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Abstract 

Alterations in DNA methylation patterns are a frequent finding in cancer. Methylation 

aberrations can drive tumorigenic pathways and serve as potential biomarkers. The role of 

epigenetic alterations in thyroid cancer is still poorly understood Here, we analyzed 

methylome data of a total of 810 thyroid samples (n=256 for discovery and n=554 for 

validation), including benign and malignant follicular cell-derived thyroid neoplasms, as well as 

normal thyroid tissue. In the discovery phase, we employed an unsupervised machine-learning 

method to search for methylation patterns. We found evidence supporting the existence of 

three distinct methylation subtypes: a normal-like, a hypermethylated follicular-like, and a 

hypomethylated papillary-like cluster. Follicular adenomas, follicular carcinomas, oncocytic 

adenomas, oncocytic carcinomas, and NIFTP samples were grouped within the follicular-like 

cluster, indicating that these pathologies shared numerous epigenetic alterations, with a 

predominance of hypermethylation events. Conversely, classic papillary thyroid carcinomas 

(PTC) and tall cell PTC formed a separate subtype characterized by the predominance of 

hypomethylated positions. Interestingly, follicular variant papillary thyroid carcinomas (FVPTC) 

were as likely to be classified as follicular-like or PTC-like during the discovery phase, indicating 

a heterogeneous group likely to be formed by at least two distinct diseases. In the validation 

phase, we found that FVPTC with follicular-like methylation patterns were enriched for RAS 

mutations. In contrast, FVPTC with PTC-like methylation patterns were enriched for BRAF and 

RET alterations. Our data provide novel insights into the epigenetic alterations of thyroid 

tumors. Since the classification method relies on a fully unsupervised machine learning 

approach for subtype discovery, our results offer a robust background to support the 

classification of thyroid neoplasms based on methylation patterns. 

Keywords: Thyroid Neoplasm; Thyroid Carcinoma; Thyroid Cancer; Thyroid Adenoma; Papillary 

Thyroid Carcinoma; Thyroid Nodule; DNA Methylation; Unsupervised Machine Learning 
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Introduction 

Follicular cell-derived thyroid neoplasms are the most frequent endocrine malignancy 

worldwide1. These tumors can be classified into benign lesions, low-risk neoplasms, and 

malignant neoplasms2. However, diagnosis can be challenging, and many lesions can only be 

diagnosed after surgical excision. A better understanding of tumor genetics has given new 

perspectives on classifying thyroid neoplasms. However, studies have focused on genetic 

rather than epigenetic alterations such as methylation, as recently reviewed by Zafon et al3. 

Most studies evaluating the thyroid cancer DNA methylome used array-based technologies. 

Nevertheless, their conclusions were limited either by the restricted number of samples or by 

the underrepresentation of many histological subtypes. To date, no study has employed a 

robust framework to classify thyroid neoplasms based on their methylation patterns. Our 

study aims to analyze methylation patterns among various follicular cell-derived thyroid 

neoplasms and identify the existence of disease clusters that can be robust and reliably 

identified using methylation microarray data through unsupervised consensus clustering. 

Unsupervised clustering is a powerful method to identify disease subtypes, and it has 

been extensively employed in cancer research4,5. However, clustering techniques frequently 

encounter evidence for clustering even in data where no real clusters exist, leading to 

equivocal interpretation about the existence of subtypes within a homogenous group6. 

Additionally, all commonly used clustering methods, such as K-means (KM), partitioning 

around medoids (PAM), or even hierarchical clustering (HC), require the researcher to at some 

point specify the number of clusters into which to split the data. This decision is complex since 

the number of categories is usually unknown beforehand. Monte Carlo reference-based 

consensus clustering (M3C) is a recently developed approach that robustly addresses the issue 

of identifying the true K number of clusters7. M3C is a consensus clustering approach (i.e., it 

resamples the data multiple times to evaluate how often a pair of samples clusters together) 
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built upon the original Monti algorithm8 using a robust metric, the proportion of ambiguous 

clustering (PAC)6, and a reference distribution7. 

Here, we demonstrate that consensus clustering can identify distinct methylation 

patterns and help us understand thyroid tumor biology. We propose a novel way to classify 

follicular cell-derived thyroid neoplasms based on their methylome. 

