It is made available under a CC-BY-NC 4.0 International license .

 Systematic Review Authors: Jonathon Stewart^{1,2,3*}, Juan Lu^{1,2,4}, Adrian Goudie³, Glenn Arendts^{1,3}, Shiv A Meka⁵, Sam Freeman^{6,7}, Katie Walker⁸, Peter Sprivulis⁹, Frank Sanfilippo¹⁰, Mohammed Bennamoun⁴, Girish Dwivedi^{1,2,11} Affiliations: ¹ School of Medicine. The University of Western Australia, Crawley, Western Australia, Australia ² Harry Perkins Institute of Medical Research, Murdoch, Western Australia, Australia ³ Department of Emergency Medicine, Fiona Stanley Hospital, Murdoch, Western Australia, ⁴ Department of Computer Science and Software Engineering, The University of Western Australia, ⁵ HIVE & Data and Digital Innovation, Royal Perth Hospital, Perth, Western Australia, ⁶ Department of Emergency Medicine, St Vincent's Hospital Melbourne, Melbourne, Victoria, ⁷ SensiLab, Monash University, Melbourne, Victoria, Australia ⁹ Western Australia Department of Health, East Perth, Western Australia, Australia ⁹ Western Australia Department of Health, East Perth, Western Australia, Australia ¹⁰ School of Clinical Sciences at Monash Health, Monash University, Melbourne, Victoria, Australia ¹¹ Department of Cardiology, Fiona Stanley Hospital, Murdoch, Western Australia, Australia ¹² School of Population and Global Health, University of Western Australia, Australia, Australia ¹¹ Department of Cardiology, Fiona Stanley Hospital, Murdoch, Western Australia, Australia, Australia ¹¹ Department of Cardiology, Fiona Stanley Hospital, Murdoch, Western Australia, Australia 	1	Title: Applications of Natural Language Processing at Emergency Department Triage: A
 Authors: Jonathon Stewart^{1, 2, 3*}, Juan Lu^{1, 2, 4}, Adrian Goudie³, Glenn Arendts^{1, 3}, Shiv A Meka⁵, Sam Freeman^{6, 7}, Katie Walker⁸, Peter Sprivulis⁹, Frank Sanfilippo¹⁰, Mohammed Bennamoun⁴, Girish Dwivedi^{1, 2, 11} Affiliations: ¹ School of Medicine. The University of Western Australia, Crawley, Western Australia, Australia ² Harry Perkins Institute of Medical Research, Murdoch, Western Australia, Australia ³ Department of Emergency Medicine, Fiona Stanley Hospital, Murdoch, Western Australia, Australia ⁴ Department of Computer Science and Software Engineering, The University of Western Australia, Australia ⁵ HIVE & Data and Digital Innovation, Royal Perth Hospital, Perth, Western Australia, Australia ⁶ Department of Emergency Medicine, St Vincent's Hospital Melbourne, Melbourne, Victoria, Australia. ⁷ SensiLab, Monash University, Melbourne, Victoria, Australia ⁹ Western Australia Department of Health, East Perth, Western Australia, Australia. ¹⁰ School of Population and Global Health, University of Western Australia, Crawley, Western Australia ¹¹ Department of Cardiology, Fiona Stanley Hospital, Murdoch, Western Australia, Australia. 	2	Systematic Review
 Authors: Jonathon Stewart^{1,2,3°}, Juan Lu^{1,2,4}, Adrian Goudie³, Glenn Arendts^{1,3}, Shiv A Meka⁵, Sam Freeman^{6,7}, Katie Walker⁸, Peter Sprivulis⁹, Frank Sanfilippo¹⁰, Mohammed Bennamoun⁴, Girish Dwivedi^{1,2,11} Affiliations: ¹ School of Medicine. The University of Western Australia, Crawley, Western Australia, Australia ² Harry Perkins Institute of Medical Research, Murdoch, Western Australia, Australia ³ Department of Emergency Medicine, Fiona Stanley Hospital, Murdoch, Western Australia, ⁴ Department of Computer Science and Software Engineering, The University of Western Australia, ⁵ HIVE & Data and Digital Innovation, Royal Perth Hospital, Perth, Western Australia, ⁶ Australia ⁶ Tepartment of Emergency Medicine, St Vincent's Hospital Melbourne, Melbourne, Victoria, Australia ⁶ SensiLab, Monash University, Melbourne, Victoria, Australia ⁷ SensiLab, Monash University, Melbourne, Victoria, Australia ⁹ Western Australia Department of Health, East Perth, Western Australia, Australia ¹⁰ School of Population and Global Health, University of Western Australia, Australia ¹¹ Department of Cardiology, Fiona Stanley Hospital, Murdoch, Western Australia, Australia 	3	
 Meka³, Sam Freeman^{6, 7}, Katie Walker⁸, Peter Sprivulis⁹, Frank Sanfilippo¹⁰, Mohammed Bennamoun⁴, Girish Dwivedi^{1, 2, 11} Affiliations: ¹ School of Medicine. The University of Western Australia, Crawley, Western Australia, Australia ² Harry Perkins Institute of Medical Research, Murdoch, Western Australia, Australia ³ Department of Emergency Medicine, Fiona Stanley Hospital, Murdoch, Western Australia, Australia ⁴ Department of Computer Science and Software Engineering, The University of Western Australia, Crawley, Western Australia, Australia ⁵ HIVE & Data and Digital Innovation, Royal Perth Hospital, Perth, Western Australia, Australia ⁶ Department of Emergency Medicine, St Vincent's Hospital Melbourne, Melbourne, Victoria, Australia. ⁷ SensiLab, Monash University, Melbourne, Victoria, Australia ⁹ Western Australia Department of Health, East Perth, Western Australia, Australia ⁹ Western Australia Department of Health, University of Western Australia, Australia ¹⁰ School of Population and Global Health, University of Western Australia, Australia, Australia ¹¹ Department of Cardiology, Fiona Stanley Hospital, Murdoch, Western Australia, Australia, Australia 	4	Authors: Jonathon Stewart ^{1, 2, 3*} , Juan Lu ^{1, 2, 4} , Adrian Goudie ³ , Glenn Arendts ^{1, 3} , Shiv A
 Bennamoun⁴, Girish Dwivedi^{1, 2, 11} Affiliations: ¹ School of Medicine. The University of Western Australia, Crawley, Western Australia, Australia ² Harry Perkins Institute of Medical Research, Murdoch, Western Australia, Australia ³ Department of Emergency Medicine, Fiona Stanley Hospital, Murdoch, Western Australia, Australia ⁴ Department of Computer Science and Software Engineering, The University of Western Australia, Crawley, Western Australia, Australia ⁵ HIVE & Data and Digital Innovation, Royal Perth Hospital, Perth, Western Australia, Australia ⁶ Department of Emergency Medicine, St Vincent's Hospital Melbourne, Melbourne, Victoria, Australia. ⁷ SensiLab, Monash University, Melbourne, Victoria, Australia ⁸ School of Clinical Sciences at Monash Health, Monash University, Melbourne, Victoria, Australia ⁹ Western Australia Department of Health, East Perth, Western Australia, Australia. ¹⁰ School of Population and Global Health, University of Western Australia, Crawley, Western Australia, Australia ¹¹ Department of Cardiology, Fiona Stanley Hospital, Murdoch, Western Australia, Australia, Australia 	5	Meka ⁵ Sam Freeman ^{6,7} Katie Walker ⁸ Peter Sprivulis ⁹ Frank Sanfilippo ¹⁰ Mohammed
 Affiliations: ¹ School of Medicine. The University of Western Australia, Crawley, Western Australia, Australia ² Harry Perkins Institute of Medical Research, Murdoch, Western Australia, Australia ³ Department of Emergency Medicine, Fiona Stanley Hospital, Murdoch, Western Australia, Australia ⁴ Department of Computer Science and Software Engineering, The University of Western Australia, Crawley, Western Australia, Australia ⁵ HIVE & Data and Digital Innovation, Royal Perth Hospital, Perth, Western Australia, Australia ⁶ Department of Emergency Medicine, St Vincent's Hospital Melbourne, Melbourne, Victoria, Australia. ⁷ SensiLab, Monash University, Melbourne, Victoria, Australia ⁸ School of Clinical Sciences at Monash Health, Monash University, Melbourne, Victoria, Australia ⁹ Western Australia Department of Health, East Perth, Western Australia, Crawley, Western Australia ¹⁰ School of Population and Global Health, University of Western Australia, Crawley, Western Australia ¹¹ Department of Cardiology, Fiona Stanley Hospital, Murdoch, Western Australia, Australia ¹¹ Department of Cardiology, Fiona Stanley Hospital, Murdoch, Western Australia, Australia 	6	Bennamoun ⁴ . Girish Dwivedi ^{1, 2, 11}
 Affiliations: ¹ School of Medicine. The University of Western Australia, Crawley, Western Australia, Australia ² Harry Perkins Institute of Medical Research, Murdoch, Western Australia, Australia ³ Department of Emergency Medicine, Fiona Stanley Hospital, Murdoch, Western Australia, Australia ⁴ Department of Computer Science and Software Engineering, The University of Western Australia, Crawley, Western Australia, Australia ⁵ HIVE & Data and Digital Innovation, Royal Perth Hospital, Perth, Western Australia, Australia ⁶ Department of Emergency Medicine, St Vincent's Hospital Melbourne, Melbourne, Victoria, Australia. ⁷ SensiLab, Monash University, Melbourne, Victoria, Australia ⁸ School of Clinical Sciences at Monash Health, Monash University, Melbourne, Victoria, Australia ⁹ Western Australia Department of Health, East Perth, Western Australia, Crawley, Western Australia, Australia ¹⁰ School of Population and Global Health, University of Western Australia, Crawley, Western Australia, Australia ¹¹ Department of Cardiology, Fiona Stanley Hospital, Murdoch, Western Australia, Australia ¹¹ Department of Cardiology, Fiona Stanley Hospital, Murdoch, Western Australia, Australia, Australia ¹¹ Department of Cardiology, Fiona Stanley Hospital, Murdoch, Western Australia, Australia 	7	
 ¹ School of Medicine. The University of Western Australia, Crawley, Western Australia, Australia ² Harry Perkins Institute of Medical Research, Murdoch, Western Australia, Australia ³ Department of Emergency Medicine, Fiona Stanley Hospital, Murdoch, Western Australia, Australia ⁴ Department of Computer Science and Software Engineering, The University of Western Australia, Crawley, Western Australia, Australia ⁵ HIVE & Data and Digital Innovation, Royal Perth Hospital, Perth, Western Australia, Australia ⁶ Department of Emergency Medicine, St Vincent's Hospital Melbourne, Melbourne, Victoria, Australia. ⁷ SensiLab, Monash University, Melbourne, Victoria, Australia ⁸ School of Clinical Sciences at Monash Health, Monash University, Melbourne, Victoria, Australia ⁹ Western Australia Department of Health, East Perth, Western Australia, Crawley, Western Australia, Australia ¹⁰ School of Population and Global Health, University of Western Australia, Crawley, Western Australia, Australia ¹¹ Department of Cardiology, Fiona Stanley Hospital, Murdoch, Western Australia, Australia ¹² * Corresponding Author. 	8	Affiliations:
 ³ Justicol of Medicine. The University of Western Australia, Crawky, Western Australia, Australia ² Harry Perkins Institute of Medical Research, Murdoch, Western Australia, Australia ³ Department of Emergency Medicine, Fiona Stanley Hospital, Murdoch, Western Australia, Australia ⁴ Department of Computer Science and Software Engineering, The University of Western Australia, Crawley, Western Australia, Australia ⁵ HIVE & Data and Digital Innovation, Royal Perth Hospital, Perth, Western Australia, Australia ⁶ Department of Emergency Medicine, St Vincent's Hospital Melbourne, Melbourne, Victoria, Australia. ⁷ SensiLab, Monash University, Melbourne, Victoria, Australia ⁸ School of Clinical Sciences at Monash Health, Monash University, Melbourne, Victoria, Australia ⁹ Western Australia Department of Health, East Perth, Western Australia, Crawley, Western Australia, Australia ¹⁰ School of Population and Global Health, University of Western Australia, Crawley, Western Australia, Australia ¹¹ Department of Cardiology, Fiona Stanley Hospital, Murdoch, Western Australia, Australia ¹² Mestern Australia, Australia ¹³ Department of Cardiology, Fiona Stanley Hospital, Murdoch, Western Australia, Australia ¹⁴ Department of Cardiology, Fiona Stanley Hospital, Murdoch, Western Australia, Australia 	0	¹ School of Medicine. The University of Western Australia. Crawley, Western Australia
 ² Harry Perkins Institute of Medical Research, Murdoch, Western Australia, Australia ³ Department of Emergency Medicine, Fiona Stanley Hospital, Murdoch, Western Australia, Australia ⁴ Department of Computer Science and Software Engineering, The University of Western Australia, Crawley, Western Australia, Australia ⁵ HIVE & Data and Digital Innovation, Royal Perth Hospital, Perth, Western Australia, Australia ⁶ Department of Emergency Medicine, St Vincent's Hospital Melbourne, Melbourne, Victoria, Australia. ⁷ SensiLab, Monash University, Melbourne, Victoria, Australia ⁸ School of Clinical Sciences at Monash Health, Monash University, Melbourne, Victoria, Australia ⁹ Western Australia Department of Health, East Perth, Western Australia, Australia. ¹⁰ School of Population and Global Health, University of Western Australia, Crawley, Western Australia, Australia ¹¹ Department of Cardiology, Fiona Stanley Hospital, Murdoch, Western Australia, Australia ¹² Korresponding Author. 	10	Australia
