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Abstract 

Identifying genetic determinants for longitudinal changes in albumin excretion in individuals 

with type 1 diabetes may help identify those that are predisposed to renal, retinal and 

cardiovascular complications. Most studies have focussed on genetic predisposition to 

diabetic kidney disease and used cross-sectional measurements of urinary albumin excretion, 

but with limited success. Here, we utilise the wealth of longitudinal data and bio-samples 

collected from cohorts of childhood-onset type 1 diabetes followed over the last 30 years to 

describe a novel trajectory phenotype quantifying urinary albumin excretion changes during 

childhood and adolescence. We conducted a genome-wide association study and fine-

mapping analysis for albumin excretion in 1584 individuals, finding one signal for cross-

sectional albumin excretion close to GALNTL6 (rs150766792), which validated in a previous 

independent study, and a novel genome-wide significant signal for albumin excretion 

trajectory in the CDH18 gene region (rs145715205). Our trajectory phenotype quantifies 

albumin progression and offers a complementary measure to an albumin excretion phenotype 

based on a single measurement (i.e. most recent data collection) or an average of repeated 

measurements in longitudinal studies. It can be used to identify genetic or other risk factors 

which predict better or worse prognosis, thus facilitating the development of new preventive 

and therapeutic approaches.  
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Introduction 

Diabetic kidney disease (DKD), the leading cause of end-stage renal disease for people with 

type 1 diabetes, remains a major determinant of morbidity and cardiovascular mortality  (1,2). 

DKD is characterised by progressive increases in urinary albumin excretion and decline in 

renal function, which follow different patterns, and occur at variable rates, over the lifetime 

of individuals with diabetes (1).  

 

Extensive evidence indicates that increases in urinary albumin excretion, even within the 

normal range, predict renal, retinal and cardiovascular disease risk in adults and youth with 

type 1 diabetes (3–5). Although hyperglycemia is an important modifiable risk factor for 

increased albumin excretion, some patients still develop DKD irrespective of glycemic 

control, suggesting that other factors, either environmental or genetic, are implicated in the 

pathogenesis of this complication (1,6). 

 

The identification of genetic determinants for albumin excretion is clinically important as it 

would enable the identification of individuals with type 1 diabetes that are predisposed to 

vascular complications, and potentially guide the development of new preventive and 

therapeutic approaches. This is particularly relevant to adolescents with type 1 diabetes, who 

have a higher risk of complications than adults due to longer diabetes exposure and often 

have suboptimal glycemic control (7).   

 

To date, genome-wide association studies (GWAS) have only identified a small number of 

genetic variants that associate with DKD, or more specifically, urinary albumin excretion in 

individuals with type 1 diabetes (8–14); few studies have included cohorts of youth with type 

1 diabetes, and most of the findings have not been replicated (6). This could be due to a 
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combination of relatively small sample sizes, differences in the study populations along with 

discrepancies across studies in the phenotype definition, ranging from microalbuminuria to 

end-stage renal disease (6).  

 

Most genetic association studies for albumin-related phenotypes are based on cross-sectional 

measurements of albumin excretion (9,12–14), but cross-sectional analyses do not account 

for within-sample variability in albumin measurements over time (15). This is particularly 

true for youth with type 1 diabetes, who often show early increases in albumin excretion a 

few years after the diagnosis of diabetes with progression towards abnormal levels 

particularly during puberty, and potential regression into the normal range at the end of 

puberty (7,16). An alternative approach would be to investigate longitudinal changes in 

albumin excretion at an early stage in the development of DKD as a continuous trait, which 

would require summarising the longitudinal data in a manner suitable for GWAS. This is a 

challenging task due to the variability of duration and frequency of follow-up in many 

longitudinal studies. 

 

Utilising the wealth of longitudinal data and bio-samples collected from carefully 

characterised childhood-onset type 1 diabetes cohorts prospectively followed over the last 30 

years, we aimed to derive a novel quantitative phenotype of urinary albumin excretion 

changes during childhood and adolescence, and investigate novel GWAS genetic associations 

on this quantitative phenotype.  
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Research Design and Methods 

Study Population 

The study population consisted of young people with type 1 diabetes recruited into three 

longitudinal studies: the Oxford Regional Prospective Study (ORPS) (7), the Nephropathy 

Family Study (NFS) (17) and the Adolescents Type 1 diabetes cardiorenal Intervention Trial 

(AdDIT) (18) (Table 1). For all three studies, ethical approval was obtained from the local 

ethics committees. Parents of participants provided written informed consent, and study 

participants were asked to provide their assent, until they reached an age when they could 

consent. 

