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ABSTRACT 

The Skew-Logistic (SL) function has been proposed to model a real-life dynamic process which rises 
monotonically to a peak followed by a monotonic decline. It was introduced to model the first stage of 
the Covid-19 pandemic to forecast the behaviour of Covid. Then, with different controls and variants, 
Covid levels rose and fell in what might be called a Multi-Wave (MW) behaviour; with the waves not 
necessarily the same size. This paper shows how using the SL function for one wave can be modified 
to model the MW situation. We apply it to two examples. One is to Covid -19, to examine its most 
recent behaviour. The other is to climate change, the most serious issue of our time. Ensuring that the 
world simply achieves carbon-equality is not enough. We have to rapidly achieve carbon-negativity to 
prevent bringing an end to the world as we know it. 

 
Keywords: Covid-19 waves, climate change, carbon negative 

1 INTRODUCTION 

The Skew-Logistic (SL) function was introduced in Dye et al. (2020) to compare the first wave of the 
Covid-19 epidemics in different European countries. The mathematical form is described in the 
Supplemental Materials of the paper, which also describes how the model can be fitted to real data 
using standard statistical techniques. This paper shows how the method can be used to firstly fit to the 
individual waves of a sample of Multi-Wave (MW) data and how all these individual waves can be 
then combined to create an overall simultaneous fit the entire data sample. It will be convenient to 
summarise the single wave fitting first, which is done in Section 2. Then, in Section 3, we discuss the 
MW fitting method. 
 Our first application is described in Section 4 where we fit the Covid-19 Active Cases that 
occurred in the United Kingdom from March 2022 till November 2022 covering the three most recent 
waves. 
 In our second application we fit the SL-MW model to the annual atmospheric carbon dioxide 
level, in parts per million (CO2 ppm) from 1800 to 2022. We also fit the model to the world average 
Temperature (0C). We then use the fits to predict the CO2 and Temperature levels until 2100. 
 

2 SINGLE WAVES 

Fitting the SL function to the observation of one wave of the process of interest forms the basis for 
fitting several SL functions to MW data. We therefore start by summarising the description of the SL 
function given in Dye et al. (2020). The SL function takes the form: 
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where D(t,𝛉) is the prevalence or incidence of the quantity of interest, this being the number of active 
Covid-19 cases in Example 1 and CO2 in Example 2. All four parameters are readily interpretable. 
The parameter a, is close to the maximum value of D(t), whilst 𝜏 indicates the location of the 
maximum. The parameters b and d, respectively indicate the rates of rise and decline of D(t). As 
shown in Equation 1, 𝑏 and 𝑑 are mathematically identical. We write 𝛉 = (𝜎, 𝑎, 𝑏, 𝑑, 𝜏) where 𝜎 is the 
standard deviation of an individual observation. As dependence of D(t) on the parameters is obvious, 
𝛉 is usually omitted. 
 We assume that 𝑏 > 0 and 𝑑 < 0 so that the term (𝑏 − 𝑑)/2 in the denominator is always 
positive.  𝐷(𝑡) ≅ 𝑒௕(௧ିఛ) as  𝑡 → −∞, so that b gives the exponential rate of increase of 𝐷(𝑡) as t 
increases from −∞ and 𝐷(𝑡) ≅ 𝑒ௗ(௧ିఛ) as  
𝑡 → ∞, so that  𝑑 < 0 gives the exponential rate of decrease. Either form of 𝐷(𝑡) in Equation 1 can 
thus be used when fitting to data, with the signs of b and d showing which role they have. 

