance would generalise across different healthcare settings and triage systems. 472 

It is also unknown if the length of triage notes impacts model performance. This could be 473 

evaluated in future work. 474 

 475 

Prospective and external validation is needed 476 

The majority of research so far has been retrospective and completed in the USA. There is a 477 

significant need for prospective evaluation and external validation, especially in other 478 

countries and triage systems.  479 

 480 

Clinical impact and risk 481 

NLP models have rarely been deployed at ED triage. As such, it is unknown what impact 482 

these tools could have on clinical practice. The introduction of a new tool into a complex 483 

system is likely to have unintended consequences, and use of the tool may itself change 484 

practice. Triage notes may be written in a different way if it is known that they are being used 485 

for predictive purposes. There may also be unintended harms. For example, telling a patient 486 

at triage that they are likely to be admitted or to have a long wait time, could influence their 487 
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behaviour and increase the number of patients who leave without being seen. It may be useful 488 

to establish the performance benchmarks predictive models must meet prior to 489 

implementation into clinical practice. This could be done through further studies comparing 490 

NLP model performance to emergency physicians and nurses. Further research is also 491 

required to understand how to best integrate early admission predictions into hospital systems 492 

and clinical practice. 493 

 494 

NLP models can be retrained and updated as new data becomes available. Therefore, model 495 

performance may change over time. It will be important to ensure that there is appropriate 496 

algorithm stewardship in place prior to clinical use.59 Predictive models are trained on data 497 

that reflects current practice. This engrains the assumption that current practice is appropriate, 498 

which may not be the case.  499 

 500 

Acceptability 501 

It is also unknown if the use of NLP at triage is acceptable to patients and staff. It will be 502 

important to involve clinicians, patients, and healthcare consumer groups in the development 503 

and governance of any future implementation projects. It will also be important to ensure that 504 

these systems do not place further burden on users. Ease of use and perceived clinical impact 505 

will likely be important factors for adoption by clinicians.  506 

 507 

Ethical issues  508 

Race, age, and gender biases at ED triage have been previously reported.60-62 Concerns over 509 

bias in ML models have been well described, and new tools are being developed to assess 510 

such biases.63-65 At its best, NLP at triage could help reduce bias through standardising triage 511 

decisions and providing a more objective triage score. However, at its worst NLP at triage 512 
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could further ingrain existing biases into practice, under the guise of objectivity and hidden in 513 

the opacity of abstract algorithms. Patient apprehensions and concerns about the use of AI 514 

will also need to be considered. While the emerging body of literature shows patients view 515 

AI largely positively, they do have some concerns with its use in healthcare.66 These include 516 

perceptions that AI is less accurate than clinicians, there is a lack of transparency in 517 

predictions, and there are risks to the privacy of their personal healthcare data.67-72 Further 518 

research investigating the impact of NLP based tools on vulnerable and minority populations 519 

is warranted.  520 

 521 

LIMITATIONS 522 

Study level 523 

Only one study contained prospectively validated results, and no studies contained results 524 

that were externally validated at a separate site. Results reported may not be generalisable to 525 

other settings. There was inconsistent reporting of methods and results among studies. The 526 

majority of studies (79%) were assessed to have a high risk of bias.  527 

 528 

Review level 529 

Heterogeneity of the included studies precluded meta-analysis which limits the level of 530 

evidence this review provides. All studies reported positive results for NLP at triage, which 531 

may reflect publication bias. While we took significant care to ensure our search strategy was 532 

broad enough to capture all relevant literature, the variety of NLP and ML terminology 533 

means that some studies may have been missed. Non-English articles, and articles published 534 

prior to 2012 were also excluded from our search.  535 

 536 

CONCLUSION 537 
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The use of NLP at triage appears feasible and could accurately predict important patient-538 

oriented outcomes including need for admission and need for critical care. However, there are 539 

few examples of implementation into clinical practice and most research is retrospective. The 540 

potential benefits of using NLP at triage are yet to be realised. Further research is needed to 541 

prospectively assess the acceptability and impact of implementing NLP at triage on staff, 542 

patients, and the healthcare system.  543 

 544 

 545 

 546 

 547 
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Year First Author Country Study design  

 

Primary Outcome Sites Population Input data NLP/ML Model Comparison Results 

2021 Kim South 

Korea 

Retrospective Assignment of triage 

score (KTAS).  