 ² Harry Perkins Institute of Medical Research, Murdoch, Western Australia, Australia ³ Department of Emergency Medicine, Fiona Stanley Hospital, Murdoch, Western Australia, Australia ⁴ Department of Computer Science and Software Engineering, The University of Western Australia, Crawley, Western Australia, Australia ⁵ HIVE & Data and Digital Innovation, Royal Perth Hospital, Perth, Western Australia, Australia ⁶ Department of Emergency Medicine, St Vincent's Hospital Melbourne, Melbourne, Victoria, Australia. ⁷ SensiLab, Monash University, Melbourne, Victoria, Australia ⁸ School of Clinical Sciences at Monash Health, Monash University, Melbourne, Victoria, Australia ⁹ Western Australia Department of Health, East Perth, Western Australia, Crawley, Western Australia, Australia ¹⁰ School of Population and Global Health, University of Western Australia, Crawley, Western Australia, Australia ¹¹ Department of Cardiology, Fiona Stanley Hospital, Murdoch, Western Australia, Australia ¹² * Corresponding Author. 	11	
 ¹³ Department of Emergency Medicine, Fiona Stanley Hospital, Murdoch, Western Australia, Australia ¹⁴ Department of Computer Science and Software Engineering, The University of Western Australia, Crawley, Western Australia, Australia ¹⁵ HIVE & Data and Digital Innovation, Royal Perth Hospital, Perth, Western Australia, Australia ⁶ Department of Emergency Medicine, St Vincent's Hospital Melbourne, Melbourne, Victoria, Australia. ⁶ Department of Emergency Medicine, St Vincent's Hospital Melbourne, Melbourne, Victoria, Australia. ⁷ SensiLab, Monash University, Melbourne, Victoria, Australia ⁸ School of Clinical Sciences at Monash Health, Monash University, Melbourne, Victoria, Australia ⁹ Western Australia Department of Health, East Perth, Western Australia, Australia. ¹⁰ School of Population and Global Health, University of Western Australia, Crawley, Western Australia, Australia ¹¹ Department of Cardiology, Fiona Stanley Hospital, Murdoch, Western Australia, Australia ⁸ * Corresponding Author. 	12	² Harry Perkins Institute of Medical Research, Murdoch, Western Australia, Australia
 ¹⁴ Department of Enlergency Medicine, Fiona Stanley Hospital, Mutdoch, Western Australia, ¹⁵ Australia ⁴ Department of Computer Science and Software Engineering, The University of Western ¹⁶ Australia, Crawley, Western Australia, Australia ⁵ HIVE & Data and Digital Innovation, Royal Perth Hospital, Perth, Western Australia, ⁶ Department of Emergency Medicine, St Vincent's Hospital Melbourne, Melbourne, Victoria, ⁷ Australia. ⁶ Department of Emergency Medicine, St Vincent's Hospital Melbourne, Melbourne, Victoria, ⁷ Australia. ⁷ SensiLab, Monash University, Melbourne, Victoria, Australia ⁸ School of Clinical Sciences at Monash Health, Monash University, Melbourne, Victoria, ⁹ Western Australia Department of Health, East Perth, Western Australia, Australia. ¹⁰ School of Population and Global Health, University of Western Australia, Crawley, ¹¹ Department of Cardiology, Fiona Stanley Hospital, Murdoch, Western Australia, Australia ⁸ * Corresponding Author. 	13	³ Department of Emergency Medicine, Fiona Stapley Hospital, Murdoch, Western Australia
 ⁴ Department of Computer Science and Software Engineering, The University of Western Australia, Crawley, Western Australia, Australia ⁵ HIVE & Data and Digital Innovation, Royal Perth Hospital, Perth, Western Australia, Australia ⁶ Department of Emergency Medicine, St Vincent's Hospital Melbourne, Melbourne, Victoria, Australia. ⁷ SensiLab, Monash University, Melbourne, Victoria, Australia ⁸ School of Clinical Sciences at Monash Health, Monash University, Melbourne, Victoria, Australia ⁹ Western Australia Department of Health, East Perth, Western Australia, Australia. ¹⁰ School of Population and Global Health, University of Western Australia, Crawley, Western Australia, Australia ¹¹ Department of Cardiology, Fiona Stanley Hospital, Murdoch, Western Australia, Australia, Australia * Corresponding Author. 	14	Australia
 ⁴Department of Computer Science and Software Engineering, The University of Western Australia, Crawley, Western Australia, Australia ⁵HIVE & Data and Digital Innovation, Royal Perth Hospital, Perth, Western Australia, Australia ⁶Department of Emergency Medicine, St Vincent's Hospital Melbourne, Melbourne, Victoria, Australia. ⁷SensiLab, Monash University, Melbourne, Victoria, Australia ⁸School of Clinical Sciences at Monash Health, Monash University, Melbourne, Victoria, Australia ⁹Western Australia Department of Health, East Perth, Western Australia, Australia. ¹⁰School of Population and Global Health, University of Western Australia, Crawley, Western Australia, Australia ¹¹Department of Cardiology, Fiona Stanley Hospital, Murdoch, Western Australia, Australia * Corresponding Author. 	16	
 Australia, Crawley, Western Australia, Australia ⁵ HIVE & Data and Digital Innovation, Royal Perth Hospital, Perth, Western Australia, Australia ⁶ Department of Emergency Medicine, St Vincent's Hospital Melbourne, Melbourne, Victoria, Australia. ⁷ SensiLab, Monash University, Melbourne, Victoria, Australia ⁸ School of Clinical Sciences at Monash Health, Monash University, Melbourne, Victoria, Australia ⁹ Western Australia Department of Health, East Perth, Western Australia, Australia. ¹⁰ School of Population and Global Health, University of Western Australia, Crawley, Western Australia, Australia ¹¹ Department of Cardiology, Fiona Stanley Hospital, Murdoch, Western Australia, Australia ⁸ Corresponding Author. 	17	⁴ Department of Computer Science and Software Engineering, The University of Western
 ⁵ HIVE & Data and Digital Innovation, Royal Perth Hospital, Perth, Western Australia, Australia ⁶ Department of Emergency Medicine, St Vincent's Hospital Melbourne, Melbourne, Victoria, Australia. ⁷ SensiLab, Monash University, Melbourne, Victoria, Australia ⁸ School of Clinical Sciences at Monash Health, Monash University, Melbourne, Victoria, Australia ⁹ Western Australia Department of Health, East Perth, Western Australia, Australia. ¹⁰ School of Population and Global Health, University of Western Australia, Crawley, Western Australia, Australia ¹¹ Department of Cardiology, Fiona Stanley Hospital, Murdoch, Western Australia, Australia * Corresponding Author. 	18	Australia, Crawley, Western Australia, Australia
 ⁵ HIVE & Data and Digital Innovation, Royal Perth Hospital, Perth, Western Australia, Australia ⁶ Department of Emergency Medicine, St Vincent's Hospital Melbourne, Melbourne, Victoria, Australia. ⁷ SensiLab, Monash University, Melbourne, Victoria, Australia ⁸ School of Clinical Sciences at Monash Health, Monash University, Melbourne, Victoria, Australia ⁹ Western Australia Department of Health, East Perth, Western Australia, Australia. ¹⁰ School of Population and Global Health, University of Western Australia, Crawley, Western Australia, Australia ¹¹ Department of Cardiology, Fiona Stanley Hospital, Murdoch, Western Australia, Australia * Corresponding Author. 	19	
 Australia ⁶ Department of Emergency Medicine, St Vincent's Hospital Melbourne, Melbourne, Victoria, Australia. ⁷ SensiLab, Monash University, Melbourne, Victoria, Australia ⁸ School of Clinical Sciences at Monash Health, Monash University, Melbourne, Victoria, Australia ⁹ Western Australia Department of Health, East Perth, Western Australia, Australia. ¹⁰ School of Population and Global Health, University of Western Australia, Crawley, Western Australia, Australia ¹¹ Department of Cardiology, Fiona Stanley Hospital, Murdoch, Western Australia, Australia * Corresponding Author. 	20	⁵ HIVE & Data and Digital Innovation, Royal Perth Hospital, Perth, Western Australia,
 ⁶Department of Emergency Medicine, St Vincent's Hospital Melbourne, Melbourne, Victoria, Australia. ⁷SensiLab, Monash University, Melbourne, Victoria, Australia ⁸School of Clinical Sciences at Monash Health, Monash University, Melbourne, Victoria, Australia ⁹Western Australia Department of Health, East Perth, Western Australia, Australia. ¹⁰School of Population and Global Health, University of Western Australia, Crawley, Western Australia, Australia ¹¹Department of Cardiology, Fiona Stanley Hospital, Murdoch, Western Australia, Australia * Corresponding Author. 	21	Australia
 ⁹ Department of Emergency Medicine, St Vincent's Hospital Melbourne, Melbourne, Victoria, Australia. ⁷ SensiLab, Monash University, Melbourne, Victoria, Australia ⁸ School of Clinical Sciences at Monash Health, Monash University, Melbourne, Victoria, Australia ⁹ Western Australia Department of Health, East Perth, Western Australia, Australia. ¹⁰ School of Population and Global Health, University of Western Australia, Crawley, Western Australia, Australia ¹¹ Department of Cardiology, Fiona Stanley Hospital, Murdoch, Western Australia, Australia * Corresponding Author. 	22	6-
 Australia. ⁷ SensiLab, Monash University, Melbourne, Victoria, Australia ⁸ School of Clinical Sciences at Monash Health, Monash University, Melbourne, Victoria, Australia ⁹ Western Australia Department of Health, East Perth, Western Australia, Australia. ¹⁰ School of Population and Global Health, University of Western Australia, Crawley, Western Australia, Australia ¹¹ Department of Cardiology, Fiona Stanley Hospital, Murdoch, Western Australia, Australia * Corresponding Author. 	23	^o Department of Emergency Medicine, St Vincent's Hospital Melbourne, Melbourne, Victoria,
 ⁷ SensiLab, Monash University, Melbourne, Victoria, Australia ⁸ School of Clinical Sciences at Monash Health, Monash University, Melbourne, Victoria, Australia ⁹ Western Australia Department of Health, East Perth, Western Australia, Australia. ¹⁰ School of Population and Global Health, University of Western Australia, Crawley, Western Australia, Australia ¹¹ Department of Cardiology, Fiona Stanley Hospital, Murdoch, Western Australia, Australia * Corresponding Author. 	24 25	Australia.
 ²⁰ School of Clinical Sciences at Monash Health, Monash University, Melbourne, Victoria, ⁸ School of Clinical Sciences at Monash Health, Monash University, Melbourne, Victoria, ⁹ Western Australia Department of Health, East Perth, Western Australia, Australia. ¹⁰ School of Population and Global Health, University of Western Australia, Crawley, ¹⁰ Western Australia, Australia ¹¹ Department of Cardiology, Fiona Stanley Hospital, Murdoch, Western Australia, Australia * Corresponding Author. 	25 26	⁷ Sensil ab Monash University Melbourne Victoria Australia
 ⁸ School of Clinical Sciences at Monash Health, Monash University, Melbourne, Victoria, Australia ⁹ Western Australia Department of Health, East Perth, Western Australia, Australia. ¹⁰ School of Population and Global Health, University of Western Australia, Crawley, Western Australia, Australia ¹¹ Department of Cardiology, Fiona Stanley Hospital, Murdoch, Western Australia, Australia * Corresponding Author. 	20 27	SensiLab, Monash Oniversity, Melobume, Victoria, Australia
 Australia ⁹ Western Australia Department of Health, East Perth, Western Australia, Australia. ¹⁰ School of Population and Global Health, University of Western Australia, Crawley, Western Australia, Australia ¹¹ Department of Cardiology, Fiona Stanley Hospital, Murdoch, Western Australia, Australia * Corresponding Author. 	28	⁸ School of Clinical Sciences at Monash Health, Monash University, Melbourne, Victoria,
 ⁹ Western Australia Department of Health, East Perth, Western Australia, Australia. ¹⁰ School of Population and Global Health, University of Western Australia, Crawley, Western Australia, Australia ¹¹ Department of Cardiology, Fiona Stanley Hospital, Murdoch, Western Australia, Australia * Corresponding Author. 	29	Australia
 ⁹ Western Australia Department of Health, East Perth, Western Australia, Australia. ¹⁰ School of Population and Global Health, University of Western Australia, Crawley, Western Australia, Australia ¹¹ Department of Cardiology, Fiona Stanley Hospital, Murdoch, Western Australia, Australia * Corresponding Author. 	30	
 ³² ¹⁰ School of Population and Global Health, University of Western Australia, Crawley, Western Australia, Australia ¹¹ Department of Cardiology, Fiona Stanley Hospital, Murdoch, Western Australia, Australia ³⁶ * Corresponding Author. 	31	⁹ Western Australia Department of Health, East Perth, Western Australia, Australia.
 ¹⁰ School of Population and Global Health, University of Western Australia, Crawley, Western Australia, Australia ¹¹ Department of Cardiology, Fiona Stanley Hospital, Murdoch, Western Australia, Australia * Corresponding Author. 	32	10
 Western Australia, Australia ¹¹ Department of Cardiology, Fiona Stanley Hospital, Murdoch, Western Australia, Australia * Corresponding Author. 	33	¹⁰ School of Population and Global Health, University of Western Australia, Crawley,
 ³⁵ ¹¹ Department of Cardiology, Fiona Stanley Hospital, Murdoch, Western Australia, Australia ³⁷ ³⁸ ³⁹ * Corresponding Author. 	34	Western Australia, Australia
 37 38 39 * Corresponding Author. 	33 26	¹¹ Department of Cardiology Fions Steplay Hespital Murdoch Western Austrolia Austrolia
 38 39 * Corresponding Author. 	30 37	Department of Cardiology, Floha Stamey Hospital, Murdoch, western Australia, Australia
39 * Corresponding Author.	38	
	39	* Corresponding Author.
40 Email: Jonathon.Stewart@research.uwa.edu.au (JS)	40	Email: Jonathon.Stewart@research.uwa.edu.au (JS)