Methods 

Search strategy and eligibility of studies 

 We performed a systematic search until September 2022 using the Gene Expression 

Omnibus (GEO) for datasets with available DNA methylation data on thyroid cancer and 

benign/normal thyroid tissue analyzed by array methods using the following query ("thyroid 

neoplasms"[MeSH Terms] OR thyroid cancer[All Fields]) AND "Homo sapiens"[porgn] AND 

("Methylation profiling by array"[Filter] OR "Methylation profiling by genome tiling 

array"[Filter] OR "Methylation profiling by SNP array"[Filter]). The description for each 

resulting dataset was read in detail to evaluate whether it was suitable for inclusion. Datasets 

originating from in vitro studies or generated from blood samples were omitted. Rare 

histological subtypes (< 5 samples in total), anaplastic thyroid carcinomas, and medullary 

thyroid carcinomas were not included. The nomenclature of thyroid neoplasms was 

maintained as originally described in each study. 

Data analyses 

All analyses were conducted in R version 4.1.3. Raw data were retrieved from GEO in 

the form of idat files using the GEOquery package9. Methylation data preprocessing was 

performed using the minfi package (version 1.40.0)10. Data normalization was performed using 

single-sample Noob normalization, which is advantageous when working across array types 

with large datasets arriving in batches11. Probes were filtered out to exclude those of low 
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quality, probes mapped to the X and Y chromosomes, probes with SNPs, and cross-reactive 

probes. We inspected our data for the presence of batch effects through dimensionality 

reduction techniques, finding only minor batch effects present within our data. Since the 

datasets included in our analyses were highly unbalanced regarding tumor subtypes, batch 

correction retaining group differences may introduce a strong bias, deflating p values and 

leading to false discoveries12. Therefore, we chose a more conservative approach, using our 

data without batch correction for all downstream analyses. For completeness, we also ran all 

our analyses adjusting for the study batch using the empirical Bayes method from ComBat13 

and retaining the differences between tumor subtypes. We found no important changes in the 

results, reinforcing that batch effects were not responsible for most of the variation within our 

data. 

Unsupervised machine learning 

 We employed a Monte Carlo reference-based consensus clustering (M3C)7 approach 

using the M3C package (version 1.16.0) with default parameters unless otherwise specified. 

We conducted 100 Monte Carlo iterations and 100 inner replications. The optimal number of 

clusters (K) was defined based on two metrics: the Relative Cluster Stability Index (RCSI) and 

the Monte Carlo p value. Consensus clustering was performed using beta-values with the 

largest variance, ranging from 5,000 to 20,000 features included. We executed the consensus 

clustering algorithm using spectral clustering, which can deal with anisotropic clusters, unequal 

variances, and non-Gaussian shapes7. We employed the proportion of ambiguous clustering 

(PAC) as the objective function for M3C clustering. M3C was also used for t-SNE plots using 

default parameters. Hierarchical clustering with the 5,000 most variable beta-values was 

performed for visualization using the dendextend package (version 1.16.0) with Euclidean 

distances and Ward’s linkage. 

Validation in an independent dataset 
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 Data from The Cancer Genome Project (TCGA)14 were retrieved as idat files from the 

GDC Data Portal. Data preprocessing using minfi was performed in the same manner as for 

GEO datasets. Samples from metastatic sites or rare histological subtypes (< 5 samples in total) 

were not included. We employed the nearest shrunken centroids method15 available in the 

pamr package (version 1.56.1) to train a classifier using the 5,000 most variable beta-values in 

our discovery dataset. The classifier was trained based on cluster assignment by M3C spectral 

clustering with the same 5,000 features and worked by assigning new samples to the class with 

the minimum distance between the sample and the shrunken centroid obtained in the 

clustering analysis. Our classifier was unaware of the sample histological subtype. We tested 

our classifier using TCGA methylation data to inspect the cluster assignment for each 

histological subtype. Mutational data were retrieved from cBioPortal16, and oncoprint 

visualizations were constructed using the ComplexHeatmap package (version 2.10.0). 

Differential methylation analysis 

 We performed differential methylation analysis (DMA) using the DMRCate package 

(version 2.8.5)17. We conducted DMA to identify differentially methylated CpG loci and 

differentially methylated regions among clusters. We adjusted p values for multiple 

comparisons using the Benjamini‒Hochberg method. We set our threshold for differential 

methylation at a minimum beta-value difference of 0.2 and an adjusted p value < 0.05. 