 The explicit maximum value of 𝐷(𝑡) is 

 𝐷௠௔௫ = 𝑎𝑟(
మೝ

భశೝ
)(1 + 𝑟)ିଶ (2) 

 
where 𝑟 = −𝑏/𝑑. The maximum is at 

 𝑡௠௔௫ = 𝜏 +
ଶ

௕ିௗ
log (−

௕

ௗ
). (3) 

Equations (2) and (3) show that, when b and – 𝑑 are close in value, 𝑎 will be close to the maximum of 
D, and 𝜏 wil be close to the maximum point. 
 As described in Dye et al. (2020), the SL function can  be fitted to data using the method of 
maximum likelihood (ML) using Nelder-Mead search. This latter needs initial parameter values to be 
provided. This is not always straightforward, especially with multimodal functions, particularly when 
the number of parameters is large. A very attractive feature with the SL function is that, its readily 
interpretable parameters enables the user to intervene and interactively select appropriate initial 
parameters are close the best. This enables Nelder-Mead to reliably obtain an accurate optimum. We 
can simply visually examine the data to  obtain an initial estimate of its position and size. The rates of 
increase and decrease can then be roughly estimated to give starting values for b and d. An initial 
value for a be obtained using Equation (2), whilst the observed maximum and Equation (3) can be 
used to give the initial value of 𝜏.  In applying ML optimization, we include an extra parameter σ, 
the standard deviation of the observational error. Estimation of σ is included in the ML method, so 
that the quality of the fit is also assessed. We turn now to the MW situation  

3 MULTI-WAVE 

3.1  Function Formula and Data Examples 
We assume a simple additive functional form when there are N waves, namely: 
 

   𝐷(𝑡) = ∑ 𝑎௜
௜ୀே
௜ୀଵ 𝑒௕೔(௧ିఛ೔){[1 + 𝑒

భ

మ
(௕೔ିௗ೔)(௧ିఛ೔)

]ିଶ},    (4) 
 

where typically, but not invariably, the 𝜏௜ are in increasing order 𝜏ଵ < 𝜏ଶ … < 𝜏ே  indicating the 
(approximate) location of each of the maxima of each of the waves. We give two data samples where 
𝐷(𝑡) might be fitted.  The first, Example 1, comprises the observed Daily New Cases of Covid-19 
from 3 March 2022 to 17 November 2022 as shown in Figure 1. 
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    Figure 1. Covid-19 observations from 17 May to 16 November 2022 
 
 Example 2, comprises the observations of the global CO2 level from 1800 to 2022. A plot of 
this sample is shown in Figure 2. 
 

 
 

     Figure 2. CO2 –282 ppm Level from 1800 to 2022 
 

There is a noticeable peak in the sample plot where a wave is particularly prominent but this depends 
on the juxtaposition of the waves and  where a wave peaks may not be obvious from the full sample 
plot. In Example 1, one might conjecture that there are three waves. In Example 2, the number of 
waves is not so clear and there could be one or two waves. 
 
We consider our proposed fitting method next. 
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3.2  The Basic Method 
 

The proposed method of fitting D(t) to data takes two stages. In the first stage the data is grouped into 
separate sections, with each representing the position where the data are most dependent on a 
particular wave. The division process could be made automatic, but if speed is not important, as is the 
case in our two examples, then it is simplest for the user to carry out this process by eye. As will be 
seen, in Example 1, the number of waves looks likely to be three. As previously intimated, the choice 
is less obvious in Example 2. However the initial slope variation suggests an earlier wave that 
becomes dominated by a second wave. Here more adjustment is needed to fix the position of the first 
wave and our final choice turns out to be two waves. 
 To find the maximum when using search methods like Nelder-Mead, a good choice of initial 
parameters is extremely important, particularly when the parameter count is high and the search 
domain is high dimensional. The problem is particularly demanding when the function is multimodal 
as is the case in our problem. In our case, visual evidence of a good fit of a regression line to data, 
together with confidence level assessment, provides reassurance that our method is satisfactory. In the 
next section we study the examples in more detail 