It is made available under a CC-BY-NC 4.0 International license .

41 ABSTRACT

42 INTRODUCTION

43	Millions of patients attend emergency departments (EDs) around the world every year.
44	Patients are triaged on arrival by a trained nurse who collects structured data and an
45	unstructured free-text history of presenting complaint. Natural language processing (NLP)
46	uses various computational methods to analyse and understand human language, and has
47	been applied to data acquired at ED triage to predict various outcomes. The objective of this
48	systematic review is to evaluate how NLP has been applied to ED triage, assess if NLP based
49	models outperform humans or current risk stratification techniques, and assess if
50	incorporating free-text improve predictive performance of models when compared to
51	predictive models that use only structured data.
52	
53	METHODS
54	All English language peer-reviewed research that applied an NLP technique to free-text
55	
	obtained at ED triage was eligible for inclusion. We excluded studies focusing solely on
56	obtained at ED triage was eligible for inclusion. We excluded studies focusing solely on disease surveillance, and studies that used information obtained after triage. We searched the
56 57	obtained at ED triage was eligible for inclusion. We excluded studies focusing solely on disease surveillance, and studies that used information obtained after triage. We searched the electronic databases MEDLINE, Embase, Cochrane Database of Systematic Reviews, Web of
56 57 58	obtained at ED triage was eligible for inclusion. We excluded studies focusing solely on disease surveillance, and studies that used information obtained after triage. We searched the electronic databases MEDLINE, Embase, Cochrane Database of Systematic Reviews, Web of Science, and Scopus for medical subject headings and text keywords related to NLP and
56 57 58 59	obtained at ED triage was eligible for inclusion. We excluded studies focusing solely on disease surveillance, and studies that used information obtained after triage. We searched the electronic databases MEDLINE, Embase, Cochrane Database of Systematic Reviews, Web of Science, and Scopus for medical subject headings and text keywords related to NLP and triage. Databases were last searched on 01/01/2022. Risk of bias in studies was assessed
56 57 58 59 60	obtained at ED triage was eligible for inclusion. We excluded studies focusing solely on disease surveillance, and studies that used information obtained after triage. We searched the electronic databases MEDLINE, Embase, Cochrane Database of Systematic Reviews, Web of Science, and Scopus for medical subject headings and text keywords related to NLP and triage. Databases were last searched on 01/01/2022. Risk of bias in studies was assessed using the Prediction model Risk of Bias Assessment Tool (PROBAST). Due to the high level
56 57 58 59 60 61	obtained at ED triage was eligible for inclusion. We excluded studies focusing solely on disease surveillance, and studies that used information obtained after triage. We searched the electronic databases MEDLINE, Embase, Cochrane Database of Systematic Reviews, Web of Science, and Scopus for medical subject headings and text keywords related to NLP and triage. Databases were last searched on 01/01/2022. Risk of bias in studies was assessed using the Prediction model Risk of Bias Assessment Tool (PROBAST). Due to the high level of heterogeneity between studies, a metanalysis was not conducted. Instead, a narrative
56 57 58 59 60 61 62	obtained at ED triage was eligible for inclusion. We excluded studies focusing solely on disease surveillance, and studies that used information obtained after triage. We searched the electronic databases MEDLINE, Embase, Cochrane Database of Systematic Reviews, Web of Science, and Scopus for medical subject headings and text keywords related to NLP and triage. Databases were last searched on 01/01/2022. Risk of bias in studies was assessed using the Prediction model Risk of Bias Assessment Tool (PROBAST). Due to the high level of heterogeneity between studies, a metanalysis was not conducted. Instead, a narrative synthesis is provided.

63

64 **RESULTS**

It is made available under a CC-BY-NC 4.0 International license .

65	In total, 3584 studies were screened, and 19 studies were included. The population size varied
66	greatly between studies ranging from 1.8 million patients to 762 simulated encounters. The
67	most common primary outcomes assessed were prediction of triage score, prediction of
68	admission, and prediction of critical illness. NLP models achieved high accuracy in
69	predicting need for admission, critical illness, and mapping free-text chief complaints to
70	structured fields. Overall, NLP models predicted admission with greater accuracy than
71	emergency physicians, outperformed abnormal vital sign trigger and triage score at predicting
72	critical illness, and were more accurate than nurses at assigning triage scores in two out of
73	three papers. Incorporating both structured data and free-text data improved results when
74	compared to models that used only structured data. The majority of studies were (79%) were
75	assessed to have a high risk of bias, and only one study reported the deployment of an NLP
76	model into clinical practice.
77	
,,	
78	CONCLUSION
78 79	CONCLUSION Unstructured free-text triage notes contain valuable information that can be used by NLP
78 79 80	CONCLUSION Unstructured free-text triage notes contain valuable information that can be used by NLP models to predict clinically relevant outcomes. The use of NLP at ED triage appears feasible
78798081	CONCLUSION Unstructured free-text triage notes contain valuable information that can be used by NLP models to predict clinically relevant outcomes. The use of NLP at ED triage appears feasible and could allow for early and accurate prediction of multiple important patient-oriented
 78 79 80 81 82 	CONCLUSION Unstructured free-text triage notes contain valuable information that can be used by NLP models to predict clinically relevant outcomes. The use of NLP at ED triage appears feasible and could allow for early and accurate prediction of multiple important patient-oriented outcomes. However, there are few examples of implementation of into clinical practice, most
 78 79 80 81 82 83 	CONCLUSION Unstructured free-text triage notes contain valuable information that can be used by NLP models to predict clinically relevant outcomes. The use of NLP at ED triage appears feasible and could allow for early and accurate prediction of multiple important patient-oriented outcomes. However, there are few examples of implementation of into clinical practice, most research in retrospective, and the potential benefits of NLP at triage are yet to be realised.
 78 79 80 81 82 83 84 	CONCLUSION Unstructured free-text triage notes contain valuable information that can be used by NLP models to predict clinically relevant outcomes. The use of NLP at ED triage appears feasible and could allow for early and accurate prediction of multiple important patient-oriented outcomes. However, there are few examples of implementation of into clinical practice, most research in retrospective, and the potential benefits of NLP at triage are yet to be realised.
 78 79 80 81 82 83 84 85 	CONCLUSION Unstructured free-text triage notes contain valuable information that can be used by NLP models to predict clinically relevant outcomes. The use of NLP at ED triage appears feasible and could allow for early and accurate prediction of multiple important patient-oriented outcomes. However, there are few examples of implementation of into clinical practice, most research in retrospective, and the potential benefits of NLP at triage are yet to be realised.
 78 79 80 81 82 83 84 85 86 	CONCLUSION Unstructured free-text triage notes contain valuable information that can be used by NLP models to predict clinically relevant outcomes. The use of NLP at ED triage appears feasible and could allow for early and accurate prediction of multiple important patient-oriented outcomes. However, there are few examples of implementation of into clinical practice, most research in retrospective, and the potential benefits of NLP at triage are yet to be realised.
 78 79 80 81 82 83 84 85 86 87 	CONCLUSION Unstructured free-text triage notes contain valuable information that can be used by NLP models to predict clinically relevant outcomes. The use of NLP at ED triage appears feasible and could allow for early and accurate prediction of multiple important patient-oriented outcomes. However, there are few examples of implementation of into clinical practice, most research in retrospective, and the potential benefits of NLP at triage are yet to be realised.
 78 79 80 81 82 83 84 85 86 87 88 	CONCLUSION Unstructured free-text triage notes contain valuable information that can be used by NLP models to predict clinically relevant outcomes. The use of NLP at ED triage appears feasible and could allow for early and accurate prediction of multiple important patient-oriented outcomes. However, there are few examples of implementation of into clinical practice, most research in retrospective, and the potential benefits of NLP at triage are yet to be realised.

It is made available under a CC-BY-NC 4.0 International license .

90 **INTRODUCTION**

Millions of patients attend emergency departments (EDs) around the world every vear.¹ 91 92 Queues for care are common, so patients are often triaged on arrival to the ED by a trained nurse. Triage is central to the practice of emergency medicine.² In the face of excess demand, 93 94 triage allows EDs to allocate their finite resources in an equitable, efficient, and standardised way.^{3,4} Triage systems in current use include the Emergency Severity Index (ESI), 95 96 Australasian Triage Scale (ATS), Manchester Triage Scale (MTS), and the Korean Triage 97 and Acuity Scale (KTAS).^{3,5} Triage systems aim to aid emergency care providers in making a 98 structured decision regarding the urgency of care that a patient requires, and in doing so, identify and prioritise those patients with time-sensitive care needs.^{3,4} However, urgency of 99 100 care does not necessarily reflect severity of illness (as judged by morbidity or mortality). For 101 example, a young patient with a known history of recurrent renal calculi who presents with 102 severe flank pain may be appropriately triaged as high urgency to receive analgesia, but will 103 most likely have a good clinical outcome, whereas an elderly patient with undifferentiated 104 abdominal pain may be triaged as a lower urgency but have higher risk of morbidity and 105 mortality. No triage tool is perfect, and all have issues with sensitivity and specificity 106 resulting in over and under-triage, particularly for certain demographic groups and conditions.⁶⁻⁸ There is opportunity to improve triage performance in identifying patients with 107 108 critical illness, and for improving triage accuracy and the consistency of triage categorisation 109 between healthcare workers.³

110

Machine learning (ML) is a subfield of artificial intelligence (AI), that uses various methods to automatically deduce patterns in data, then makes predictions.⁹ These patterns are learned from the data rather than being explicitly pre-programmed by humans. ML models are iteratively improved through a process called training. In supervised ML training, the model's

medRxiv preprint doi: https://doi.org/10.1101/2022.12.20.22283735; this version posted December 21, 2022. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC 4.0 International license .