 

Full details of these cohorts have been previously reported (4,7,19,20). Briefly, the ORPS 

cohort was established in 1986, and approximately 500 children and adolescents diagnosed 

with type 1 diabetes when 16 years or younger were recruited between 1986-1996 in a 

defined geographical area (the Oxford Health Authority) and followed for up to 20 years. 

Annual assessments included: collection of clinical data, blood samples for HbA1c, and three 

consecutive urinary samples for the measurement of albumin-creatinine ratios (ACR). At 

baseline DNA samples were collected from a subgroup of the cohort (𝑛 = 306). 

 

The NFS cohort was established between 2000 and 2005, when approximately 1000 young 

people (10-18 years), who had developed type 1 diabetes before the age of 16 years, were 

recruited in different UK centres (East Anglia, Birmingham, Bristol and Oxford regions). 

This cohort has been followed-up with annual assessments of height, weight, BMI, blood 

pressure, HbA1c and collection of three consecutive early-morning urine specimens for 

determination of the ACR. At baseline samples for DNA extraction were also collected. 
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The AdDIT cohort included 847 adolescents with type 1 diabetes recruited between the years 

2009 and 2013, across three countries (UK, Canada and Australia). In brief, 443 with an ACR 

in the upper tertile of the normal range (high-ACR group) were recruited to a randomised 

placebo-controlled trial of ACE-inhibitors and statins, and 404 with an ACR in the lower or 

middle tertile (low-ACR group) to a parallel observational study. Both groups underwent 

similar baseline and follow up assessments for a median of 3.9 years, based on a standardised 

protocol (4,19). For the present study, the study population consisted of 535 adolescents, 

representing a subgroup of those recruited into the AdDIT Trial and parallel Observational 

study, with available DNA samples. 

 

  All ORPS NFS AdDIT 

N (% males) 1584	(54.7)	  306	(55.4) 743	(56.3)	  535	(53.1) 

Age at diagnosis (years) 8.2	 ± 	3.7	 8.3	 ± 	3.9	 9.1	 ± 	3.5   7.6	 ± 	3.5 

Age at first visit (years)   12.9	 ± 	2.5 10.9	 ± 	3.3  13.9	 ± 	2.1  12.5	 ± 	1.4	

Duration of follow up 
(years) 

4.6	 ± 	4.0  10.4	 ± 	4.2  2.1	 ± 	2.1	  4.9	 ± 	1.8 

ACR (mg/mmol) 1.8	 ± 	4.7	 2.3	 ± 	7.5	 1.7	 ± 	3.6	  1.4	 ± 	2.3 

BMI (kg/m2) 22.4	 ± 	4.1	 21.4	 ± 	4.2	 22.4	 ± 	3.9	 23.0	 ± 	4.0  

HbA1c (%) 
 
HbA1c (mmol/mol) 

8.6	(2)  
70.0	(21.8)  

9.3	(2.3)  
78.1	(25.1)	

8.9	(2.3)	
73.8	(25.1)	

8.3	(1.7)	
67.2	(18.6)	

Systolic blood pressure 
(mmHg) 

116.2	 ± 	14.9  108.7	 ± 	14.8	 118.9	 ± 	14.2   120.6	 ± 	13.0 

Diastolic blood pressure 
(mmHg) 

 68.9	 ± 	9.6  69.4	 ± 	11.0  68.6	 ± 	9.7 68.7	 ± 	8.5  
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Table 1: Baseline clinical characteristics for the subjects included in our analysis. Values are 

expressed as mean±SD for normally distributed continuous variables, median (IQR) for non-

normally distributed variables and percentage for categorical variables.  

Albumin Excretion 

All cohorts were monitored with annual ACR assessments. Urine samples were assessed 

centrally in a single reference laboratory as previously described (4). We excluded data where 

less than two consecutive measurements from a single visit were available (224 visits 

removed from a total of 11,601 visits), or where the ACR measurements from the same visit 

were highly variable (𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑	𝑒𝑟𝑟𝑜𝑟	𝑜𝑓	𝑡ℎ𝑒	𝑚𝑒𝑎𝑛	 > 	30	𝑚𝑔/𝑚𝑚𝑜𝑙; 19 data points 

removed), as this may indicate measurement errors. We then calculated the geometric mean 

of the consecutive ACR measurements.  

GWAS Genotyping, Quality Control, and Imputation 

We received genotype data for subjects in the ORPS, NFS and AdDIT cohorts. Study 

participants were genotyped in non-overlapping groups that were not cohort specific, and so 

we refer to these genotyping groups as groups 1, 2 and 3. Quality control (QC) and 

imputation were performed separately within each genotyping group (Supplementary 

Methods; Supplementary Figs 1-5). 