Gene set and pathway analysis 

 We conducted gene set analysis (GSA) to better understand the biological significance 

of differentially methylated CpG loci employing Reactome18 gene sets for signal transduction 

pathways (R-HSA-162582) and diseases of signal transduction (R-HSA-5663202) with 60 to 300 

genes. We conducted GSA using robust rank aggregation and overrepresentation analysis 

using the methylGSA package19. 
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Results 

Thyroid cancer array-based methylation studies 

 We identified a total of 13 studies, of which four were included (Supplementary Figure 

1): GSE12137720, GSE7780421, GSE9746622, and GSE19786023. An additional study from GEO 

(GSE5305124) was identified from references and was included in our analysis. All five datasets 

employed Illumina platforms, with two studies using the EPIC array and three employing the 

450K array. We included a total of 256 thyroid samples as follows: 70 classic papillary thyroid 

carcinomas (cPTC), 22 follicular thyroid carcinomas (FTC), 21 follicular variant papillary thyroid 

carcinomas (FVPTC), 16 oncocytic carcinomas (OC), 16 oncocytic adenomas (OA), 16 follicular 

adenomas (FA), and 6 noninvasive follicular thyroid neoplasms with papillary-like nuclear 

features (NIFTP) (Supplementary Table 1). 

Determining the true number of clusters using Monte Carlo consensus clustering 

 After data preprocessing, we obtained a matrix of normalized methylation beta-values 

for 256 samples and 332,290 genomic positions for subsequent analyses. Ideally, the optimal 

number of clusters should be the number K that maximizes the relative cluster stability index 

(RCSI) and the -log2 Monte Carlo p value. Our results indicated the existence of three (K=3) 

methylation clusters within our dataset, irrespective of whether we employed 5, 10, or 20 

thousand features for clustering (Figure 1 and Supplementary Figure 2). To evaluate whether 

our hypothesis of K=3 methylation clusters was reasonable, we performed a visual inspection 

to assess cluster separation using t-SNE (Figure 2), which supported K=3 as the optimal number 

of clusters. Next, we assessed cluster assignment consistency by comparing the cluster 

assignment for a given sample as we varied the number of features employed. Regardless of 

whether we used 5, 10, or 20 thousand features for clustering, 243 out of 256 samples (94.9%) 

were always assigned to the same subtype, demonstrating consistent results. 
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Figure 1 

 

Figure 1: Stability metrics (RCSI and Monte Carlo p value) obtained from spectral consensus clustering 

using the 5,000 most variable beta-values. Abbreviations: RCSI, Relative Cluster Stability Index. *Not 

statistically significant. 

Figure 2 

 

Figure 2: t-SNE plots were employed to inspect cluster separation. Samples were colored (A) according 

to histological subtype or (B) according to cluster assignment based on spectral clustering with 5,000 

features. Abbreviations: cPTC, classic papillary thyroid carcinoma; FA, follicular adenoma; FVPTC, 

follicular variant papillary thyroid carcinoma; FTC, follicular thyroid carcinoma; OA, oncocytic adenoma; 

OC, oncocytic carcinoma; NIFTP: noninvasive follicular thyroid neoplasm with papillary-like nuclear 

features; tcPTC, tall cell papillary thyroid carcinoma; t-SNE, t-distributed stochastic neighbor embedding. 
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Association between methylation clusters and histological subtypes 

 From the t-SNE plots, we observed an association between cluster assignment and 

histological subtypes (Figure 2). For visualization purposes, we performed conventional 

hierarchical clustering into K=3 clusters (Figure 3). Cluster 1 (“normal-like”) was composed 

primarily of normal thyroid tissue and goiter samples; cluster 2 (“follicular-like”) was 

composed of FA, FTC, OA, OC, and NIFTP; and cluster 3 (“PTC-like”) was composed 

predominantly of cPTC and tcPTC (Figure 3). 