115 predicted output is compared to a "ground truth", and the error between the predicted value and ground truth is progressively reduced through the training process.⁹ ML models have the 116 potential to improve risk stratification and outcome prediction in the ED setting.¹⁰⁻¹² 117 118 Triage has been identified as a promising area to apply ML in the ED.^{13, 14} ML has previously 119 120 been applied successfully to structured data acquired at triage (such as patient age and vital signs) to predict outcomes including need for admission and intensive care.^{15, 16} Triage nurses 121 122 routinely collect structured data and an unstructured free-text history of presenting complaint, 123 capturing their impression and subjective assessment about the presentation. This free-text 124 may be more expressive, nuanced, and contain a higher level of information than structured data.¹⁷ Prior work has suggested that incorporating free-text may improve the performance of 125 126 ML at ED triage and is an important area for future research despite the challenges of incorporating free-text data into models.¹⁸⁻²⁰ 127

128

129 Natural language processing (NLP) uses computational methods to analyse and understand human language and its structure.²¹ Early NLP techniques were relatively simple. For 130 131 example, a "bag-of-words" model bases its decision on the relative frequencies of words in the text, ignoring their order.²² These early models often lacked the ability to assess context, 132 negations, and as a result had numerous limitations.²³ Significant advancements in NLP have 133 134 been made over the last few years through the use of Deep Learning (DL), a subfield of ML.^{24, 25} DL models pass data through multiple processing layers and in doing so, achieve 135 136 increasingly abstract representations of the input data, enabling them to learn complex functions.²⁶ Massive DL based NLP models have recently been developed.²⁷⁻²⁹ These models 137 138 have been trained on datasets containing billions of words and have achieved high levels of performance.²⁷⁻²⁹ Some large, pre-trained models, such as Bidirectional Encoder 139

It is made available under a CC-BY-NC 4.0 International license .	

140	Representations from Transformers (BERT) are publicly available. ²⁷ Using a pre-trained
141	model allows researchers to take a high performing model as their starting point, and then
142	customise it to their unique needs through fine tuning the model on their local data. For
143	example, Tahayori et al. were able to accurately predict admission from ED using only free-
144	text triage notes and a BERT based NLP model. ³⁰ Multimodal models integrate NLP with
145	other types of ML to analyse combinations of both free-text data and structured data (such as
146	age and vital signs).
147	
148	Objectives
149	This systematic review aims to evaluate the applications of NLP at ED triage by answering
150	the following questions:
151	1. How has NLP been applied to ED triage?
152	2. Do NLP based models outperform humans or current risk stratification techniques?
153	3. Does incorporating free-text improve predictive performance of ML models when
154	compared to ML models that use only structured data?
155	
156	METHODS
157	A systematic review protocol was prepared in accordance with PRISMA-P guidelines and
158	registered with the International Prospective Register of Systematic Reviews (PROSPERO)
159	on 04/10/2021 (Registration ID: CRD42021276980). ^{31,32} All English language peer-reviewed
160	research that applied an NLP technique to free-text obtained at ED triage were eligible for
161	inclusion. As this study aims to broadly assess the capability of NLP at triage, all outcomes
162	and comparators were included. We excluded studies focusing solely on disease surveillance,
163	and studies that used information obtained after triage (such as emergency physician clinical
164	notes and investigations performed within the ED).

It is made available under a CC-BY-NC 4.0 International license .

165

166	We searched PubMed (MEDLINE), Embase, Cochrane Database of Systematic Reviews,
167	Web of Science, and Scopus for research published from 01/01/2012 to present. Electronic
168	databases were first searched on 16/09/2021 and last searched on 01/01/2022. We searched
169	for medical subject headings (MeSH) and text keywords related to NLP and triage. The
170	search strategy was iteratively developed by the multidisciplinary project team that included
171	emergency physicians and computer scientists. The MEDLINE search strategy is provided in
172	Appendix 1, and was adapted to the other databases. Reference lists of the included studies
173	and the authors' personal archives were reviewed for further relevant literature.
174	
175	Citations and abstracts were screened independently by two reviewers (JS and JL) against the
176	inclusion and exclusion criteria. Both reviewers were blind to the journal titles, study authors,
177	and institutions. Full text articles were obtained for any articles identified by one reviewer to
178	meet inclusion criteria. Two reviewers (JS and JL) then evaluated the full text reports against
179	the inclusion and exclusion criteria. Data were extracted by JS and JL using a standardised
180	form that included study country, study design, primary outcome, number of sites, study
181	population, input data, NLP and ML models used, comparison, and results. The form was
182	piloted, and calibration exercises were conducted prior to formal data extraction to ensure
183	consistency between reviewers. In cases of conflict or discrepancy, additional review authors
184	were involved until a decision was reached. There were no uncertainties that required authors
185	of the included studies to be contacted.
186	
187	Data extracted included the study country, study type, outcomes, population, input data, NLP
188	technique, ML method, comparisons, results, public availability of datasets, and public

189 availability of model code. Risk of bias in studies was assessed independently by two authors

It is made available under a CC-BY-NC 4.0 International license .

- 190 (JS and JL) using the Prediction model Risk of Bias Assessment Tool (PROBAST).³³ Due to
- 191 the high level of heterogeneity between studies, a metanalysis was not conducted. Instead, a
- 192 narrative synthesis is provided to summarise review findings.
- 193
- 194 **RESULTS**
- 195 Study selection
- 196 This process is summarised in a PRISMA Flow Diagram (Figure 1). There were 5099 records
- 197 identified following database searching and a further 11 records identified through other
- 198 sources. Following removal of duplicates, 3584 records remained and underwent title and
- 199 abstract screening. 3448 records were excluded. The remaining 136 full-text articles were
- 200 assessed for eligibility. In total, 117 articles were excluded, and 19 studies remained for
- 201 inclusion (Figure 1). There were no unresolved disagreements as to study inclusion or results
- of data extraction.
- 203
- 204 [Insert Figure 1]
- 205

206 Characteristics of included studies

A summary of the included studies is shown in Table 1. There were 18 retrospective

studies.^{17,18, 30, 34-48} One study reported their ML model was developed using retrospective

- 209 data then validated using prospective data.⁴⁹ All used observational cohort designs. Two
- 210 studies were international multi-centre studies (USA and Portugal); 11 were conducted in the
- 211 USA; 2 were from South Korea; one each from Australia, Brazil, China, and France. The
- 212 most common primary outcomes assessed were prediction of triage score (six studies),
- 213 prediction of admission (five studies), and prediction of critical illness (three studies). Two
- studies predicted need for imaging within the ED, two studies looked at the assignment of

It is made available under a CC-BY-NC 4.0 International license .

215 provider assigned chief complaint label, and one study predicted diagnosis of infection in the216 ED.

217

218	The population size varied greatly between studies ranging from 1.8 million patients to 762
219	simulated encounters. Four studies used a population of under 100 000, four studies had a
220	population of between 100 000 and 200 000, six studies had a population of between 200 001
221	and 300 000, and six studies had a population of over 300 000. Eleven studies used data from
222	a single site and eight studies used data from multiple sites. The largest number of sites used
223	was 642 by Zhang et al.
224	
225	Fourteen studies applied NLP to free-text history of presenting complaint, seven studies
226	applied NLP to a free-text chief complaint, two studies applied NLP to a structured chief
227	complaint label, and one study applied NLP to simulated triage dialogues that had been
228	transcribed by either a human or an ML model. The other most frequently used input
229	variables were patient demographics (13 studies), patient vital signs (heart rate, respiratory
230	rate, oxygen saturation, blood pressure, and temperature) (15 studies), pain score (12 studies),
231	triage score (10 studies), mode of arrival (10 studies), time of arrival (8 studies) and past
232	medical history (7 studies). Other input variables included mental status (5 studies), and
233	blood glucose level (5 studies).
234	
235	Prediction of admission

236 NLP models and multimodal models were able to accurately predict admission at time of

triage for adult and paediatric patients.^{18, 30, 35, 41, 46} Of the five studies focusing on predicting

admission to hospital, Roquette et al. achieved the highest Area Under the Receiver

239 Operating Characteristic Curve (AUC) using a gradient boosting model (AUC 0.89).

medRxiv preprint doi: https://doi.org/10.1101/2022.12.20.22283735; this version posted December 21, 2022. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC 4.0 International license.

240	Tahayori et al. achieved a similar AUC (0.88) using only free-text history of presenting
241	complaint. Tahayori et al. were the only authors that compared their model to emergency
242	physician performance. Their model achieved a higher accuracy than five emergency
243	consultants (0.83 vs 0.78) and higher specificity (0.86 vs 0.77), but lower sensitivity (0.72 vs
244	0.9). Roquette et al. and Zhang et al. both compared ML models trained using structured data
245	only with ML models that incorporated both structured data and text data. They found that
246	the addition of text data results in a small improvement when compared to the use of
247	structured data alone.
248	
249	Prediction of critical illness
250	Multimodal models were able to accurately predict critical illness in adult patients, defined as
251	ICU admission, cardiopulmonary arrest within 24 hours, or death within 24 hours of
252	triage. ⁴³⁻⁴⁵ Of the three studies that predicted critical illness at triage, Fernandes et al.
253	achieved the highest AUC (0.96) in predicting in-hospital death or cardiopulmonary arrest
254	within 24 hours of triage using an extreme gradient boosting model. They found no
255	difference in AUC when using clinical variables only or clinical variables and structured
256	chief complaint processed by NLP. Joseph et al. found their NLP model (AUC 0.857)
257	significantly outperformed an abnormal vital sign trigger (AUC 0.521) and ESI score ≤ 2
258	(AUC 0.672) in predicting critical illness. The addition of free-text data improved the
259	performance of their neural network model (from AUC 0.820 to AUC 0.857).
260	
261	Prediction of triage score
262	NLP has been applied in multiple triage systems. NLP models and multimodal models were
263	able to accurately assign triage categories using structured and free-text data. ^{17, 36-38, 47, 48}
264	Wang et al. achieved the highest performance in predicting ESI using their "DeepTriager"

medRxiv preprint doi: https://doi.org/10.1101/2022.12.20.22283735; this version posted December 21, 2022. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC 4.0 International license .

265 model (AUC 0.96). Kim et al. achieved an AUC of 0.89 in assigning a KTAS category to
266 auto-transcribed simulated triage dialogue. This was only slightly lower than the performance

267 achieved using human-transcribed simulated triage dialogue (AUC 0.90). Three studies

268 compared the accuracy of triage scores assigned by multimodal models incorporating NLP to

triage scores assigned by nurses.^{17, 36, 47} Such models were more accurate than nurses in two

270 out of three papers.^{36, 47} The addition of text data compared to structured data alone improved

- 271 performance in assigning triage score.^{36, 37}
- 272

273 Prediction of provider-assigned chief complaint

274 NLP models and multimodal models incorporating NLP were able to accurately map free-

text history of presenting complaint to structured chief complaints.^{42, 49} Chang et al. (2020)

276 used BERT to accurately predict provider-assigned chief complaint labels (Top-5 structured

277 label AUC 0.92). Greenbaum et al. (2019) iteratively developed their own structured

278 ontology and were eventually able to map 97.2% of presentations to their structured ontology

279 using their NLP based predictive model.

280

281 **Prediction of investigations**

282 Multimodal models incorporating NLP were able to predict diagnostic imaging performed in

283 the ED.^{39, 40} Zhang et al. developed a model to predict need for advanced diagnostic imaging

284 (computed tomography, ultrasound, magnetic resonance imaging) in the ED, and obtained an

AUC 0.78 using a "bag-of-words" model. Zhang et al. were also able to predict the need for

any diagnostic imaging in a paediatric population with an AUC 0.824. The inclusion of

287 unstructured variables improved performance slightly in both cases.

288

Identifying infection

It is made available under a CC-BY-NC 4.0 International license .

Horng et al. (2017) found that the incorporation of free-text data improves the discriminatory
ability (increase in AUC from 0.67 to 0.86) for identifying sepsis (defined by ICD-9-CM

- code) in the ED at triage.
- 293

294 Multimodal models

295 Eleven papers compared ML models that used only structured data to multimodal models that incorporated both structured data and free-text data.^{34-40, 43-46} The best performing model in 296 297 each of these papers incorporated free-text. The largest improvement in model performance 298 from incorporating free-text was found by Horng et al. (increase in AUC from 0.67 to 0.86 299 for identifying infection). The addition of free-text did not improve model AUC in one case, however, did improve model average precision.⁴⁴ There were no cases where the 300 301 incorporation of free-text into the model resulted in worse performance. Six papers assessed 302 models that used only free-text, with no structured data.^{30, 36, 37, 39, 40, 42} Tahavori et al. were 303 able to use only free-text data to predict admission with high accuracy (83%). Zhang et al. 304 used free-text to predict performance of diagnostic imaging. Gligorijevic's "Deep Attention" 305 models using only unstructured data outperformed those using only structured data. 306 Incorporating both structured data and free-text data improved results when compared to 307 models that used only free-text data, though often only a small improvement was found. 308

309 Modern NLP compared to traditional NLP

310 Three papers directly compared modern NLP based on DL to more traditional ML techniques

311 such as bag-of-words and topic modelling.^{30, 38, 48} Modern DL based NLP outperformed

- traditional ML based NLP in two cases.^{30, 38} In contrast, Kim et al. found that a BERT based
- 313 DL model did not perform better than ML based models, though their population was
- 314 relatively small. Chang et al. compared the performance of multiple modern DL based

It is made available under a CC-BY-NC 4.0 International license .

models, finding BERT slightly outperformed Embeddings from Language Models (ELMo)
and Long Short-Term Memory (LSTM) networks in mapping free-text chief complaints to
structured fields.