 

Participants in groups 1 and 2 underwent genotyping and QC centrally at the University of 

Virginia, which has been described previously (11). Samples were genotyped on the 

HumanCore BeadChip array (Illumina, San Diego, CA), which contains approximately 

250,000 genome-wide tag SNPs and 200,000 exome-focused variants. We included an 

additional QC step to remove 261 chromosome X SNPs that were labelled as heterozygous in 
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males but did not reside in the pseudoautosomal region of chromosome X (Supplementary 

Table 1). For samples in group 3 which had not been quality controlled, we filtered for low-

quality variants (e.g. high missingness, low minor allele frequency and excessive deviation 

from Hardy–Weinberg equilibrium) and samples (e.g. high missingness, sex mismatch, 

evidence of relatedness and extreme heterozygosity) (Supplementary Table 2). For samples 

with replicate data available, we selected the replicate with the best SNP coverage. 

 

We used the Michigan Imputation Server (21) to impute missing genotypes for samples in 

each genotyping group separately, using the Haplotype Reference Consortium (HRC) panel 

of 64,976 human haplotypes at 39,235,157 SNPs as the reference data (version r1.1 2016) 

(22). We specified that the samples were of European ancestry and that any variants with low 

imputation quality (𝑅2 < 0.3) should be discarded. Following imputation, we removed 

samples with extreme proportions of homozygous variants and removed any monomorphic 

SNPs. Across the three genotyping groups, the final imputed and quality controlled data 

consisted of 11,483,371 SNPs in 2205 samples, for which 1584 samples had phenotype data 

available and were used in our analysis. 

Multiple Imputation 

There was ~15% missingness for HbA1c, blood pressure and BMI measurements across the 

study samples, which we accommodated for using a multiple imputation approach (23). 

Briefly, the multiple imputation pipeline consists of three stages: (i) imputation phase (ii) 

analysis phase and (iii) pooling phase. We used the mice (“Multivariate Imputation by 

Chained Equations”) R package (24) to impute 5 complete data sets, using a multilevel 

modelling approach with subject ID as the class variable and 10 iterations for each 

imputation, which allowed for sufficient mixing of chains (Supplementary Fig. 6). By 
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specifying a correlation coefficient 𝑟 > 0.1 between variables for prediction, we selected 

ACR, treatment allocation and cohort for the prediction of missing HbA1c values, we 

selected sex, age, duration of diabetes, HbA1c, treatment allocation and cohort for the 

prediction of missing BMI values, we selected sex, age, duration of diabetes, HbA1c, 

treatment allocation (for the AdDIT cohort) and cohort for the prediction of missing systolic 

blood pressure (SBP) values and we selected ACR, age, duration of diabetes, HbA1c, 

treatment allocation and cohort for the prediction of missing diastolic blood pressure (DBP) 

values. To ensure that the imputed values were on the same scale as the observed values (e.g. 

𝐻𝑏𝐴1𝑐 > 0), we used the squeeze function in the mice R package to transform the imputed 

data values to be within the range of observed data values.  

 

In the analysis phase of multiple imputation, the analysis is implemented separately for each 

imputed data set. That is, sample-specific phenotypes were derived from each of the 5 

imputed data sets (see “Phenotype Definitions” subsection) and 5 separate GWAS were 

conducted using these phenotype values (see “GWAS Analysis” subsection), resulting in 5 

sets of GWAS summary statistics. In the final pooling phase, Rubin’s rules (25) were used to 

pool the statistics, ultimately deriving a final set of pooled effect sizes, standard errors and p-

values (Supplementary Methods). 

 

Phenotype Definitions 

To derive a single albumin excretion phenotype summarising multiple longitudinal ACR 

measurements (Supplementary Fig. 7), we first used a linear regression model and selected 

the covariates for inclusion based on previous analyses in these cohorts (7,20). Specifically, 

the geometric mean of consecutive ACR measurements were logarithmically transformed and 
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used as the dependent variable, whilst sex, duration of diabetes, age, HbA1c, treatment 

allocation, cohort, BMI, SBP and DBP were selected as covariates in the model. For study 

samples in ORPS and NFS (where no treatments were allocated) the treatment allocation 

group was set to the control group in the AdDIT cohort. We extracted the residuals (observed 

- fitted values) from the model, which correspond to covariate-adjusted ACR measurements. 

 

We first defined a phenotype based on cross-sectional albumin excretion measurements 

(9,12–14) by selecting the covariate-adjusted ACR measurement from the most recent visit 

for each subject to derive the “latest ACR phenotype”. Second, we averaged the covariate-

adjusted ACR measurements for each subject to derive the “average ACR phenotype” (20). 