Figure 3 

 

Figure 3: Hierarchical clustering employing the 5,000 most variable beta-values was performed to 

cluster samples into K=3 groups. Euclidean distances and Ward linkage were employed. Abbreviations: 

cPTC, classic papillary thyroid carcinoma; FA, follicular adenoma; FVPTC, follicular variant papillary 

thyroid carcinoma; FTC, follicular thyroid carcinoma; OA, oncocytic adenoma; OC, oncocytic carcinoma; 

NIFTP: noninvasive follicular thyroid neoplasm with papillary-like nuclear features; tcPTC, tall cell 

papillary thyroid carcinoma. 
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Consensus clustering results also demonstrated a significant association between 

methylation patterns and histological subtypes (Fisher’s exact p < 0.001) (Table 2). Classic PTC 

and tcPTC were preferentially assigned to the PTC-like cluster, with 91.4% cPTC and 100% 

tcPTC assigned to this group. There was also a remarkable aggregation of samples for 

neoplasms exhibiting follicular or oncocytic patterns. All FA and all OA were assigned to the 

follicular-like cluster. For their malignant counterparts, 100% FTC and 93.8% OC were also 

placed within this subtype. It is noteworthy that, although represented in a small number, 6 

out of 6 (100%) NIFTP samples were placed within the follicular-like cluster rather than in the 

PTC-like cluster. Unlike all other histologic subtypes previously discussed, for which 

preferential clustering was evident, FVPTC did not behave as a homogeneous group, and 

samples were as likely to be classified as follicular-like (47.6%) as they were to be classified as 

PTC-like (42.9%) (Table 2). Accordingly, FVPTC samples did not cluster together on the t-SNE 

plot (Figure 2) or on the hierarchical clustering dendrogram (Figure 3), suggesting that this 

histological subtype might, in fact, represent two distinct diseases grouped as one. 

Table 2: Cluster assignment for each histological subtype 

  Normal-like Follicular-like PTC-like p-value 

Normal 
n 69 0 0 

< 0.001 
% (100) (0) (0) 

cPTC 
n 5 1 64 

< 0.001 
% (7.1) (1.4) (91.4) 

tcPTC 
n 0 0 8 

< 0.001 
% (0) (0) (100) 

FVPTC 
n 2 10 9 

0.052* 
% (9.5) (47.6) (42.9) 

FTC 
n 0 22 0 

< 0.001 
% (0) (100) (0) 

FA 
n 0 16 0 

< 0.001 
% (0) (100) (0) 

OC 
n 0 15 1 

< 0.001 
% (0) (93.8) (6.2) 

OA 
n 0 16 0 

< 0.001 
% (0) (100) (0) 

NIFTP 
n 0 6 0 

0.004 
% (0) (100) (0) 

Goiter 
n 6 6 0 

0.031 
% (50.0) (50.0) (0) 
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Legend for Table 2: Cluster assignment for each histological subtype based on spectral consensus 

clustering with the 5,000 most variable beta-values. Row-wise p values were calculated using a 

multinomial exact test of goodness-of-fit with the null hypothesis that each tumor subtype was equally 

likely to be assigned to any of the clusters. Abbreviations: cPTC, classic papillary thyroid carcinoma; FA, 

follicular adenoma; FVPTC, follicular variant papillary thyroid carcinoma; FTC, follicular thyroid 

carcinoma; OA, oncocytic adenoma; OC, oncocytic carcinoma; NIFTP: noninvasive follicular thyroid 

neoplasm with papillary-like nuclear features; tcPTC, tall cell papillary thyroid carcinoma. *Not 

statistically significant. 

Validation using an independent dataset 

 We validated our findings using TCGA samples as an independent external dataset. 

Samples were assigned a cluster exclusively based on their methylation pattern compared to 

the three previously defined clusters, without any information about histological subtypes. The 

results were in accordance with the discovery phase (Table 3 and Supplementary Figure 3), 

suggesting that true methylation clusters were correctly identified. Our model classified 94.6% 

of normal thyroid tissue within the normal-like cluster. All 38 (100%) tcPTC and 83.9% cPTC 

were assigned to the PTC-like cluster. Interestingly, FVPTC were predominantly located within 

the follicular-like cluster (72.4%) and less frequently in the PTC-like cluster (24.8%). For TCGA 

samples, we also had mutational data available, so we tested whether FVPTC assigned to the 

follicular-like group differed from FVPTC assigned to the PTC-like group in terms of DNA 

mutations (Figure 4). We observed that follicular-like FVPTC were characterized by a higher 

frequency of RAS mutations (43.4% vs. 11.5%, Fisher exact p < 0.001), whereas PTC-like FVPTC 

were associated with alterations of BRAF (53.8% vs. 5.3%, Fisher exact p = 0.004) and RET 