 

Single-centre  

(1 site) 

762 simulated 

triage cases  

Human transcribed and ML-

transcribed simulated triage 

dialogue  

BERT SVM, KNN, RF Model performance with IBM's auto-transcribed test 

dataset.  

  BERT-KTAS AUC 0.82 (0.75–0.87) 

  SVM AUC 0.86 (0.81–0.90)  

  KNN AUC 0.89 (0.85–0.93) 

  RF AUC 0.86 (0.82–0.9) 

2021 Ivanov USA Retrospective Assignment of triage 

score (ESI). 

Multi-centre  

(2 sites) 

147 052 patient 

encounters (age 

1 year or older)  

Blood glucose, chief 

complaint (free-text), 

demographics, FHx, history 

of presenting complaint (free-

text), mental status, mode of 

arrival, pain score, SHx, vitals 

Clinical-NLP 

(developed by 

authors), XGBoost 

Nurse triage  ML Model AUC 0.85 

Nurse triage AUC 0.75 

 

2020 Tahayori Australia Retrospective Patient disposition 

(admission or 

discharge). 

Single-centre  

(1 site) 

249 532 patient 

encounters 

(adult) 

History of presenting 

complaint (free-text) 

BERT Emergency 

consultants (5), 

Bag-of-words  

BERT    AUC 0.88   Accuracy 0.83 

Emergency Consultant   Accuracy 0.78 

Bag-of-words    AUC 0.77   Accuracy 0.72 

2020 Sterling USA Retrospective 

 

  

Assignment of triage 

score (ESI). 

Multi-centre  

(3 sites) 

226 317 patient 

encounters 

(adult and 

paediatric) 

Chief complaint (structured), 

demographics, history of 

presenting complaint (free-

text), medication, mental 

status, mode of arrival, pain 

score, PMHx, vitals 

LSTM Emergency 

nurses (2) 

 

 

Model predictions (on nursing prediction subset)  

F1 = 0.589    Accuracy 0.659 

Nurse predictions (on 1000 presentations) 

F1 = 0.592    Accuracy 0.690 

2020 Roquette Brazil Retrospective Patient disposition 

(admission or 

discharge). 

Single-centre  

(1 site) 

499 853 patient 

encounters 

(paediatric) 

Blood glucose, chief 

complaint (free-text), 

demographics, history of 

presenting complaint (free-

text), medication, pain score, 

past investigation requests, 

PMHx, triage score (MTS), 

vitals 

LSTM SVM  

ElasticNet 

DNN 

Catboost 

(structured) 

XGBoost 

Catboost (text) 

SVM AUC 0.687 

ElasticNet AUC 0.840 

CatBoost without text features AUC 0.872 

DNN AUC 0.877 

XGBoost AUC 0.890 

CatBoost with text features AUC 0.891 
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2020 Joseph USA Retrospective Identification of 

critical illness (death 

within 24 hours of 

arrival, ICU 

admission from the 

ED or within 24 

hours of ward 

admission). 

Single-centre  

(1 site) 

445 925 patient 

encounters 

(adult) 

Demographics, chief 

complaint (free-text), triage 

score (ESI), vitals 

LSTM+DNN 

 

 

DNN (structured 

data only), LR, 

XGBoost, 

Abnormal vital 

sign trigger, ESI 

score.  

Abnormal vital sign trigger AUC 0.521  

ESI score ≤ 2 AUC 0.672  

LR AUC 0.804 

Structured data only 

  DNN AUC 0.812 

  XGBoost AUC 0.820  

Combined structured and text data 

  LSTM+DNN AUC 0.857  

2020 

(1) 

Fernandes Portugal, 

USA 

Retrospective Identification of 

critical illness (ICU 

admission within 24 

hours of triage). 

Multi-centre  

(2 sites) 

Site one  

120 649 patient 

encounters 

(adult)  

 

Site two 

235 826 patient 

encounters 

(adult) 

Blood glucose, chief 

complaint (structured and 

free-text), exams prescribed at 

triage, mental status, mode of 

arrival, pain score, time of 

triage, triage score (ESI or 

MTS), vitals 

Term frequency–

inverse document 

frequency (TF-idf) + 

LR 

LR model 

trained using 

only triage 

priorities (ESI or 

MTS) 

Site 1  

  ESI only 

    LR AUC 0.78 

  ESI + clinical variables + chief complaint 

    LR AUC 0.92 

Site 2 

  MTS only 

    LR 0.74 

  MTS + clinical variables + chief complaint 

    LR 0.86 

2020 

(2) 

Fernandes Portugal, 

USA 

Retrospective Identification of 

critical illness (in-

hospital death or 

cardiopulmonary 

arrest within 24 

hours of triage).  