 

To better utilise the longitudinal data values, we derived a novel phenotype that models the 

trajectory of covariate-adjusted ACR measurements over time. For this, we used Bayesian 

multilevel modelling to fit average slopes as the trajectories. We opted to use a multilevel 

modelling approach as this allowed us to borrow information across subjects, in particular to 

improve parameter estimation for subjects with few data points available (and thus an 

uncertain trajectory). Explicitly, we used the brm function within the brms R package (26) 

which utilises the Stan software to fit the following Bayesian linear multivariate multilevel 

model: 

𝑦! 	~	𝛼	 + 𝛼! 	+ 	𝛽𝑑! 	 	+ 		𝛽!𝑑! 
 

where 𝑦! 	 is the residual for subject 𝑖 measured at 𝑑! years since their diagnosis. Parameters 𝛼 

and 𝛽 represent the fixed effects and have independent improper flat priors, whilst parameters 

𝛼! and 𝛽! represent random effects and are sampled from a multivariate normal prior with 

zero mean and an unknown variance-covariance matrix. We used the default prior for this 

variance-covariance matrix (see https://cran.r-
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project.org/web/packages/brms/vignettes/brms_overview.pdf for more details) and default 

parameter values, but increased the iterations per chain from 2000 to 8000 in order to ensure 

sufficient mixing of chains. We extracted the mean posterior slope coefficient for each 

subject (comprising both the fixed and random coefficients; 𝛽 +	𝛽𝑖), and used these subject-

specific values as our “trajectory phenotypes”. 

GWAS Analysis 

For study samples with both genotype and phenotype data available (𝑁 = 1584), we used the 

Gemma software (27) to perform genetic association tests for each of the 5 imputed data sets 

for each of our 3 phenotypes (“latest ACR phenotype”, “average ACR phenotype” and 

“trajectory phenotype”). The genomic control lambda values ranged between 0.95 and 0.99.  

 

Because ACR has a right-skewed distribution, there is a potential for exaggerated p-values. 

To ensure our inference was robust, we repeated the complete analysis of each phenotype 

1000 times with permuted phenotypes, and of a standard normal phenotype. For each null 

analysis, we saved the minimum p-value, and used the relationship between the minimum p-

values from permuted and standard normal phenotype analysis to interpolate a more 

conservative adjusted p-value, upon which we based our GWAS inference. 

 

We used the conventional significance threshold of 𝑝 < 5 × 10$8 to call genome-wide 

significant signals and 𝑝 < 1 × 10$6 for suggestive signals. To identify index SNPs in 

associated regions we selected the SNP with the smallest p-value in each 200-kb region. To 

aid comparison across phenotypes, we report standardised estimated effect sizes (𝛽) and 

standard errors (SEs) (standardised so that the variance of the phenotype values equal 1). 
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Fine-Mapping Association Signals 

We used Bayesian fine-mapping to prioritise the likely causal variants in associated regions, 

assuming a single causal variant per-region (25, 26). To define loci for fine-mapping we 

included all variants 200-kb either side of the index-SNP, and used the corrcoverage R 

package (29) to derive posterior probabilities of causality (PPs) for each SNP in the region, 

and to generate 95% credible sets.  

 

To ensure that the single causal variant assumption made by corrcoverage was robust, we 

also performed fine-mapping using SuSiE (27, 28), which allows for multiple causal variants, 

using reference LD data from European samples in the 1000 Genomes Project (32). 

Replication Analysis 

We used the Type 1 Diabetes Knowledge Portal (T1DKP; https://t1d.hugeamp.org/, accessed 

10 Feb 2022) to scrutinise significant signals identified by our analysis. We used results from 

the PheWAS association analysis for studies conducted on samples of European ancestry. In 

practice, the relevant studies on T1DKP were for the SUMMIT consortium (30, 31). We 

recorded the sample size, effect size (odds ratio due to case-control GWAS) and p-value for 

the relevant SNPs.  