(15.4% vs. 0%, Fisher exact p = 0.004). Other mutations (TG, EIF1AX) and fusions (THADA, 

PAX8, NTRK3) frequently associated with thyroid carcinomas were also inspected, but their 

low frequency did not provide sufficient power for formal testing (Figure 4). 
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Table 3: Cluster assignment for TCGA samples 

 Normal-like Follicular-like PTC-like 
p-value  n (%) n (%) n (%) 

Normal 53 (94.6) 3 (5.4) 0 0 <0.001 

cPTC 13 (3.7) 44 (12.4) 298 (83.9) <0.001 

tcPTC 0 0 0 0 38 -100 <0.001 

FVPTC 3 (2.9) 76 (72.4) 26 (24.8) <0.001 

 

Legend for Table 3: Cluster assignment for each histological subtype in the TCGA dataset. Cluster 

assignment was performed using a classifier based on the nearest shrunken centroids calculated from 

the discovery dataset. Row-wise p values were calculated using a multinomial exact test of goodness-of-

fit with the null hypothesis that each tumor subtype was equally likely to be assigned to any of the 

clusters. Abbreviations: cPTC, classic papillary thyroid carcinoma; FVPTC, follicular variant papillary 

thyroid carcinoma; tcPTC, tall cell papillary thyroid carcinoma; TCGA, The Cancer Genome Atlas. 

Figure 4 

 

Figure 4: Oncoprint representation comparing the mutational profile of FVPTC with a follicular-like 

methylation pattern (left) and FVPTC with a PTC-like methylation pattern (right). Each individual column 

represents a single sample, and rows represent genes. Abbreviations: PTC, papillary thyroid carcinoma; 

FVPTC, follicular variant papillary thyroid carcinoma. 
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Differential methylation analysis 

 Next, we performed differential methylation analysis to better understand the 

biological differences between these clusters identified during the discovery phase. Using the 

normal-like cluster as our reference group, we observed that follicular-like samples exhibited 

1,757 differentially methylated positions, of which 89.1% were hypermethylated (Table 4). 

Conversely, PTC-like samples exhibited 3,241 differentially methylated sites, with a 

predominance of hypomethylated positions (87.5%) (Table 4). It is known, however, that most 

biologically significant differences in methylation affect genomic regions rather than isolated 

CpG loci. Therefore, we also conducted a differential methylation analysis at the genomic 

region level. Once again, we observed that follicular-like samples were marked mainly by 

hypermethylation events, whereas PTC-like samples exhibited more hypomethylated regions 

(Table 4). A detailed description of these genomic regions along with a complete list of 

differentially methylated positions is available in the Supplementary Material. We also 

investigated whether the differentially methylated positions mapped to genes associated with 

specific signaling pathways. For PTC-like samples, we found a highly significant association with 

the VEGF, PI3K/AKT, and MAPK signaling pathways (adjusted p value <0.001 for all three 

pathways) (Supplementary Table 2). For follicular-like samples, differentially methylated sites 

were associated with a greater variety of pathways, including VEGF, MAPK, NOTCH, and TGFB 

(adjusted p value <0.001) (Supplementary Table 3). 
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Table 4: Differentially methylated genomic positions and regions in comparison to the normal-

like cluster 

  

Differentially methylated 

positions 
 

Differentially methylated 

regions 

  
Follicular-like PTC-like 

 
Follicular-like PTC-like 

Hypermethylated 

n 1565 405 n 55 9 

(%) (89.1) (12.5) (%) (96.5) 
(6.6) 

Hypomethylated 

n 192 2836 n 2 127 

(%) (10.9) (87.5) (%) (3.5) 
(93.4) 

Total n 1757 3241 n 57 136 

 

Discussion 

Our study offers the most comprehensive evaluation of the thyroid neoplasm 

methylome to date. Using an unsupervised machine-learning method, we identified the 

existence of three thyroid methylation subtypes: normal-like, hypermethylated follicular-like, 

and hypomethylated PTC-like. 