4 FITTING METHOD 

4.1  Covid-19 Example 
 

The fitting problem is amenable to being tackled visually and user interaction. We indicate the general 
procedure which is very flexible. There are no hard and fast rules and, depending on the data, 
adjustments are easy to make. How a simple overall approach is to divide the fitting into two steps. 
We consider Example 1. 
 As the first step we make a visual inspection of the sample. This suggests choosing 3 waves 
with waves 1, 2 and 3 contributing to data points in the ranges S1 = {1,86}, S2 = {87,172}, S3 = 
(173,243}, respectively, where the sample size is n = 243. We then separately fit the single wave SL 
model of D(t), as given in Equation (1), to each of the data sets Sj,  j = 1, 2, 3. The fitting process is 
described in Cheng et al. (2020), Section 2 and in Dye et al. (2020), Supplementary Materials, and 
will not be repeated here. Figure 3 gives the results of this step. 
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   Figure 3. The three fitted waves for the Covid-19 sample 
 
The fitted parameter values are given in Table 1 below. 
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    Table 1: Parameter estimates obtained by dividing full sample into 
    3 subsamples and fitting a single wave separately to each subsample. 
 
 
 
 
 
 
 
 
Once the single waves have been fitted, we proceed to the second step which is to fit the N=3, multi-
wave D(t) of Equation (4) taking θ ={𝜎, 𝑎ଵ, 𝑏ଵ, 𝑑ଵ, 𝜏ଵ, 𝑎ଶ, 𝑏ଶ, 𝑑ଶ, 𝜏ଶ, 𝑎ଷ, 𝑏ଷ, 𝑑ଷ, 𝜏ଷ} as the vector of 
initial parameter values. The subscripts correspond to the number of the fitted wave. The initial multi-
wave D(t) obtained, using the initial parameter values of Table1, is shown (in green) in the chart of 
Figure 4. Note that the last segment of this curve, corresponding to wave 3, is noticeably different 
from the fit to wave 3 shown in the third plot of Figure 3. 

Figure 4 also shows the final fit (red line) obtained for the full sample, where it will be seen that 
the optimization greatly improves the overall fit. 

The optimized parameter estimates are shown in Table 2 
 

   
   

    Figure 4. The N = 3 Multi-wave fit to the full Covid-19 sample 
 

Table 2: Parameter estimates obtained by an N=3 Multi-wave 
to the full Covid-19 sample 
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Parameters  1-86: Wave 1 87-172 Wave 2 173-243 Wave 3 
𝜎 4490 1630 748 
𝑎 254000 101000 27500 
𝑏 0.215 0.103 0.0492 
𝑑 -0.0596 -0.0713 -0.174 
𝜏 44600 4470 44900 

Parameters  i = 1 i = 2 i = 3 
𝜎 4610   
𝑎௜ 27000 102000 28300 
𝑏௜ 0.198 0.0817 0.0483 
𝑑௜ -0.0637 -0.0875 -0.135 
𝜏௜  44600 4470 44900 
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4.2  CO2 Example 
 

In this example, visual inspection of the data sample shown in Figure 2 suggests fitting two 
waves.  
 

 
 
 

 
 
   Figure 5. The two Single Wave fits to the Global CO2 ppm sample 
 

Table 3: Parameter estimates obtained by dividing full 
GlobalCO2 sample into 2 subsamples and fitting a 
single wave separately to each subsample. 

 
 
 
 
 
 
 

 
Using these single wave parameter estimates as initial values produces the N=2 Multi-Wave fit shown 
in Figure 6 below. 
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Figure 6(a). The N=2 Multi-wave fit (red, C)2 SL Fit) to the full Global CO2 ppm 
sample  and the corresponding estimate of the Temperature (light green, denoted as TB) 
curve, calculated using a simple linear approximation with D(t) as the mantissa as 
described in Subsection 4.3.  

 

         
 
Figure 6(b). As in Figure 6(a). Also shown are the Jonas fit (the most optimistic and the Denning 
calculation. Also shown is the fit to the CO2 using the Quartic terms reflecting  the Jonas 
calculation described also in Subsection 4.3. 