Data and Resource Availability 

GWAS summary statistics will be made publicly available on the GWAS Catalog. Code to 

perform the analysis is available via https://github.com/annahutch/T1D-ACR and 

https://github.com/chr1swallace/acr-p-values. Phenotype data is available upon request.  
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Results 

Novel Trajectory Phenotype 

We describe a novel “trajectory phenotype” which effectively models the slope of covariate-

adjusted ACR measurements over time. For this, we use a multilevel modelling approach that 

allows information to be borrowed across individuals, thereby protecting against extreme 

phenotype values for individuals with few data points. In practice, if an individual has many 

data points and therefore a more complete trajectory, then the method attenuates the slope of 

the observed trajectory only slightly towards the mean slope (Figs. 1A, 1B). In contrast, if an 

individual has very few data points and therefore a more uncertain trajectory, then the method 

more heavily attenuates the slope towards the mean (Figs. 1C, 1D).  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 19, 2022. ; https://doi.org/10.1101/2022.12.19.22283443doi: medRxiv preprint 

https://doi.org/10.1101/2022.12.19.22283443
http://creativecommons.org/licenses/by-nc-nd/4.0/


14 

 

Fig. 1: Figure to illustrate modelling ACR trajectories to derive the trajectory phenotype. In 

plots of covariate-adjusted ACR measurements against duration of diabetes, we show the 
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observed trajectory (line between data points for each individual), the modelled trajectory 

without borrowing information across individuals (straight “best fit” line fitted to data points 

for each individual) and the modelled trajectory with borrowing across individuals (from 

which the slope equals the “trajectory phenotype”). Panels (A) and (B) highlight trajectories 

for individuals with many data points available, where the borrowing only attenuates the 

slope of the trajectory slightly. Panels (C) and (D) highlight trajectories for individuals with 

only three data points available, where the borrowing attenuates the slope of the trajectory 

more heavily. The grey lines represent a random sample of observed trajectories. The average 

trajectory across all subjects is shown in black. The number of visits and the attenuation 

between the trajectory modelled with borrowing and without borrowing is given in each 

panel. Attenuation was calculated as 1− 𝑠𝑙𝑜𝑝𝑒	𝑜𝑓	𝑡𝑟𝑎𝑗𝑒𝑐𝑡𝑜𝑟𝑦	𝑤𝑖𝑡ℎ	𝑏𝑜𝑟𝑟𝑜𝑤𝑖𝑛𝑔/

𝑠𝑙𝑜𝑝𝑒	𝑜𝑓	𝑡𝑟𝑎𝑗𝑒𝑐𝑡𝑜𝑟𝑦	𝑤𝑖𝑡ℎ𝑜𝑢𝑡	𝑏𝑜𝑟𝑟𝑜𝑤𝑖𝑛𝑔. 

 

Comparison with Related Phenotypes 

Previous studies of ACR have used cross-sectional ACR measurements (8, 11–13) or average 

ACR values (20). In our data, these values were highly correlated (𝑟 = 0.77). Our trajectory 

phenotype was also highly correlated with the latest ACR values (𝑟 = 0.66) and moderately 

correlated with the average ACR values (𝑟 = 0.49). This indicates that an individual’s 

trajectory is related to their average ACR, with more rapidly progressing trajectories 

corresponding to higher ACR values at the last visit. 

 

Some understanding of the differences between these phenotypes may be revealed by 

considering individuals identified as having extreme phenotypic values. We found that the 

average ACR phenotype tended to identify those individuals with a single (or small number 
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of) extreme ACR measurements (Fig 2). In contrast, the trajectory phenotype highlights those 

individuals with strongly increasing (or decreasing) ACR measurements over time, thus 

monitoring albumin progression. The latest ACR phenotype only uses information from the 

most recent visit and is agnostic to any ACR measurements taken before this time.  

 

 

Fig. 2: Figure to illustrate observed trajectories for individuals with the highest and lowest 

phenotype values. In plots of covariate-adjusted ACR measurements against duration of 

diabetes, we highlight the observed trajectories for individuals with the (A) highest and (B) 

lowest phenotype value for each of the three phenotypes. The grey lines show a random 

sample of observed trajectories.  
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GWAS Results 

We performed GWAS for all three ACR phenotypes (Fig. 3, Supplementary Fig. 8). At a 

suggestive significance threshold of 𝑝 < 1 × 10$6,	two signals were found to associate with 

the trajectory phenotype, three with the latest ACR phenotype (including one of the trajectory 

associated SNPs) and one with the average ACR phenotype (Table 2).  

 

Of these suggestive signals, two exceeded the more stringent genome-wide significance 

threshold of 𝑝 < 5 × 10$8. The first of these is for the latest ACR phenotype, and has index 

SNP rs150766792 for which the alternative allele (G) is relatively rare in European 

populations (𝑀𝐴𝐹 = 0.0219) (35). The SNP rs150766792 is closest to the long intergenic 

non-coding gene, LINC02431 (27-kb from the start of the gene). The closest protein coding 

gene to rs150766792 is GALNTL6 (800-kb to TSS). 