Single-centre  

(1 site) 

235 826 patient 

encounters 

(adult) 

Blood glucose, chief 

complaint (free-text), exams 

prescribed at triage, mental 

status, mode of arrival, pain 

scale, time of triage, vitals 

Term frequency–

inverse document 

frequency (TF-idf) + 

LR/RF/XGBoost 

LR trained using 

only triage 

priorities (ESI). 

ESI only 

  LR AUC 0.85 

Clinical variables only 

  XGBoost AUC of 0.96  

Clinical variables + chief complaint 

  XGBoost AUC 0.96 

2020 Chang USA Retrospective Prediction of 

provider-assigned 

chief complaint 

label. 

Multi-centre  

(7 sites) 

1 799 365 free-

text chief 

complaints 

(adult and 

paediatric) 

History of presenting 

complaint (free-text) 

BERT LSTM, ELMo Full dataset (434 labels) 

  BERT Accuracy    Top-1 0.65    Top-5 0.92 

  ELMo Accuracy    Top-1 0.63    Top-5 0.90 

  LSTM Accuracy    Top-1 0.63    Top-5 0.90 
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2020 Arnaud France Retrospective Patient disposition 

(admission or 

discharge). 

Single-centre  

(1 site) 

Approximately  

190 000 patient 

encounters 

(adult) 

Arrival time, bladder volume, 

blood glucose, breath alcohol, 

capillary haemoglobin, 

capillary ketones, 

demographics, history of 

presenting complaint (free-

text), mode of arrival, pain, 

PMHx (free-text), triage 

score, vitals 

CNN (textual data) + 

ANN (structured data) 

 

None CNN+ANN 

  AUC ≈ 0.83 

2019 

(1) 

Zhang USA Retrospective Use of advanced 

diagnostic imaging 

(CT, US, MRI) 

during ED visit.  

Multi-centre 

(300 sites) 

139 150 

presentations 

(adult) 

Arrival time, demographics, 

history of presenting 

complaint (free-text), mode of 

arrival, pain scale, PMHx, 

triage score, vitals, whether 

the visit was related to an 

injury/poisoning/adverse 

effect of medical treatment 

Latent Dirichlet 

Allocation (LDA) 

algorithm + LR 

None Any advanced diagnostic imaging use 

LDA + LR 

  Unstructured variables AUC 0.74 

  Structured variables AUC 0.69  

  Unstructured + Structured variables AUC 0.78 

 

 

2019 

(2) 

Zhang USA Retrospective Performance of any 

diagnostic imaging 

during ED visit. 

Multi-centre 

(300 sites) 

27 665 patient 

encounters 

(paediatric) 

Arrival time, demographics, 

history of presenting 

complaint (free-text), mode of 

arrival, pain scale, PMHx, 

triage score, vitals, whether 

the visit was related to an 

injury/poisoning/adverse 

effect of medical treatment 

BoW + PCA + LR  None BoW + PCA + LR 

Any imaging 

  Unstructured variables  AUC 0.810  

  Structured variables       AUC 0.706    

  Unstructured + structured AUC 0.824  

2019 Wang China Retrospective Assignment of triage 

score. 

Single-centre  

(1 site) 

70 918 patient 

encounters 

(adult) 

Chief complaint (free-text), 

demographics, history of 

presenting complaint (free-

text), physical examination 

(free-text), vitals 

 

“DeepTriager” model 

(based on 

LSTM+DNN) 

NEWS + 

LR/BOW/RF 

NEWS + LR                   AUC 0.8631 

NEWS + BOW + LR     AUC 0.9016 

NEWS + BOW + RF     AUC 0.9257 

NEWS + LSTM             AUC 0.9525 

“DeepTriager”               AUC 0.9594 
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2019 Sterling USA Retrospective Patient disposition 

(admission or 

discharge). 