318

319 Integration into practice

320 Greenbaum et al. was the only study that reported the deployment of an NLP based model 321 into clinical practice. Greenbaum et al. aimed to increase the ease of high-quality structured 322 data collection at triage through the use of an NLP based model. Their model used both free-323 text triage notes and structured data to provide contextual autocomplete of chief complaint 324 label, and also show the user a list of the top five most likely chief complaints. Prior to 325 implementation of their model, 26.2% of patient encounters resulted in structured data 326 capture. Following implementation this increased to 97.2%. The authors aggregated multiple 327 incidents of unscheduled downtime that occurred throughout the study to assess the impact of 328 their model. When ML based autocomplete was not operational (and instead alphabetised 329 autocomplete was shown), the percent of encounters that resulted in structure data capture 330 decreased from 97.2% to 89.2%. The number of keystrokes typed for each presenting 331 problem decreased from 11.6 pre-implementation to 0.6 post implementation. Contextual 332 autocomplete was associated with qualitatively more complete and higher quality structured 333 documentation of chief complaints. 334

335 Study quality—Risk of bias within and across studies

A summary of the PROBAST assessment is provided in Table 2. Overall, 15 studies were

337 considered to have a high risk of bias. Four studies were assessed as having a low risk of bias.

338 One study had high applicability concerns and 18 studies had low applicability concerns. The

medRxiv preprint doi: https://doi.org/10.1101/2022.12.20.22283735; this version posted December 21, 2022. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC 4.0 International license .

339	four studies as	ssessed as having	low risk o	f bias also	had low an	nlicability	concerns	No
557	Tour studies as	soosood as naving	IOW HOK U	n blas also	nau iow ap	pheaomity	concerns.	110

340 studies referred to a previously published or publicly registered protocol.

341

342 Availability of datasets and code

343 Availability of study datasets and code is shown in Table 3. Data was publicly available for

344 three studies (all by Zhang et al.) and was available on request from study authors for a

further four studies.^{30, 34, 35 39, 40 43, 44} One study reported plans to release a modified de-

346 identified dataset, however at the time of this review this is still pending approvals.⁴⁵ The

347 model code was publicly available for two studies.^{42, 45} Notably, the code repository from

348 Chang et al. was well organised and contained clear instructions for researchers on how to

349 download their pretrained model and apply it to their own dataset.

350

351 **DISCUSSION**

352 NLP at triage

353 This review finds that NLP has been applied to data available at the time of ED triage to

354 predict a range of outcomes, with a focus on predicting need for admission and assigned

355 triage score. The results of this review also highlight that unstructured free-text triage notes

356 contain valuable information. Through NLP techniques, this information has started to

357 become accessible to use for automated predictive purposes. The combination of free-text

358 nursing triage notes with structured data appears to result in the best model performance,

359 however free-text nursing triage notes alone can be used by NLP algorithms to predict need

360 for admission and need for diagnostic imaging.^{18, 30, 39, 40} A benefit of developing models that

361 require only free-text as an input is that it may allow for easier portability of predictive

362 models between different triage systems.³⁰

It is made available under a CC-BY-NC 4.0 International license .

364 Structured data capture

365	Accurate and consistent structured capture of patients' presenting complaints is important for
366	research, service improvement, and public health initiatives. ⁴⁹ Common medical ontologies
367	also improve system interoperability. ⁵⁰ However collection of structured data is often
368	difficult, especially when contrasted with the ease and expressiveness of free-text entry. ⁴⁹ In a
369	rare singular example of NLP being deployed into routine clinical practice at ED triage,
370	Greenbaum et al. developed, implemented, and prospectively evaluated an NLP driven user
371	interface to mitigate the challenges of structured data capture. ⁴⁹ Promisingly, they report that
372	their NLP based contextual auto-predict did not add additional burden to users and made
373	structured data collection easier than unstructured data collection. Because of this, structured
374	data collection increased significantly.
375	
376	Improving ED workflow and efficiency

377 ED overcrowding is a serious issue worldwide, with significant negative impact on patient 378 morbidity and mortality. Having an emergency physician triage patients (or implementing a 379 rapid assessment zone) enables early senior clinician input and decision making, and can lead to a reduced patient ED length of stay.^{51, 52} Patient time spent in the waiting room is likely 380 underutilised.⁵² NLP could be applied to triage notes to predict which patients will likely 381 382 require investigations such as blood tests or imaging, and in doing so allow for these 383 investigations to be ordered immediately on arrival, rather than only being ordered after they 384 are seen by a doctor. An emergency physician could review and then approve or reject 385 suggested investigations. In this way, applying NLP to triage could leverage the expertise of 386 the emergency physician.

It is made available under a CC-BY-NC 4.0 International license .

388	Delays in specialist consultation and subsequent specialist review contribute to reduced ED
389	throughput, and improvements in the consultation process from the ED have the potential to
390	reduce ED length of stay. ⁵³ Using NLP to identify at the point of triage, patients who are
391	likely to require admission could assist with hospital resource allocation, improve patient
392	flow, and allow for anticipation of system stressors, such as worsening access block. ^{18, 30} Bed
393	allocation could begin at the time of patient triage, rather than hours into a patient's ED
394	stay. ³⁰ To fully realise the potential of predicting admission at triage, the NLP model would
395	need to be supported by other infrastructure. For example, an "early admission team" could
396	review patients who are flagged as very likely to be admitted, or stable patients not needing
397	acute resuscitation could be diverted away from the ED and sent to the appropriate specialty
398	team.

399

400 NLP compared to humans

Human performance may be a reasonable baseline for ML models to meet to be considered
accurate enough for implementation into clinical practice. Few studies have compared NLP
models at triage to human performance. Such comparisons will be crucial in future work.
Tahayori et al. was the only study that compared results from NLP models to emergency
physicians.³⁰ Ivanov et al., Sterling et al, and Gligorijevic et al. compared NLP based models
to nurses in assigning triage scores and found model accuracy was similar to nurses.^{17, 36, 47}

407

408 Interpretability

409 Few papers attempted to address human interpretability of models. While DL has been

410 criticised as being a "black box", there is ongoing work to develop more "explainable AI".^{54,}

411 ⁵⁵ Wang et al. show how models could be somewhat more interpretable.³⁸ Their triage model

412 is able to highlight free-text triage notes, with a darker colour corresponding to the sections

medRxiv preprint doi: https://doi.org/10.1101/2022.12.20.22283735; this version posted December 21, 2022. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC 4.0 International license .

413 of text that was more heavily weighted by the model. This provides an initial "sense check"

that humans can then combine with their own experience and knowledge.

415

416 Modern NLP

417 While it is difficult to compare studies due to their heterogeneity, advanced DL based NLP

418 appears to outperform traditional NLP. This is certainly the case when compared internally

419 within studies and is consistent with previous NLP research.⁵⁶ BERT appears to be the most

420 popular advanced NLP that has been used. BERT was released in October 2018 and at the

421 time of release, BERT outperformed other NLP models.²⁷ However, of the 16 papers

422 published since the release of BERT, only three have used it. Other large models have

423 subsequently been released. For example, GPT-3 is a 175 billion parameter language model

424 that was released in 2020 and is reported to outperform BERT in various circumstances.²⁸

425 Chowdhery et al. have recently published Pathways Language Model (PaLM), a 540-billion

426 parameter model that achieves further increases in performance.²⁹

427

428 FUTURE DIRECTIONS

429 Triage is a promising place to start applying NLP in the ED. Large datasets with clearly

430 labelled outcomes makes triage well suited to applications of ML. Triage information is often

431 available hours before emergency physician documentation, and accurate predictions made at

432 triage have the potential to increase healthcare system efficiency.¹⁸ There is also the

433 possibility of close human oversite if deployed in practice. Future work could aim to predict

434 other important patient-oriented outcomes at the time of triage such as wait times, need for

435 advanced cardiovascular investigations, or need for surgery.

436

437 **Incorporating clinical gestalt**

It is made available under a CC-BY-NC 4.0 International license .

438	Sterling et al. 2020 noted the difficulty in capturing the general clinical impression of the
439	triage nurse. ¹⁷ Ivanov et al. also noted that important contextual aspects at triage were not
440	available for consideration by ML models. ⁴⁷ Future work could assess the impact of
441	incorporating triage nurses' gestalt into predictive models. This could be expanded to also
442	capture patients' predictions regarding their need for admission to hospital. Other contextual
443	data available at the time of triage such as the number of patients currently waiting, the
444	number of patients currently in the ED, and number of admitted patients in the hospital could
445	also be incorporated into ML models.
446	
447	Integration with other AI systems

447Integration with other AI systems

448 There are opportunities to integrate NLP as part of a larger AI based system. Kim et al.

449 provides an interesting example of how various AI based technologies can be combined.⁴⁸

450 Speech recognition could be used to automatically generate a transcript of the entire triage

451 conversation, which could then be used by NLP models. However, the performance of speech

452 recognition technologies would likely deteriorate in a noisy ED, and combining multiple

453 complex AI based technologies raises the possibility that small initial errors could be

454 amplified as they propagate through the models. NLP models at triage could also be

455 integrated with other novel AI based interventions, such as automated monitoring of patients'

456 vital signs while they are in the waiting room, or with data entered by patients themselves in

457 AI based self-triage applications.

458

459 **Pre-trained models for ED triage**

460 Publicly available large DL based language models have often been trained on corpuses

461 containing text from newspapers, books, and websites.^{27, 28} Triage notes are often quite short

462 and contain a number of unique and idiosyncratic abbreviations and acronyms not common in

medRxiv preprint doi: https://doi.org/10.1101/2022.12.20.22283735; this version posted December 21, 2022. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC 4.0 International license.

463	everyday English language. ^{17, 30} The benefits of applying DL based NLP models to triage
464	notes may yet to be fully realised, as they were not developed for triage specific purposes.
465	DL based NLP models that have been fine-tuned on large corpuses of medical text have been
466	released, however they have not been applied to ED triage. Large publicly available clinical
467	databases such as MIMIC-IV that contain ED triage notes with linked outcomes are likely to
468	be helpful in further model development and may facilitate direct comparisons between
469	models developed by different research groups. ^{57, 58} Triage focused NLP research could also
470	benefit from groups sharing large language models that have been pre-trained on triage data.
471	These models could be used as starting points by others, though it is unknown whether such
472	models' performance would generalise across different healthcare settings and triage systems.
473	It is also unknown if the length of triage notes impacts model performance. This could be
474	evaluated in future work.
475	
476	Prospective and external validation is needed
477	The majority of research so far has been retrospective and completed in the USA. There is a
478	significant need for prospective evaluation and external validation, especially in other
479	countries and triage systems.
480	

481 Clinical impact and risk

482 NLP models have rarely been deployed at ED triage. As such, it is unknown what impact

these tools could have on clinical practice. The introduction of a new tool into a complex

484 system is likely to have unintended consequences, and use of the tool may itself change

485 practice. Triage notes may be written in a different way if it is known that they are being used

486 for predictive purposes. There may also be unintended harms. For example, telling a patient

487 at triage that they are likely to be admitted or to have a long wait time, could influence their

medRxiv preprint doi: https://doi.org/10.1101/2022.12.20.22283735; this version posted December 21, 2022. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC 4.0 International license .

488	behaviour and increase the number of patients who leave without being seen. It may be useful
489	to establish the performance benchmarks predictive models must meet prior to
490	implementation into clinical practice. This could be done through further studies comparing
491	NLP model performance to emergency physicians and nurses. Further research is also
492	required to understand how to best integrate early admission predictions into hospital systems
493	and clinical practice.
10.1	

494

495 NLP models can be retrained and updated as new data becomes available. Therefore, model

496 performance may change over time. It will be important to ensure that there is appropriate

497 algorithm stewardship in place prior to clinical use.⁵⁹ Predictive models are trained on data

498 that reflects current practice. This engrains the assumption that current practice is appropriate,

499 which may not be the case.

500

501 Acceptability

502 It is also unknown if the use of NLP at triage is acceptable to patients and staff. It will be

503 important to involve clinicians, patients, and healthcare consumer groups in the development

and governance of any future implementation projects. It will also be important to ensure that

505 these systems do not place further burden on users. Ease of use and perceived clinical impact

506 will likely be important factors for adoption by clinicians.