 

The second genome-wide significant signal is for the trajectory phenotype and is driven by 

genetic variants residing in the first intron of the CDH18 gene on chromosome 5. The 

alternative allele (C) at the index SNP, rs145715205, is relatively rare in European 

populations (𝑀𝐴𝐹 = 0.0139) (35). Interestingly, the latest ACR also showed suggestive 

association with rs145715205 in CDH18 (𝑝 = 6.4 × 10−7) and also with rs79607490 (𝑃 =

6.0 × 10$7), which is upstream of PCDH18 on chromosome 4, another member of the 

cadherin superfamily.   
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Fig. 3: Manhattan plots of GWAS results for (A) latest ACR phenotype (B) average ACR 

phenotype and (C) trajectory phenotype. Solid line on Manhattan plots show genome-wide 

significance threshold (𝑝 = 5 × 10$8) and dashed line shows suggestive significance 

threshold (𝑝 = 1 × 10$6). The y-axis is the −𝑙𝑜𝑔10 transformed p-value and the x-axis is the 

genomic position. 

 

rsID Chr bp Alleles Beta SE P raw P adj Closest 
gene 
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Trajectory 

rs115207889  1 64897735 T>G 0.929 0.171 6.53 × 10#$	 9.97 x 10-7 CACHD1 

rs145715205 5 20409042 A>C 0.883 0.135 8.9 × 10#%%	 2.61x10-8 CDH18 

Average ACR 

rs112200619 1 65861210 T>C 0.743 0.141 2.20 × 10#&	 6.07 x 10-7 LEPROT 

Latest ACR 

rs150766792 4 17193426
8 

A>G 0.729 0.125 6.94 × 10#'	 4.04 x 10-8 GALNTL6 

rs145715205 5 20409042 A>C 0.668 0.134 6.37 × 10#'	 1.66 x 10-8 CDH18 

rs187626285  7 73817796 G>A 0.828 0.158 1.81 × 10#&	 5.89 x 10-7 GTF2IRD1 

rs61947176 13 37885033 G>A 0.774 0.146 1.41 × 10#&	 4.85 x 10-7 CSNK1A1L 

 

Table 2: SNPs with suggestive evidence of association (𝑝 < 1 × 10$6) in any of the three 

GWAS phenotypes. For each index SNP, the table contains the rsID, the chromosome, the 

base position (bp, hg19), the alleles (reference > effect), the estimated effect size (beta), the 

standard error of the estimated effect size (SE), the observed and adjusted p-values and the 

closest protein coding gene. Note that rs145715205 appears twice, once for the trajectory and 

once for the latest phenotype. 

Examining Significant Signals 

We used Bayesian fine-mapping to prioritise the likely causal variants in the two genomic 

regions that reached genome-wide significance. In the GALNTL6 gene region the index SNP, 

rs150766792, was found to be the most likely causal variant (𝑃𝑃 = 0.89) and the 95% 
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credible set contained 2 additional variants (rs140921123 𝑃𝑃 = 0.040; rs12502900 𝑃𝑃 =

0.054) (Fig. 4, Supplementary Fig. 9).  

 

Fig. 4: Manhattan plot for the GALNTL6 gene region (chr54:167000000-176000000). The 

index SNP in the region is highlighted and labelled in red. The two other SNPs included in 

the 95% credible set are highlighted and labelled in blue. Genes and genomic position (hg19) 

along chromosome 4 are shown in the bottom panel.  

 

In a PheWAS association analysis on T1DKP, we found that the most strongly associated 

phenotypes with rs150766792 were microalbuminuria and all diabetic kidney disease, from 

the SUMMIT consortium (Table 3). Reassuringly, the effect sizes were directionally 

consistent with those from our GWAS, whereby the effect allele (G) increased risk. The 
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index SNP rs150766792 is correlated with the two other SNPs in the credible set (𝑟2 =

0.4346 with rs140921123 and 𝑟2 = 0.5695 with rs12502900; estimated using 1000 Genomes 

Project European populations using the LDmatrix tool in LDlink (32,36)), and these SNPs 

also associated with microalbuminuria and all diabetic kidney disease in the SUMMIT 

consortium on T1DKP. 

 

Study Sample size OR P-value Reference 

Microalbumin in subjects with T1D or T2D 5,474 1.70 0.0003718 (30 ,31) 

Microalbumin in subjects with T2D 3,464 1.90 0.001107 (34) 

Microalbumin in subjects with T1D 1,747 1.41 0.1077 (33) 

All diabetic kidney disease in subjects with T1D or T2D 9,307 1.50 0.001 (30 ,31) 

All diabetic kidney disease in subjects with T2D 4,414 1.79 0.001436 (34) 

All diabetic kidney disease in subjects with T1D 4,599 1.24 0.1554 (33) 

 
Table 3: Replication results for rs150766792 from the Type 1 Diabetes Knowledge Portal 

(T1DKP; https://t1d.hugeamp.org/) in studies where subjects were of European ancestry. The 

effect allele for rs150766792 was G and the reference allele was A. 