Multi-centre  

(3 sites) 

256 878 patient 

encounters. 

History of presenting 

complaint (free-text) 

Paragraph 

vectors/BoW/Topic 

modelling + ANN 

None Paragraph vector + ANN    AUC=0.737 

Bag-of-words + ANN         AUC=0.785 

Topic modelling + ANN    AUC 0.687 

2019 Greenbaum USA Retrospective 

then 

prospective 

 

 

Percent of 

presenting problems 

entered at triage able 

to be automatically 

mapped to a 

structured ontology.  

Single-centre  

(1 site) 

279 231 patient 

encounters total  

(78 157 patient 

encounters were 

post-

implementation) 

 

Demographics, history of 

presenting complaint (free-

text), pain score, triage score 

(ESI), vitals 

BoW + SVM Pre-

implementation 

practice 

 

 

Pre-implementation 

  Structured data capture 26.2% 

  Keystrokes per presenting problem 11.6 

Post-implementation  

  Structured data capture 97.2% 

  Keystrokes per presenting problem 0.6 

  Higher overall quality (qualitative) 

2019 Choi South 

Korea 

Retrospective Assignment of triage 

score (KTAS).    

Single-centre  

(1 site) 

138 022 patient 

encounters 

(adults) 

Arrival time, chief complaint 

(structured), demographics, 

history of presenting 

complaint (free-text), mental 

status, mode of arrival, pain 

location and intensity, vitals 

BoW + 

LR/RF/XGBoost 

None LR (structured data only) AUC = 0.8812 

LR (text data only) AUC = 0.8595 

LR (structured and text) AUC = 0.9053 

RF (structured and text) AUC = 0.9220  

XGB (structured and text data) AUC = 0.9220 

2018 Gligorijevic USA Retrospective Assignment of triage 

score (ESI). 

Single-centre  

(1 site) 

338 500 patient 

encounters 

Arrival time, chief complaint 

(free-text), demographics, 

history of presenting 

complaint (free-text), 

medication, mode of arrival, 

PMHx, vitals 

“Deep Attention 

Model (DAM)” based 

on LSTM+DNN 

LR, ANN, 

LSTM, CNN,  

Approximated 

nurses’ 

performance. 

LR (structured data only) AUC 0.5277 

ANN (structured data only) AUC 0.5689 

LSTM (structured + text) AUC 0.8523 

CNN (structured + text)  AUC 0.8609 

DAM (text data only) AUC 0.8763 

DAM (structured + text)  AUC 0.8797 

Approximated nurses’ performance: Accuracy 43.6% 

DAM       (structured + text)             Accuracy of 59.6% 

2017 Zhang USA Retrospective Patient disposition 

(admission or 

discharge). 

Multi-centre 

(642 sites) 

47 200 patient 

encounters 

(paediatric and 

adult) 

Arrival time, demographics, 

chief complaint (free-text), 

mode of arrival, pain score, 

PMHx, triage score, vitals, 

whether the visit was related 

to an injury/poisoning/adverse 

effect of medical treatment 

BoW + PCA + ANN LR LR model 1 (text) AUC 0.742 

LR model 2 (structured) AUC 0.824 

LR model 3 (structured and text) AUC 0.846 

ANN model 1 (text) AUC 0.753 

ANN model 2 (structured) AUC 0.823  

ANN model 3 (structured + text) AUC 0.844 
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2017 Horng USA Retrospective Diagnosis of 

infection in the 

emergency 

department.  

Single-centre  

(1 site) 

230 936 patient 

encounters 

Demographics, chief 

complaint (free-text), history 

of presenting complaint (free-

text), pain score, triage score 

(ESI), vitals 

BoW/Topic model + 

SVM 

LR, RF, Naive 

Bayes 

SVM (structured)                         AUC 0.67 

SVM (structured + text)               AUC 0.86 

LR (structured + text)                  AUC 0.86 

Naïve Bayes (structured + text)   AUC 0.83 

RF (structured + text)                   AUC 0.87                     

 

Table 1 – Summary of included studies.   

 

Abbreviations 

KTAS - Korean Triage and Acuity Scale 

ESI - Emergency Severity Index 

ICU - Intensive Care Unit 

ED - Emergency Department 

ML - Machine learning 

FHx - Family history 

SHx - Social history  

PMHx - Past medical history 

Vitals - Respiratory rate (RR), heart rate (HR), systolic blood pressure (SBP), diastolic blood pressure (DBP), temperature (Temp), and oxygen 

saturation (SPO2). 