507

508 Ethical issues

509 Race, age, and gender biases at ED triage have been previously reported.⁶⁰⁻⁶² Concerns over

510 bias in ML models have been well described, and new tools are being developed to assess

511 such biases.⁶³⁻⁶⁵ At its best, NLP at triage could help reduce bias through standardising triage

512 decisions and providing a more objective triage score. However, at its worst NLP at triage

medRxiv preprint doi: https://doi.org/10.1101/2022.12.20.22283735; this version posted December 21, 2022. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC 4.0 International license .

522	LIMITATIONS
521	
520	is warranted.
519	research investigating the impact of NLP based tools on vulnerable and minority populations
518	predictions, and there are risks to the privacy of their personal healthcare data. ⁶⁷⁻⁷² Further
517	perceptions that AI is less accurate than clinicians, there is a lack of transparency in
516	AI largely positively, they do have some concerns with its use in healthcare. ⁶⁶ These include
515	will also need to be considered. While the emerging body of literature shows patients view
514	the opacity of abstract algorithms. Patient apprehensions and concerns about the use of AI
513	could further ingrain existing biases into practice, under the guise of objectivity and hidden in

523 Study level

524 Only one study contained prospectively validated results, and no studies contained results

525 that were externally validated at a separate site. Results reported may not be generalisable to

526 other settings. There was inconsistent reporting of methods and results among studies. The

527 majority of studies (79%) were assessed to have a high risk of bias.

528

529 **Review level**

530 Heterogeneity of the included studies precluded meta-analysis which limits the level of

531 evidence this review provides. All studies reported positive results for NLP at triage, which

- 532 may reflect publication bias. While we took significant care to ensure our search strategy was
- 533 broad enough to capture all relevant literature, the variety of NLP and ML terminology
- 534 means that some studies may have been missed. Non-English articles, and articles published

535 prior to 2012 were also excluded from our search.

536

537 CONCLUSION

It is made available under a CC-BY-NC 4.0 International license .

538	The use of NLP at triage appears feasible and could accurately predict important patient-
539	oriented outcomes including need for admission and need for critical care. However, there are
540	few examples of implementation into clinical practice and most research is retrospective. The
541	potential benefits of using NLP at triage are yet to be realised. Further research is needed to
542	prospectively assess the acceptability and impact of implementing NLP at triage on staff,
543	patients, and the healthcare system.
544	
545	
546	
547	
548	
549	
550	
551	
552	Funding
553	This project was supported by the Western Australian Health Translation Network's Health
554	Service Translational Research Project and the Australian Government's Medical Research
555	Future Fund (MRFF) as part of the Rapid Applied Research Translation program. Authors
556	who received grant: JS, GD, MB, PS, FS Funder Website: https://wahtn.org/ The funders had
557	no role in study design, data collection and analysis, decision to publish, or preparation of the
558	manuscript.
559	
560	Competing Interested
561	No authors declare any competing interests.
562	

It is made available under a CC-BY-NC 4.0 International license .

563 **REFERENCES**

564	1. Morley C, Unwin M, Peterson GM, Stankovich J, Kinsman L. Emergency department
565	crowding: A systematic review of causes, consequences and solutions. PLoS One.
566	2018;13(8):e0203316.
567	
568	2. Iserson KV, Moskop JC. Triage in medicine, part I: Concept, history, and types. Ann
569	Emerg Med. 2007 Mar;49(3):275–81.
570	
571	3. Hinson JS, Martinez DA, Cabral S, George K, Whalen M, Hansoti B, et al. Triage
572	performance in emergency medicine: a systematic review. Ann Emerg Med. 2019
573	Jul;74(1):140–52.
574	
575	4. Cameron P, Little M, Mitra B, Deasy C, editors. Textbook of adult emergency medicine.
576	Fifth edition. Edinburgh: Elsevier; 2020.
577	
578	5. Park JB, Lim TH. Korean Triage and Acuity Scale (KTAS). Journal of The Korean Society
579	of Emergency Medicine. 2017;28(6):547–51.
580	
581	6. Zachariasse JM, van der Hagen V, Seiger N, Mackway-Jones K, van Veen M, Moll HA.
582	Performance of triage systems in emergency care: a systematic review and meta-analysis.
583	BMJ Open. 2019 May 28;9(5):e026471.
584	
585	7. Jeppesen E, Cuevas-Østrem M, Gram-Knutsen C, Uleberg O. Undertriage in trauma: an
586	ignored quality indicator? Scand J Trauma Resusc Emerg Med. 2020 May 6;28(1):34.
587	
588	8. Banco D, Chang J, Talmor N, Wadhera P, Mukhopadhyay A, Lu X, et al. Sex and race
589	differences in the evaluation and treatment of young adults presenting to the emergency
590	department with chest pain. J Am Heart Assoc. 2022 May 17;11(10):e024199.
591	
592	9. Murphy KP. Machine learning: a probabilistic perspective. Cambridge, Mass.: MIT Press;
593	2012.
594	

It is made available under a CC-BY-NC 4.0 International license .

595	10. Stewart J, Sprivulis P, Dwivedi G. Artificial intelligence and machine learning in
596	emergency medicine. Emerg Med Australas. 2018 Dec;30(6):870-4.
597	
598	11. Kareemi H, Vaillancourt C, Rosenberg H, Fournier K, Yadav K. Machine learning versus
599	usual care for diagnostic and prognostic prediction in the emergency department: a
600	systematic review. Acad Emerg Med. 2021 Feb;28(2):184–96.
601	
602	12. Stewart J, Lu J, Goudie A, Bennamoun M, Sprivulis P, Sanfillipo F, et al. Applications of
603	machine learning to undifferentiated chest pain in the emergency department: A systematic
604	review. PLoS One. 2021;16(8):e0252612.
605	
606	13. Levin S, Toerper M, Hamrock E, Hinson JS, Barnes S, Gardner H, et al. Machine-
607	learning-based electronic triage more accurately differentiates patients with respect to clinical
608	outcomes compared with the emergency severity index. Ann Emerg Med. 2018
609	May;71(5):565-574.e2.
610	
611	14. Sánchez-Salmerón R, Gómez-Urquiza JL, Albendín-García L, Correa-Rodríguez M,
612	Martos-Cabrera MB, Velando-Soriano A, et al. Machine learning methods applied to triage in
613	emergency services: A systematic review. Int Emerg Nurs. 2022 Jan;60:101109.
614	
615	15. Hong WS, Haimovich AD, Taylor RA. Predicting hospital admission at emergency
616	department triage using machine learning. PLoS One. 2018;13(7):e0201016.
617	
618	16. Kwon JM, Lee Y, Lee S, Park H, Park J. Validation of deep-learning-based triage
619	and acuity score using a large national dataset. PLoS One. 2018;13(10):e0205836.
620	
621	17. Sterling NW, Brann F, Patzer RE, Di M, Koebbe M, Burke M, et al. Prediction of
622	emergency department resource requirements during triage: An application of current natural
623	language processing techniques. J Am Coll Emerg Physicians Open. 2020 Dec;1(6):1676-83.
624	
625	18. Sterling NW, Patzer RE, Di M, Schrager JD. Prediction of emergency department patient
626	disposition based on natural language processing of triage notes. Int J Med Inform. 2019
627	Sep;129:184–8.

It is made available under a CC-BY-NC 4.0 International license .

629	19. Spasic I, Nenadic G. Clinical text data in machine learning: systematic review. JMIR
630	Med Inform. 2020 Mar 31;8(3):e17984.
631	
632	20. Leaman R, Khare R, Lu Z. Challenges in clinical natural language processing for
633	automated disorder normalization. J Biomed Inform. 2015 Oct;57:28-37.
634	
635	21. Russell SJ, Norvig P, Davis E. Artificial intelligence: a modern approach. 3rd ed. Upper
636	Saddle River: Prentice Hall; 2010
637	
638	22. Manning CD, Schütze H. Foundations of statistical natural language processing.
639	Cambridge, Mass: MIT Press; 1999.
640	
641	23. Juluru K, Shih HH, Keshava Murthy KN, Elnajjar P. Bag-of-words technique in natural
642	language processing: a primer for radiologists. Radiographics. 2021;41(5):1420–6.
643	
644	24. Young T, Hazarika D, Poria S, Cambria E. Recent trends in deep learning based natural
645	language processing [review article]. IEEE Computational Intelligence Magazine. 2018
646	Aug;13(3):55–75.
647	
648 648	25. Wu S, Roberts K, Datta S, Du J, Ji Z, Si Y, et al. Deep learning in clinical natural
649 650	language processing: a methodical review. J Am Med Inform Assoc. 2020 Mar 1;2/(3):457–
650 651	70.
031 652	26 LoCup V. Bangio V. Hinton G. Deen learning. Nature, 2015 May 28:521(7552):426, 44
653	20. LeCun 1, Bengio 1, Hinton G. Deep leanning. Nature. 2015 May 28,521(7555).430–44.
654	27 Devlin I Chang MW Lee K Toutanova K Bert: pre-training of deep hidirectional
655	transformers for language understanding. In: Proceedings of the 2019 Conference of the
656	North American Chanter of the Association for Computational Linguistics: Human Language
657	Technologies Volume 1 (Long and Short Papers) [Internet] Minneapolis Minnesota:
658	Association for Computational Linguistics: 2019 [cited 2022 Apr 6] p. 4171–86. Available
659	from: https://aclanthology.org/N19-1423
660	· · · · · · · · · · · · · · · · · · ·
661	28. Brown T, Mann B, Ryder N, Subbiah M, Kaplan JD, Dhariwal P, et al. Language models

are few-shot learners. In: Advances in Neural Information Processing Systems [Internet].

It is made available under a CC-BY-NC 4.0 International license .

663	Curran Associates, Inc.; 2020 [cited 2022 Apr 8]. p. 1877–901. Available from:
664	https://papers.nips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
665	
666	29. Chowdhery A, Narang S, Devlin J, Bosma M, Mishra G, Roberts A, et al. Palm: scaling
667	language modeling with pathways [Internet]. arXiv; 2022 [cited 2022 Apr 5]. Available from:
668	http://arxiv.org/abs/2204.02311
669	
670	30. Tahayori B, Chini-Foroush N, Akhlaghi H. Advanced natural language processing
671	technique to predict patient disposition based on emergency triage notes. Emerg Med
672	Australas [Internet]. 2020;33(3):480-4. Available from: http://dx.doi.org/10.1111/1742-
673	6723.13656
674	
675	31. Moher D, Shamseer L, Clarke M, Ghersi D, Liberati A, Petticrew M, et al. Preferred
676	reporting items for systematic review and meta-analysis protocols (Prisma-p) 2015 statement.
677	Syst Rev. 2015 Jan 1;4(1):1.
678	
679	32. Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. The
680	PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ. 2021
681	Mar 29;372:n71.
682	
683	33. Wolff RF, Moons KGM, Riley RD, Whiting PF, Westwood M, Collins GS, et al. Probast:
684	a tool to assess the risk of bias and applicability of prediction model studies. Ann Intern Med.
685	2019 Jan 1;170(1):51–8.
686	
687	34. Horng S, Sontag DA, Halpern Y, Jernite Y, Shapiro NI, Nathanson LA. Creating an
688	automated trigger for sepsis clinical decision support at emergency department triage using
689	machine learning. PLoS One. 2017;12(4):e0174708.
690	
691	35. Zhang X, Kim J, Patzer RE, Pitts SR, Patzer A, Schrager JD. Prediction of emergency
692	department hospital admission based on natural language processing and neural networks.
693	Methods Inf Med. 2017 Oct 26;56(5):377-89.
694	
695	36. Gligorijevic D, Stojanovic J, Satz W, Stojkovic I, Schreyer K, Del Portal D, et al. Deep
696	attention model for triage of emergency department patients. In: Proceedings of the 2018

It is made available under a CC-BY-NC 4.0 International license .