 
4.3  Temperature Calculation 
In this subsection we explain the calculation of the change in temperature from 1800 to 2022 that is 
also plotted in Figure 6. We make the simple first order linear assumption that T(t) the average global 
temperature in 0C is 
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 𝑇(𝑡) = 𝛼 + 𝛽𝐷(𝑡) = 𝛼 + 𝛽(𝐶(𝑡) − 280). (5) 
 
From 1800 to 2022, C(t) is global concentration level in ppm at time t has increased by about 48% 
from 280 ppm to 420 ppm, an increase of (420-280)/280 = 0.5, whilst T(t) has increased by about 1.5 
degrees to 3.9 degrees. We have 𝐶(𝑡) = 𝐷(𝑡) + 280 so from Equation 5 we have 
         

       𝛼 = 2.4  and  𝛽 =
ଵ.ହ

ଵସ଴
= 0.0107 

Jonas gives a formula  
 
      Rcy= 5.35 * ln(Cy/C0) – j ((T0+Tcy-1)^4 – T0^4) 
 
giving the between the yearly change in CO2 in terms of the corresponding change of year. Simply as 
reflection of this formula, but without using any of the considered reasoning given in (Jonas, M) we 
used following quartic polynomial giving the reverse calculation: 
 

𝐶(𝑇) = 𝑎 + 𝑏(𝑇 − 𝑓) + 𝑐(𝑇 − 𝑓)ଶ + 𝑑(𝑇 − 𝑓)ଷ + 𝑒(𝑇 − 𝑓)ସ 
 
It will be seen in Figure 6(b) that the calculation gives comparable results to the other fits. The 
difference of the curve based on Equation (5) and the other fits arise from different base T values used 
as the initial year. 
 

 

5 ERROR ESTIMATION 

5.1  Bootstrap Analysis 
 
We use bootstrap analysis to calculate  confidence levels of the fitted quantities. The method is well-
known (see for example, Cheng 2017; Dye et al. 2020, Cheng et al. 2020), so full details are not 
repeated here. 
 In summary, to estimate confidence levels for 𝐷(𝑡), we generate a parametric bootstrap sample 
𝐸(𝑡௜)  i= 1,2,…,n, where 
 
        𝐸(𝑡௜) = 𝐷൫𝑡௜, 𝛉෡൯ +  𝜀௜ ,  i = 1,2, … , 𝑛 
 
and 𝛉෡ is the ML estimate of 𝛉, and 
 
         𝜀௜~ 𝑁𝐼𝐷(0, 𝜎ଶ),  𝑖 = 1,2, … , 𝑛, 
 
is a random sample of mutually independent distributed, normal pseudorandom variables with 
variance 𝜎ଶ. This is carried out B times so that we have  
 

      { 𝐸∗(௝)(𝑡௜) = 𝐷(௝)൫𝑡௜, 𝛉෡൯ + 𝜀(௜)
(௝)

, i = 1,2, … , 𝑛  },  j=1,2,…,B 

 
with the asterisk denoting that the observation is bootstrapped. 
 We can now estimate the parameters from each of the samples giving the bootstrap parameter 
estimates and bootstraps functions: 
 
       𝛉෡(௝); { 𝐷(௝)(𝑡) = 𝐷(𝑡, 𝛉෡(௝))  i = 1,2,…, n }. 
 
From these a confidence interval can be obtained for each parameter using the ranked values of that 
parameter. 
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 A similar method can be carried out for D(t). Note however that this only gives the confidence 
interval level at each ti separately. the confidence level is reduced if several different ti are considered 
simultaneously. A more complicated method is needed using maximized likelihood regions. See 
Cheng (2017) for details. We could have used the simpler method in this paper, but made a 
modification to model the dependence of an observation on previous observations. Specifically the 
observations assumed to be a first order autoregressive process : Thus we set 
 
       𝐸(𝑡௜)=𝛼𝐸(𝑡௜ିଵ) + β𝜀(௜ିଵ), i = 1,2,…, n. 
 