MTS - Manchester Triage system 

BERT - bidirectional encoder representations from transformers 

XGBoost - eXtreme Gradient Boosting 

LSTM - Long short-term memory 
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DNN - Deep neural network 

LR - Logistic regression 

RF - Random forest 

CNN - Convolutional neural network 

ANN - Artificial neural network 

BoW - Bag-of-words 

PCA - Principal component analysis  

SVM - Support vector machine 

KNN - k-nearest neighbors 

F1 - the harmonic mean of precision and recall 

AUC - Area under the receiver operating characteristic curve 

ELMo - Embeddings from Language Model 

NEWS - National Early Warning Score
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Study Risk of Bias (ROB)  Applicability  Overall 

Participants Predictors Outcome Analysis  Participants Predictors Outcome  ROB Applicability 

Kim et al. 2021 ? ? + -  - - +  - - 

Ivanov et al. 2021 + + - -  + + +  - + 

Tahayori et al. 2020 + + + +  + + +  + + 

Sterling et al. 2020 ? + ? -  + + ?  - + 

Roquette et al. 2020 + + + +  + + +  + + 

Joseph et al. 2020 + + + -  + + +  - + 

Fernandes et al. 2020 (2) - + ? +  + + +  - + 

Fernandes et al. 2020 (1) - + ? +   + + +  - + 

Chang et al. 2020 + + - +  + + +  - + 

Arnaud et al. 2020 - + + -  + + +  - + 

Zhang et al. 2019 (2) ? + + -  + + +  - + 

Zhang et al. 2019 (1) ? + + -  + + +  - + 

Wang et al. 2019 + + + -  + + +  - + 

Sterling et al. 2019 + + + -  + + +  - + 

Greenbaum et al. 2019 + + + +  + + +  + + 

Choi et al. 2018 + + ? -  + + +  - + 

Gligorijevic 2018 + + - ?  + + +  - + 

Zhang et al. 2017 + + + +  + + +  + + 

Horng et al. 2017 + + - +  + + +  - + 

 

 

Table 2. PROBAST assessment of the included studies. 

PROBAST = Prediction model Risk Of Bias ASsessment Tool; ROB = risk of bias. 

+ indicates low ROB/low concern regarding applicability;  

− indicates high ROB/high concern regarding applicability; and  

? indicates unclear ROB/unclear concern regarding applicability 
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Study Dataset available Code available 

Kim et al. 2021 No No 

Ivanov et al. 2021 No No 

Tahayori et al. 2020 Yes* No 

Sterling et al. 2020 No No 

Roquette et al. 2020 No No 

Joseph et al. 2020 No** Yes 

Fernandes et al. 2020 (2)  Yes* No 

Fernandes et al. 2020 (1) Yes* No 

Chang et al. 2020 No Yes  

Arnaud et al. 2020 No No 

Zhang et al. 2019 (2) Yes *** No 

Zhang et al. 2019 (1) Yes *** No 

Wang et al. 2019 No No 

Sterling et al. 2019 No No 

Greenbaum et al. 2019 No No 

Choi et al. 2018 No No 

Gligorijevic 2018 No No 

Zhang et al. 2017 Yes*** No 

Horng et al. 2017 Yes* No 

 

Table 3. Availability of dataset and code for included studies. 

 

* Data available on request from the authors and may be released to researchers following the 

signing of a data sharing agreement.  

 

** Pending approval, a modified, de-identified dataset containing modified chief complaint 

text data will be uploaded. Approval still pending at time of this review.  

 

*** All data freely and publicly available.  

 

 

 

 . CC-BY-NC 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 21, 2022. ; https://doi.org/10.1101/2022.12.20.22283735doi: medRxiv preprint 

https://doi.org/10.1101/2022.12.20.22283735
http://creativecommons.org/licenses/by-nc/4.0/


 . CC-BY-NC 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 21, 2022. ; https://doi.org/10.1101/2022.12.20.22283735doi: medRxiv preprint 

https://doi.org/10.1101/2022.12.20.22283735
http://creativecommons.org/licenses/by-nc/4.0/