697	SIAM International Conference on Data Mining (SDM) [Internet]. Society for Industrial and
698	Applied Mathematics; 2018 [cited 2022 Dec 17]. p. 297–305. (Proceedings). Available from:
699	https://epubs.siam.org/doi/abs/10.1137/1.9781611975321.34
700	
701	37. Choi SW, Ko T, Hong KJ, Kim KH. Machine learning-based prediction of korean triage
702	and acuity scale level in emergency department patients. Healthc Inform Res. 2019
703	Oct;25(4):305–12.
704	
705	38. Wang G, Liu X, Xie K, Chen N, Chen T. Deeptriager: a neural attention model for
706	emergency triage with electronic health records. In: 2019 IEEE International Conference on
707	Bioinformatics and Biomedicine (BIBM). 2019. p. 978-82.
708	
709	39. Zhang X, Bellolio MF, Medrano-Gracia P, Werys K, Yang S, Mahajan P. Use of natural
710	language processing to improve predictive models for imaging utilization in children
711	presenting to the emergency department. BMC Med Inform Decis Mak. 2019 Dec
712	30;19(1):287.
713	
714	40. Zhang X, Kim J, Patzer RE, Pitts SR, Chokshi FH, Schrager JD. Advanced diagnostic
715	imaging utilization during emergency department visits in the United States: A predictive
716	modeling study for emergency department triage. PLoS One. 2019;14(4):e0214905.
717	
718	41. Arnaud É, Elbattah M, Gignon M, Dequen G. Deep learning to predict hospitalization at
719	triage: integration of structured data and unstructured text. In: 2020 IEEE International
720	Conference on Big Data (Big Data). 2020. p. 4836–41.
721	
722	42. Chang D, Hong WS, Taylor RA. Generating contextual embeddings for emergency
723	department chief complaints. JAMIA Open. 2020 Jul;3(2):160-6.
724	
725	43. Fernandes M, Mendes R, Vieira SM, Leite F, Palos C, Johnson A, et al. Predicting
726	Intensive Care Unit admission among patients presenting to the emergency department using
727	machine learning and natural language processing. PLoS One. 2020;15(3):e0229331.

It is made available under a CC-BY-NC 4.0 International license .

729	44. Fernandes M, Mendes R, Vieira SM, Leite F, Palos C, Johnson A, et al. Risk of mortality
730	and cardiopulmonary arrest in critical patients presenting to the emergency department using
731	machine learning and natural language processing. PLoS One. 2020;15(4):e0230876.
732	
733	45. Joseph JW, Leventhal EL, Grossestreuer AV, Wong ML, Joseph LJ, Nathanson LA, et al.
734	Deep-learning approaches to identify critically III patients at emergency department triage
735	using limited information. J Am Coll Emerg Physicians Open. 2020 Oct;1(5):773-81.
736	
737	46. Roquette BP, Nagano H, Marujo EC, Maiorano AC. Prediction of admission in pediatric
738	emergency department with deep neural networks and triage textual data. Neural Netw. 2020
739	Jun;126:170–7.
740	
741	47. Ivanov O, Wolf L, Brecher D, Lewis E, Masek K, Montgomery K, et al. Improving ed
742	emergency severity index acuity assignment using machine learning and clinical natural
743	language processing. J Emerg Nurs. 2021 Mar;47(2):265-278.e7.
744	
745	48. Kim D, Oh J, Im H, Yoon M, Park J, Lee J. Automatic classification of the korean triage
746	acuity scale in simulated emergency rooms using speech recognition and natural language
747	processing: a proof of concept study. J Korean Med Sci. 2021 Jul 12;36(27):e175.
748	
749	49. Greenbaum NR, Jernite Y, Halpern Y, Calder S, Nathanson LA, Sontag DA, et al.
750	Improving documentation of presenting problems in the emergency department using a
751	domain-specific ontology and machine learning-driven user interfaces. Int J Med Inform.
752	2019 Dec;132:103981.
753	
754	50. Liyanage H, Krause P, De Lusignan S. Using ontologies to improve semantic
755	interoperability in health data. J Innov Health Inform. 2015 Jul 10;22(2):309-15.
756	
757	51. Abdulwahid MA, Booth A, Kuczawski M, Mason SM. The impact of senior doctor
758	assessment at triage on emergency department performance measures: systematic review and
759	meta-analysis of comparative studies. Emerg Med J. 2016 Jul;33(7):504-13.
760	

It is made available under a CC-BY-NC 4.0 International license .

761	52. Begaz T, Elashoff D, Grogan TR, Talan D, Taira BR. Initiating diagnostic studies on
762	patients with abdominal pain in the waiting room decreases time spent in an emergency
763	department bed: a randomized controlled trial. Ann Emerg Med. 2017 Mar;69(3):298-307.
764	
765	53. Asplin BR, Magid DJ, Rhodes KV, Solberg LI, Lurie N, Camargo CA. A conceptual
766	model of emergency department crowding. Ann Emerg Med. 2003 Aug;42(2):173-80.
767	
768	54. Adadi A, Berrada M. Peeking inside the black-box: a survey on explainable artificial
769	intelligence (Xai). IEEE Access. 2018;6:52138–60.
770	
771	55. Linardatos P, Papastefanopoulos V, Kotsiantis S. Explainable ai: a review of machine
772	learning interpretability methods. Entropy (Basel). 2020 Dec 25;23(1):E18.
773	
774	56. Li H. Deep learning for natural language processing: advantages and challenges. National
775	Science Review [Internet]. 2018 Jan 1 [cited 2022 Jun 16];5(1):24-6. Available from:
776	https://academic.oup.com/nsr/article/5/1/24/4107792
777	
778	57. Johnson, Alistair, Bulgarelli, Lucas, Pollard, Tom, Celi, Leo Anthony, Mark, Roger,
779	Horng, Steven. Mimic-iv-ed [Internet]. PhysioNet; [cited 2022 Jun 22]. Available from:
780	https://physionet.org/content/mimic-iv-ed/2.0/
781	
782	58. Goldberger AL, Amaral LA, Glass L, Hausdorff JM, Ivanov PC, Mark RG, et al.
783	PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for
784	complex physiologic signals. Circulation. 2000 Jun 13;101(23):E215-220.
785	
786	59. Eaneff S, Obermeyer Z, Butte AJ. The case for algorithmic stewardship for artificial
787	intelligence and machine learning technologies. JAMA. 2020 Oct 13;324(14):1397-8.
788	
789	60. Schrader CD, Lewis LM. Racial disparity in emergency department triage. J Emerg Med.
790	2013 Feb;44(2):511–8.
791	
792	61. Kuhn L, Page K, Rolley JX, Worrall-Carter L. Effect of patient sex on triage for
793	ischaemic heart disease and treatment onset times: A retrospective analysis of Australian
794	emergency department data. Int Emerg Nurs. 2014 Apr;22(2):88–93.

It is made available under a CC-BY-NC 4.0 International license .

795	
796	62. Vigil JM, Coulombe P, Alcock J, Kruger E, Stith SS, Strenth C, et al. Patient ethnicity
797	affects triage assessments and patient prioritization in u. S. Department of veterans affairs
798	emergency departments. Medicine (Baltimore). 2016 Apr;95(14):e3191.
799	
800	63. Gianfrancesco MA, Tamang S, Yazdany J, Schmajuk G. Potential biases in machine
801	learning algorithms using electronic health record data. JAMA Intern Med. 2018 Nov
802	1;178(11):1544–7.
803	
804	64. Linardatos P, Papastefanopoulos V, Kotsiantis S. Explainable ai: a review of machine
805	learning interpretability methods. Entropy (Basel). 2020 Dec 25;23(1):18.
806	
807	65. Vokinger KN, Feuerriegel S, Kesselheim AS. Mitigating bias in machine learning for
808	medicine. Commun Med (Lond). 2021 Aug 23;1:25.
809	
810	66. Young AT, Amara D, Bhattacharya A, Wei ML. Patient and general public attitudes
811	towards clinical artificial intelligence: a mixed methods systematic review. Lancet Digit
812	Health. 2021 Sep;3(9):e599–611.
813	
814	67. Ongena YP, Haan M, Yakar D, Kwee TC. Patients' views on the implementation of
815	artificial intelligence in radiology: development and validation of a standardized
816	questionnaire. Eur Radiol. 2020 Feb;30(2):1033-40.
817	
818	68. Bala S, Keniston A, Burden M. Patient perception of plain-language medical notes
819	generated using artificial intelligence software: pilot mixed-methods study. JMIR Form Res.
820	2020 Jun 5;4(6):e16670.
821	
822	69. Nelson CA, Pérez-Chada LM, Creadore A, Li SJ, Lo K, Manjaly P, et al. Patient
823	perspectives on the use of artificial intelligence for skin cancer screening: a qualitative study.
824	JAMA Dermatol. 2020 May 1;156(5):501–12.
825	
826	70. Jutzi TB, Krieghoff-Henning EI, Holland-Letz T, Utikal JS, Hauschild A, Schadendorf D
827	et al. Artificial intelligence in skin cancer diagnostics: the patients' perspective. Front Med
828	(Lausanne). 2020;7:233.

It is made available under a CC-BY-NC 4.0 International license .

- 830 71. Nadarzynski T, Miles O, Cowie A, Ridge D. Acceptability of artificial intelligence (Ai)-
- 831 led chatbot services in healthcare: A mixed-methods study. Digit Health.
- 832 2019;5:2055207619871808.
- 833
- 834 72. Palmisciano P, Jamjoom AAB, Taylor D, Stoyanov D, Marcus HJ. Attitudes of patients
- and their relatives toward artificial intelligence in neurosurgery. World Neurosurg. 2020
- 836 Jun;138:e627–33.

											≩
lear	First Author	Country	Study design	Primary Outcome	Sites	Population	Input data	NLP/ML Model	Comparison	Results	lich
											wa
021	Kim	South	Retrospective	Assignment of triage	Single-centre	762 simulated	Human transcribed and ML-	BERT	SVM, KNN, RF	Model performance with IBM's auto-transcribed test	s no
		Korea		score (KTAS).	(1 site)	triage cases	transcribed simulated triage			dataset.	of c
							dialogue			BERT-KTAS AUC 0.82 (0.75–0.87)	erti
										SVM AUC 0.86 (0.81-0.90)	fied
										KNN AUC 0.89 (0.85-0.93)	by
										RF AUC 0.86 (0.82–0.9)	pe
:021	Ivanov	USA	Retrospective	Assignment of triage	Multi-centre	147 052 patient	Blood glucose, chief	Clinical-NLP	Nurse triage	ML Model AUC 0.85	
				score (ESI).	(2 sites)	encounters (age	complaint (free-text),	(developed by		Nurse triage AUC 0.75	vie
						1 year or older)	demographics, FHx, history	authors), XGBoost		av	٤
							of presenting complaint (free-				s th
							text), mental status, mode of			ble	e al
							arrival, pain score, SHx, vitals			und.	uthc
:020	Tahayori	Australia	Retrospective	Patient disposition	Single-centre	249 532 patient	History of presenting	BERT	Emergency	BERT AUC 0.88 Accuracy 0.83	r/fu
				(admission or	(1 site)	encounters	complaint (free-text)		consultants (5),	Emergency Consultant Accuracy 0.78	nde
				discharge).		(adult)			Bag-of-words	Bag-of-words AUC 0.77 Accuracy 0.72	, ` ≼
										Ż	hol
2020	Sterling	USA	Retrospective	Assignment of triage	Multi-centre	226 317 patient	Chief complaint (structured),	LSTM	Emergency	Model predictions (on nursing prediction subset)	าลร
				score (ESI).	(3 sites)	encounters	demographics, history of		nurses (2)	F1 = 0.589 Accuracy 0.659	grai
						(adult and	presenting complaint (free-			Nurse predictions (on 1000 presentations)	ntec
						paediatric)	text), medication, mental			F1 = 0.592 Accuracy 0.690	me
							status, mode of arrival, pain			nal	dR
							score, PMHx, vitals			lice	×.
2020	Roquette	Brazil	Retrospective	Patient disposition	Single-centre	499 853 patient	Blood glucose, chief	LSTM	SVM	SVM AUC 0.687	lic
				(admission or	(1 site)	encounters	complaint (free-text),		ElasticNet	ElasticNet AUC 0.840	ens
				discharge).		(paediatric)	demographics, history of		DNN	CatBoost without text features AUC 0.872	e to
							presenting complaint (free-		Catboost	DNN AUC 0.877	dis
							text), medication, pain score,		(structured)	XGBoost AUC 0.890	play
							past investigation requests,		XGBoost	CatBoost with text features AUC 0.891	/ the
							PMHx, triage score (MTS),		Catboost (text)		pre
							vitals				əprii