The standard deviation of an observation is therefore not 𝜎, but is s,  which is approximately 
 

         𝑠 =
ఉ

ଵିఈ
𝜎  

 
Thus values of  𝛼 = 0.75, 𝛽 = 0.25, would make  𝑠 = 𝜎. 
 In the experiments reported here we actually varied the value of 𝛽 slightly to remove possible 
bias in the estimate of 𝜎. This is not of great practical consequence as our results are only for 
discussion and are not used in practice. In any case our interest is centred on the SL parameters, and a 
well-known property is that the estimate of 𝜎 is asymptotically independent of the other parameters. 
 
5.1  Covid 19 Bootstrap Results 
 
Figure 7 illustrates the results of a representative set of three bootstrap scatterplots of pairs of 
parameters, obtained from B = 50 bootstraps. These indicate the typical scatter. 
    
    
 

         

        

         
 
       Figure 7. Some Bootstrap Scatterplots  
 
Figure 8 gives shows the resulting D(t) plots of the MLE and the Upper and Lower CI curves with 
confidence level 90%. 
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    Figure 8. The N=3 Multi-wave fit to the COVID-19 sample 
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5.1  CO2 Bootstrap Results 
 
Figure 9 illustrates the results of a representative set of eight bootstrap scatterplot pairs of parameters 
obtained from B = 50 bootstraps. These indicate the typical scatter. 
 

                 

                 
     Figure 9. Some Scatterplots for CO2 Example 
 
 
 

           
 

    Figure 10. The N=2 Multi-wave fit to the CO2 sample 
     

6 IMPLICATONS OF CO2 SCENARIO 

To understand the impact that Homo sapiens has had on the earth’s climate it is necessary to deal with 
very large numbers. The weight of the earth is 5.971024 kg of which 9×1019 kg is carbon in the 
earth’s crust. The carbon in plants weighs 4.501014 kg very much less than in the earth’s crust. The 
carbon in 1 ppm CO2 in the atmosphere weighs 2.121012 kg. Before the industrial revolution, the 
concentration of CO2 in the atmosphere fluctuated, between about 190 ppm and 270 ppm for 800k 
years, with a period of about 100k years, while the rises tended to be faster than the declines. The 
weight of carbon in the atmosphere was therefore 4.871014 kg, about the same as the weight of 
carbon in plants, fluctuating from about 4.031014 to 5.721014 kg. 
 Since the industrial revolution the concentration of CO2 in the atmosphere is now about 415 
ppm (Figure 6) as the result of burning fossil fuels, so that the weight of carbon has increased to 
8.801014 kg or about twice weight of carbon in plants. The consequence of this is that the earth’s 
atmosphere has already experience an increase in temperature of about 2C (Figure 6) with the 
prospect that, if the concentration of CO2 continues to increase, following the current trend, the 
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temperature could increase by 6C above preindustrial levels which would be catastrophic for our 
survival. We therefore need to sequester CO2 on a massive scale. 
 In order to return to pre-industrial levels of atmospheric carbon and therefore temperatures, we 
need to remove about 41014 kg of carbon from the atmosphere or 1.51010 kg every day from now 
until the year 2100. The present world population is 8 billion. This means, on an individual basis, we 
each have to ensure that 2kg of carbon is returned to Earth each day. 
 The biomass of rain forests is 500 metric tons per hectare or 50 kilograms/m2 so that one would 
have to expand the worlds rain forest, which currently occupies a 7 million square metres, by about 
12k square meters every day until the end of the century. Efficient ways to sequester carbon from the 
atmosphere are desperately needed. 
 A recent discussion suggests that systematically scattering iron-rich dust onto target areas in 
oceans around the world could sequester perhaps 31013 kg carbon per year, or about 1011 kg per 
day, if the world’s deep oceans were to be treated annually. Using a new method of carbon capture it 
seems that one could remove carbon at a cost of US$0.5/kg of carbon which means that it would cost 
about 109 US$ per day, every day from now until 2100 while the worlds GDP is  2.71010 per day. 
These studies suggest that it may be technically feasible to sequester carbon on the necessary scale but 
this would have to be done on an extraordinary scale and much more efficiently than is now possible. 
 The long term survival of our species depends on it. 
 

============================================================================================ 
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