 

In the CDH18 gene region the index SNP, rs145715205, was found to be the most likely 

causal variant (𝑃𝑃 = 0.975) (Fig. 5). The PheWAS on T1DKP identified urinary sodium 

excretion as the most strongly associated phenotype with rs145715205 (𝑝 = 0.007) (37), with 

urinary albumin-to-creatinine ratio the second most strongly associated phenotype (𝑝 =

0.019) (35). SNP rs145715205 was not present in the SUMMIT data set so we were unable 

to check replication in this cohort.  
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Fig. 5: Manhattan plot for the CDH18 gene region (chr5:16000000-25000000). The index 

SNP in the region is highlighted and labelled in red. Genes and genomic position along 

chromosome 5 are shown in the bottom panel (hg19).  

 

 

  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 19, 2022. ; https://doi.org/10.1101/2022.12.19.22283443doi: medRxiv preprint 

https://doi.org/10.1101/2022.12.19.22283443
http://creativecommons.org/licenses/by-nc-nd/4.0/


23 

Discussion 

We have described a novel albumin excretion phenotype, the trajectory phenotype, that is 

based on longitudinal data. This complements albumin-related phenotype definitions used in 

previous studies which are typically based on cross-sectional data by quantifying the slope, 

and not simply the central or final location of ACR measures. Estimated slopes will have a 

much higher degree of uncertainty for individuals with only a few measurements compared to 

those with more measurements. We accounted for this by taking a multilevel approach which 

naturally attenuates the most uncertain slopes towards the global mean, and reduces the risk 

of outlying observations having undue influence on GWAS estimates. Given the variability in 

numbers of observations per individual, we considered this approach was likely to be more 

robust than other approaches for summarising longitudinal data, such as latent trajectory 

modelling that groups individuals into trajectory groups whereby individuals within the same 

trajectory group have similar trajectories. Whilst such approaches have the advantage of 

being able to accommodate non-linear trajectories, this requires many more degrees of 

freedom, which in turn requires more observations, amplifying the difficulty assigning 

accurate phenotypes to individuals with fewer observations.  

 

To the best of our knowledge, no other study has derived a phenotype that models 

longitudinal ACR changes for use as a continuous trait in GWAS. Whilst we used this 

phenotype to identify genetic variants which predict better or worse ACR trajectories, a 

similar approach could be considered for studying potential non-genetic predictors. Such 

approaches could help towards the development of a personalised prediction tool to help 

guide therapeutic decisions, for example commencing statin usage earlier if genetic or other 

risk factors are present. 
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Our signal close to GALNTL6 (lead SNP rs150766792) for the latest ACR phenotype was 

replicated in the SUMMIT cohort, which was reassuring because our cross-sectional latest 

ACR phenotype more closely resembled the microalbuminuria and DKD case definitions in 

the SUMMIT GWAS than the other phenotypes. We identified a novel signal in the CDH18 

gene (lead SNP rs145715205) when using our trajectory phenotype. We were unable to 

replicate this signal, which may reflect that no previous studies have looked for genetic 

associations with albuminuria progression in type 1 diabetes patients.  

 

The CDH18 gene, located in the region of chromosome 5 encodes for cadherin 18, which 

belongs to the large cadherin superfamily, a class of calcium-dependent trans-membrane 

proteins. Cadherin 18 is expressed in various tissues but appears to be confined primarily to 

the central nervous system (38). SNPs within CDH18 have been previously associated with 

gestational diabetes (39) and with metabolic syndrome-related traits, such as obesity, insulin 

resistance and blood pressure (40). Although there is no clear evidence yet for CDH18 to be 

expressed in the kidney or vascular system, and there is no previous evidence of association 

with albumin excretions or more general DKD, the role in metabolic syndrome-related traits 

is of interest. Indeed, urinary albumin excretion and DKD are closely associated with features 

of the metabolic syndrome, such as obesity, insulin resistance and hypertension (41,42). 