020	Joseph	USA	Retrospective	Identification of	Single-centre	445 925 patient	Demographics, chief	LSTM+DNN	DNN (structured	Abnormal vital sign trigger AUC 0.521	
				critical illness (death	(1 site)	encounters	complaint (free-text), triage		data only), LR,	ESI score ≤ 2 AUC 0.672	
				within 24 hours of		(adult)	score (ESI), vitals		XGBoost,	LR AUC 0.804	
				arrival, ICU					Abnormal vital	Structured data only	
				admission from the					sign trigger, ESI	DNN AUC 0.812	
				ED or within 24					score.	XGBoost AUC 0.820	
				hours of ward						Combined structured and text data	
				admission).						LSTM+DNN AUC 0.857	Ŧ
.020	Fernandes	Portugal,	Retrospective	Identification of	Multi-centre	Site one	Blood glucose, chief	Term frequency-	LR model	Site 1	- Si
1)		USA		critical illness (ICU	(2 sites)	120 649 patient	complaint (structured and	inverse document	trained using	ESI only	nad
				admission within 24		encounters	free-text), exams prescribed at	frequency (TF-idf) +	only triage	LR AUC 0.78	e av
				hours of triage).		(adult)	triage, mental status, mode of	LR	priorities (ESI or	ESI + clinical variables + chief complaint	'aila
							arrival, pain score, time of		MTS)	LR AUC 0.92	ble
						Site two	triage, triage score (ESI or			Site 2	und
						235 826 patient	MTS), vitals			MTS only	er a
						encounters				LR 0.74	õ
						(adult)				MTS + clinical variables + chief complaint	b b
										LR 0.86	-Z
.020	Fernandes	Portugal,	Retrospective	Identification of	Single-centre	235 826 patient	Blood glucose, chief	Term frequency-	LR trained using	ESI only	4.
2)		USA		critical illness (in-	(1 site)	encounters	complaint (free-text), exams	inverse document	only triage	LR AUC 0.85	0 In
				hospital death or		(adult)	prescribed at triage, mental	frequency (TF-idf) +	priorities (ESI).	Clinical variables only	tern
				cardiopulmonary			status, mode of arrival, pain	LR/RF/XGBoost		XGBoost AUC of 0.96	atio
				arrest within 24			scale, time of triage, vitals			Clinical variables + chief complaint	nal
				hours of triage).						XGBoost AUC 0.96	lice
.020	Chang	USA	Retrospective	Prediction of	Multi-centre	1 799 365 free-	History of presenting	BERT	LSTM, ELMo	Full dataset (434 labels)	nse
				provider-assigned	(7 sites)	text chief	complaint (free-text)			BERT Accuracy Top-1 0.65 Top-5 0.92	•
				chief complaint		complaints				ELMo Accuracy Top-1 0.63 Top-5 0.90	
				label.		(adult and				LSTM Accuracy Top-1 0.63 Top-5 0.90	
	1					paediatric)					

:020	Arnaud	France	Retrospective	Patient disposition	Single-centre	Approximately	Arrival time, bladder volume,	CNN (textual data) +	None	CNN+ANN	
				(admission or	(1 site)	190 000 patient	blood glucose, breath alcohol,	ANN (structured data)		AUC ≈ 0.83	
				discharge).		encounters	capillary haemoglobin,				
						(adult)	capillary ketones,				
							demographics, history of				
							presenting complaint (free-				
							text), mode of arrival, pain,				
							PMHx (free-text), triage				=
							score, vitals				م ح
:019	Zhang	USA	Retrospective	Use of advanced	Multi-centre	139 150	Arrival time, demographics,	Latent Dirichlet	None	Any advanced diagnos	stic imaging use
1)				diagnostic imaging	(300 sites)	presentations	history of presenting	Allocation (LDA)		LDA + LR	e a
				(CT, US, MRI)		(adult)	complaint (free-text), mode of	algorithm + LR		Unstructured variable	es AUC 0.74
				during ED visit.			arrival, pain scale, PMHx,			Structured variables	AUC 0.69
							triage score, vitals, whether			Unstructured + Struct	tured variables AUC 0.78
							the visit was related to an				er a
							injury/poisoning/adverse				8
							effect of medical treatment				Ġ
:019	Zhang	USA	Retrospective	Performance of any	Multi-centre	27 665 patient	Arrival time, demographics,	BoW + PCA + LR	None	BoW + PCA + LR	Z
2)				diagnostic imaging	(300 sites)	encounters	history of presenting			Any imaging	4.
				during ED visit.		(paediatric)	complaint (free-text), mode of			Unstructured variable	es AUC 0.810
							arrival, pain scale, PMHx,			Structured variables	AUC 0.706
							triage score, vitals, whether			Unstructured + struct	ured AUC 0.824
							the visit was related to an				
							injury/poisoning/adverse				ICer
							effect of medical treatment				ISe
:019	Wang	China	Retrospective	Assignment of triage	Single-centre	70 918 patient	Chief complaint (free-text),	"DeepTriager" model	NEWS +	NEWS + LR	AUC 0.8631
				score.	(1 site)	encounters	demographics, history of	(based on	LR/BOW/RF	NEWS + BOW + LR	AUC 0.9016
						(adult)	presenting complaint (free-	LSTM+DNN)		NEWS + BOW + RF	AUC 0.9257
							text), physical examination			NEWS + LSTM	AUC 0.9525
							(free-text), vitals			"DeepTriager"	AUC 0.9594

010	Starling	TIC A	Detrocpective	Detiont disposition	Multi contro	256 979 notiont	Listory of presenting	Denegraph	None	Demograph vector + ANN AUC-0.727
.019	Sterning	USA	Reifospective			230 878 patient	History of presenting		None	Paragraphi vector + ANN $AUC = 0.757$
				(admission or	(3 sites)	encounters.	complaint (free-text)	vectors/Bow/Topic		Bag-of-words + ANN AUC=0.785
				discharge).				modelling + ANN		Topic modelling + ANN AUC 0.687
:019	Greenbaum	USA	Retrospective	Percent of	Single-centre	279 231 patient	Demographics, history of	BoW + SVM	Pre-	Pre-implementation
			then	presenting problems	(1 site)	encounters total	presenting complaint (free-		implementation	Structured data capture 26.2%
			prospective	entered at triage able		(78 157 patient	text), pain score, triage score		practice	Keystrokes per presenting problem 11.6
				to be automatically		encounters were	(ESI), vitals		-	Post-implementation
				mapped to a		post-				Structured data capture 97.2%
				structured ontology.		implementation)				Keystrokes per presenting problem 0.6
										Higher overall quality (qualitative)
:019	Choi	South	Retrospective	Assignment of triage	Single-centre	138 022 patient	Arrival time, chief complaint	BoW +	None	LR (structured data only) AUC = 0.8812
		Korea		score (KTAS).	(1 site)	encounters	(structured), demographics,	LR/RF/XGBoost		LR (text data only) AUC = 0.8595
						(adults)	history of presenting			LR (structured and text) AUC = 0.9053
							complaint (free-text), mental			RF (structured and text) AUC = 0.9220
							status, mode of arrival, pain			XGB (structured and text data) AUC = 0.9220
							location and intensity, vitals			C.
018	Gligorijevic	USA	Retrospective	Assignment of triage	Single-centre	338 500 patient	Arrival time, chief complaint	"Deep Attention	LR, ANN,	LR (structured data only) AUC 0.5277
				score (ESI).	(1 site)	encounters	(free-text), demographics,	Model (DAM)" based	LSTM, CNN,	ANN (structured data only) AUC 0.5689
							history of presenting	on LSTM+DNN	Approximated	LSTM (structured + text) AUC 0.8523
							complaint (free-text),		nurses'	CNN (structured + text) AUC 0.8609
							medication, mode of arrival,		performance.	DAM (text data only) AUC 0.8763
							PMHx, vitals			DAM (structured + text) AUC 0.8797
										Approximated nurses' performance: Accuracy 43
										DAM (structured + text) Accuracy of $\frac{1}{8}$.
017	Zhang	USA	Retrospective	Patient disposition	Multi-centre	47 200 patient	Arrival time, demographics,	BoW + PCA + ANN	LR	LR model 1 (text) AUC 0.742
				(admission or	(642 sites)	encounters	chief complaint (free-text),			LR model 2 (structured) AUC 0.824
				discharge).		(paediatric and	mode of arrival, pain score,			LR model 3 (structured and text) AUC 0.846
						adult)	PMHx, triage score, vitals,			ANN model 1 (text) AUC 0.753
							whether the visit was related			ANN model 2 (structured) AUC 0.823
							to an injury/poisoning/adverse			ANN model 3 (structured + text) AUC 0.844
							effect of medical treatment			
	1	1	1	1	1	1	1	1	1	

017	Horng	USA	Retrospective	Diagnosis of	Single-centre	230 936 patient	Demographics, chief	BoW/Topic model +	LR, RF, Naive	SVM (structured)	AUC 0.67
				infection in the	(1 site)	encounters	complaint (free-text), history	SVM	Bayes	SVM (structured + text)	AUC 0.86
				emergency			of presenting complaint (free-			LR (structured + text)	AUC 0.86
				department.			text), pain score, triage score			Naïve Bayes (structured + text)	AUC 0.83
							(ESI), vitals			RF (structured + text)	AUC 0.87

Table 1 – Summary of included studies.

Abbreviations

- KTAS Korean Triage and Acuity Scale
- ESI Emergency Severity Index
- ICU Intensive Care Unit
- ED Emergency Department
- ML Machine learning
- FHx Family history
- SHx Social history
- PMHx Past medical history

Vitals - Respiratory rate (RR), heart rate (HR), systolic blood pressure (SBP), diastolic blood pressure (DBP), temperature (Temp), and oxygen saturation (SPO2).

- MTS Manchester Triage system
- BERT bidirectional encoder representations from transformers
- XGBoost eXtreme Gradient Boosting
- LSTM Long short-term memory

It is made available under a CC-BY-NC 4.0 International license

It is made available under a CC-BY-NC 4.0 International license .

DNN - Deep neural network

LR - Logistic regression

RF - Random forest

- CNN Convolutional neural network
- ANN Artificial neural network
- BoW Bag-of-words
- PCA Principal component analysis
- SVM Support vector machine
- KNN k-nearest neighbors
- F1 the harmonic mean of precision and recall
- AUC Area under the receiver operating characteristic curve
- ELMo Embeddings from Language Model
- NEWS National Early Warning Score

It is made available under a CC-BY-NC 4.0 International license .

Study	Risk of Bias (R	OB)			Applicability			Overall	
	Participants	Predictors	Outcome	Analysis	Participants	Predictors	Outcome	ROB	Applicability
Kim et al. 2021	?	?	+	-	-	-	+	-	-
Ivanov et al. 2021	+	+	-	-	+	+	+	-	+
Tahayori et al. 2020	+	+	+	+	+	+	+	+	+
Sterling et al. 2020	?	+	?	-	+	+	?	-	+
Roquette et al. 2020	+	+	+	+	+	+	+	+	+
Joseph et al. 2020	+	+	+	-	+	+	+	-	+
Fernandes et al. 2020 (2)	-	+	?	+	+	+	+	-	+
Fernandes et al. 2020 (1)	-	+	?	+	+	+	+	-	+
Chang et al. 2020	+	+	-	+	+	+	+	-	+
Arnaud et al. 2020	-	+	+	-	+	+	+	-	+
Zhang et al. 2019 (2)	?	+	+	-	+	+	+	-	+
Zhang et al. 2019 (1)	?	+	+	-	+	+	+	-	+
Wang et al. 2019	+	+	+	-	+	+	+	-	+
Sterling et al. 2019	+	+	+	-	+	+	+	-	+
Greenbaum et al. 2019	+	+	+	+	+	+	+	+	+
Choi et al. 2018	+	+	?	-	+	+	+	-	+
Gligorijevic 2018	+	+	-	?	+	+	+	-	+
Zhang et al. 2017	+	+	+	+	+	+	+	+	+
Horng et al. 2017	+	+	-	+	+	+	+	-	+

Table 2. PROBAST assessment of the included studies.

PROBAST = Prediction model Risk Of Bias ASsessment Tool; ROB = risk of bias.

+ indicates low ROB/low concern regarding applicability;

- indicates high ROB/high concern regarding applicability; and

? indicates unclear ROB/unclear concern regarding applicability

It is made available under a CC-BY-NC 4.0 International license .

Study	Dataset available	Code available
Kim et al. 2021	No	No
Ivanov et al. 2021	No	No
Tahayori et al. 2020	Yes*	No
Sterling et al. 2020	No	No
Roquette et al. 2020	No	No
Joseph et al. 2020	No**	Yes
Fernandes et al. 2020 (2)	Yes*	No
Fernandes et al. 2020 (1)	Yes*	No
Chang et al. 2020	No	Yes
Arnaud et al. 2020	No	No
Zhang et al. 2019 (2)	Yes ***	No
Zhang et al. 2019 (1)	Yes ***	No
Wang et al. 2019	No	No
Sterling et al. 2019	No	No
Greenbaum et al. 2019	No	No
Choi et al. 2018	No	No
Gligorijevic 2018	No	No
Zhang et al. 2017	Yes***	No
Horng et al. 2017	Yes*	No

Table 3. Availability of dataset and code for included studies.

* Data available on request from the authors and may be released to researchers following the signing of a data sharing agreement.

** Pending approval, a modified, de-identified dataset containing modified chief complaint text data will be uploaded. Approval still pending at time of this review.

*** All data freely and publicly available.

PRISMA 2021 flow diagram for new systematic reviews which included searches of databases, registers and other searces