Previous studies have shown methylome dysregulation in thyroid neoplasms, mostly 

using array-based methods3. Studies focused on PTC have consistently reported that these 

tumors are marked by hypomethylation events14,22,25,26, which is consistent with our results. 

FTC has been far less studied, with some studies reporting hypermethylation in this 

disease22,27,28, which is in accordance with our findings. To date, the most comprehensive study 

has been reported by Bisaro dos Reis et al.22, who analyzed 141 thyroid samples of various 

types, including normal, benign, and cancer samples. The authors proposed the existence of 

methylation clusters based on unsupervised hierarchical clustering, a classification that 

partially overlaps ours. Their study, however, had a very limited number of histological 

subtypes, such as FTC (n=8), OC (n=2), OA (n=3), and TCPTC (n=1). Additionally, their clustering 
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strategy did not formally address the issue of finding the true number of clusters. Additionally, 

in the TCGA study,14 a methylome assessment of a large cohort of patients with thyroid cancer 

was also performed. Nevertheless, the data were limited to PTC and normal samples, offering 

a deep understanding of this histological subtype but precluding more general conclusions 

about follicular cell-derived thyroid neoplasms as a broader group. 

Here, we show that cPTC and tcPTC have a distinct methylation pattern marked by 

hypomethylation events, defining the PTC-like methylation subtype. Conversely, samples 

exhibiting follicular or oncocytic histology have a pattern marked by hypermethylated sites, 

defining the follicular-like methylation subtype. It is noteworthy that follicular and oncocytic 

neoplasms were grouped irrespective of whether they were benign (follicular and oncocytic 

adenomas) or malignant tumors (follicular and oncocytic carcinomas), supporting the 

hypothesis that follicular adenomas and follicular carcinomas are likely to be entities within 

the same disease continuum. A common origin for both diseases is supported by DNA 

mutation analysis showing that both are characterized by RAS mutation, with follicular 

adenomas exhibiting these mutations in 20-40% of the cases, whereas follicular carcinomas 

present RAS mutations at a higher frequency (40-50%)29–31. Follicular adenomas and 

carcinomas also share multiple transcriptional similarities at the RNA and miRNA levels, 

favoring a common origin for both pathologies32. 

Interestingly, our results indicate that FVPTC does not exhibit a homogenous 

methylation pattern, suggesting that this histological subtype might be a heterogeneous group 

formed by more than one disease rather than a tumor subtype itself. Most FVPTC have a 

follicular-like methylation pattern, suggesting that these tumors are more closely related to 

FTC than to PTC. These follicular-like FVPTC also show a predominance of RAS mutations, 

reinforcing that they are closer to FTC. Conversely, a smaller fraction of FVPTC has a PTC-like 

methylome, suggesting that they are truly related to PTC. These PTC-like FVPTC were enriched 
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for BRAF and RET alterations, strengthening this hypothesis. Our results are in accordance with 

previous reports describing FVPTC as a heterogeneous entity. Encapsulated FVPTC is marked 

by RAS mutations, resembling FTC, whereas infiltrative tumors are characterized by BRAF 

mutations, resembling PTC2,33. The TCGA authors also discuss the classification of FVPTC and 

suggest that these tumors be classified alongside FTC, since they are marked by RAS mutations 

and arm-level genetic alterations14. Our data offer new insights from an epigenetic perspective 

to help understand and classify FVPTC more precisely. 

Our study has some limitations that must be recognized. Our results were derived from 

samples collected from different cohorts of patients, processed differently, and assessed using 

two distinct methylation arrays (450K and EPIC). This concern is diminished given that we 

could reproduce our results in a large independent cohort of patients not used during the 

discovery phase. Our study does not provide information about less frequent histological 

subtypes since they were not sufficiently represented within our dataset. Additionally, we are 

dependent on the reported original histological classification of samples, which might be 

inaccurate, especially in light of the new WHO classification of thyroid neoplasms. 

In conclusion, our data provide broad insights into the major epigenetic alterations 

present within thyroid tumors. Using a fully unsupervised machine learning method for 

subtype discovery, our results offer a robust background to support the classification of 

thyroid neoplasms based on methylation patterns that, hinged on genomic data, could refine 

personalized management of thyroid neoplasms. 
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