The GALNTL6 gene encodes the membrane-bound protein N-acetylgalactosaminyltransferase 

like 6, which has a significant role in the pathway of protein glycosylation (43,44). There are 

no previous reports  of a role of this gene in the context of diabetes and its vascular 

complications. However, a potential role could be speculated given that protein glycosylation 

is a well known process implicated in the pathogenesis of vascular complications of diabetes 

(45). 
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It will therefore be important to validate our findings, for example in larger study cohorts or 

cohorts of differing ancestry. Functional studies will also be required to investigate the 

functional roles of rs145715205 and rs150766792 in albuminuria and its progression in 

patients with type 1 diabetes. Of interest, this study also identified a new approach to assess 

longitudinal ACR data, which could be applied not only in future GWAS studies, but could 

also help towards the development of a personalised prediction tool to help guide therapeutic 

decisions, for example commencing more intensive drug interventions earlier if genetic or 

other risk factors are present. 
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Tables 

● Table 1: Clinical characteristics for the subjects included in our analysis. Values 

are expressed as mean±SD for normally distributed continuous variables, median 

(IQR) for non-normally distributed variables and percentage for categorical variables.  

● Table 2: SNPs with suggestive evidence of association (𝑝 < 1 × 10$6) in any of the 

three GWAS phenotypes. For each index SNP, the table contains the rsID, the 

chromosome, the base position (bp, hg19), the alleles (reference > effect), the 

estimated effect size (beta), the standard error of the estimated effect size (SE), the 

observed and adjusted p-values and the closest protein coding gene. Note that 

rs145715205 appears twice, once for the trajectory and once for the latest phenotype. 

● Table 3: Replication results for rs150766792 from the Type 1 Diabetes 

Knowledge Portal (T1DKP; https://t1d.hugeamp.org/) in studies where subjects 

were of European ancestry. The effect allele for rs150766792 was G and the 

reference allele was A. 

Figure legends 
 

● Fig. 1: Figure to illustrate modelling ACR trajectories to derive the trajectory 

phenotype. In plots of covariate-adjusted ACR measurements against duration of 

diabetes, we show the observed trajectory (line between data points for each 

individual), the modelled trajectory without borrowing information across individuals 

(straight “best fit” line fitted to data points for each individual) and the modelled 

trajectory with borrowing across individuals (from which the slope equals the 

“trajectory phenotype”). Panels (A) and (B) highlight trajectories for individuals with 

many data points available, where the borrowing only attenuates the slope of the 

trajectory slightly. Panels (C) and (D) highlight trajectories for individuals with only 
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three data points available, where the borrowing attenuates the slope of the trajectory 

more heavily. The grey lines represent a random sample of observed trajectories. The 

average trajectory across all subjects is shown in black. The number of visits and the 

attenuation between the trajectory modelled with borrowing and without borrowing is 

given in each panel. Attenuation was calculated as 1−

𝑠𝑙𝑜𝑝𝑒	𝑜𝑓	𝑡𝑟𝑎𝑗𝑒𝑐𝑡𝑜𝑟𝑦	𝑤𝑖𝑡ℎ	𝑏𝑜𝑟𝑟𝑜𝑤𝑖𝑛𝑔/𝑠𝑙𝑜𝑝𝑒	𝑜𝑓	𝑡𝑟𝑎𝑗𝑒𝑐𝑡𝑜𝑟𝑦	𝑤𝑖𝑡ℎ𝑜𝑢𝑡	𝑏𝑜𝑟𝑟𝑜𝑤𝑖𝑛𝑔. 

● Fig. 2: Figure to illustrate observed trajectories for individuals with the highest 

and lowest phenotype values. In plots of covariate-adjusted ACR measurements 

against duration of diabetes, we highlight the observed trajectories for individuals 

with the highest (A) and lowest (B) phenotype value for each of the three phenotypes. 

The grey lines show a random sample of observed trajectories.  

● Fig. 3: Manhattan plots of GWAS results for (A) latest ACR phenotype (B) 

average ACR phenotype and (C) trajectory phenotype. Solid line on Manhattan 

plots show genome-wide significance threshold (𝑝 = 5 × 10$8) and dashed line 

shows suggestive significance threshold (𝑝 = 1 × 10$6). The y-axis is the −𝑙𝑜𝑔10 

transformed p-value and the x-axis is the genomic position. 

● Fig. 4: Manhattan plot for the GALNTL6 gene region (chr54:167000000-

176000000). The index SNP in the region is highlighted and labelled in red. The two 

other SNPs included in the 95% credible set are highlighted and labelled in blue. 

Genes and genomic position (hg19) along chromosome 4 are shown in the bottom 

panel.  

● Fig. 5: Manhattan plot for the CDH18 gene region (chr5:16000000-25000000). 

The index SNP in the region is highlighted and labelled in red. Genes and genomic 

position along chromosome 5 are shown in the bottom panel (hg19).  
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