
Resting-state functional connectivity in children cooled for neonatal 

encephalopathy 

 

Short title: 

Brain function following cooling therapy 

 

Authors 

Arthur P C Spencer1,2,3, Marc Goodfellow4,5, Ela Chakkarapani2,6*, Jonathan C W 

Brooks1,7* 

*These authors contributed equally to this work. 

1Clinical Research and Imaging Centre, University of Bristol, Bristol, UK 

2Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK 

3Department of Radiology, Lausanne University Hospital, Lausanne, Switzerland 

4Living Systems Institute, University of Exeter, Exeter, UK 

5Department of Mathematics and Statistics, University of Exeter, Exeter, UK 

6Neonatal Intensive Care Unit, St Michaels Hospital, University Hospitals Bristol and 

Weston NHS Foundation Trust, Bristol, UK 

7University of East Anglia Wellcome Wolfson Brain Imaging Centre (UWWBIC), University 

of East Anglia, Norwich, UK 

 

Corresponding Author: 

Arthur P C Spencer; arthur.spencer@chuv.ch; Centre de Recherche en Radiologie PET3, 

CHUV, Rue du Bugnon 46, 1011 Lausanne, Switzerland. 

 

 

  

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 4, 2023. ; https://doi.org/10.1101/2022.12.17.22283576doi: medRxiv preprint 

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

https://doi.org/10.1101/2022.12.17.22283576
http://creativecommons.org/licenses/by/4.0/


Abstract 

Therapeutic hypothermia improves outcomes following neonatal hypoxic-ischaemic 

encephalopathy (HIE), reducing cases of death and severe disability such as cerebral 

palsy compared to normothermia management. However, when cooled children reach 

early school-age they have cognitive and motor impairments which are associated with 

underlying alterations to brain structure and white matter connectivity. It is unknown 

whether these differences in structural connectivity are associated with differences in 

functional connectivity between cooled children and healthy controls. Resting-state fMRI 

has been used to characterise static and dynamic functional connectivity in children, both 

with typical development and those with neurodevelopmental disorders. Previous studies 

of resting-state brain networks in children with HIE have focussed on the neonatal period. 

In this study, we used resting-state fMRI to investigate static and dynamic functional 

connectivity in children aged 6-8 years who were cooled for neonatal HIE without cerebral 

palsy (n = 22, median age [IQR] 7.08 [6.85-7.52] years), and healthy controls matched for 

age, sex and socioeconomic status (n = 20, median age [IQR] 6.75 [6.48-7.25] years). 

Using group independent component analysis, we identified 31 intrinsic functional 

connectivity networks consistent with those previously reported in children and adults. We 

found no case-control differences in the spatial maps of these intrinsic connectivity 

networks. We constructed subject-specific static functional connectivity networks by 

measuring pairwise Pearson correlations between component time courses, and found no 

case-control differences in functional connectivity after FDR correction. To study the time-

varying organisation of resting-state networks, we used sliding-window correlations and 

deep clustering to investigate dynamic functional connectivity characteristics. We found k 

= 4 repetitively occurring functional connectivity states, which exhibited no case-control 

differences in dwell time, fractional occupancy, or state functional connectivity matrices. In 

this small cohort, the spatiotemporal characteristics of resting-state brain networks in 

cooled children without severe disability were too subtle to be differentiated from healthy 

controls at early school-age, despite underlying differences in brain structure and white 

matter connectivity, possibly reflecting a level of recovery of healthy resting-state brain 

function. To our knowledge, this is the first study to investigate resting-state functional 

connectivity in children with HIE beyond the neonatal period, and the first to investigate 

dynamic functional connectivity in any children with HIE.  
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Introduction 

Therapeutic hypothermia has considerably improved outcomes following neonatal hypoxic-

ischaemic encephalopathy (HIE) secondary to perinatal asphyxia. Cooled infants are at 

reduced risk of death or severe disability, such as cerebral palsy, compared to 

normothermia management following HIE (Jacobs et al., 2013; Shankaran et al., 2012; 

Thoresen et al., 2021). Therapeutic hypothermia is therefore standard care for HIE in most 

high-income counties. However, despite the benefits of therapeutic hypothermia, there are 

still aspects of brain development which are impacted by HIE. At early school-age, children 

cooled for HIE, who do not have cerebral palsy, have cognitive and motor impairments 

(Jary et al., 2019; Lee-Kelland et al., 2020), attention and visuospatial processing 

difficulties (Tonks et al., 2019), and communication difficulties (Robb et al., 2022) 

compared to healthy controls. An understanding of the differences in brain structure and 

function between cooled children and healthy controls is required to inform research into 

therapeutic intervention strategies to promote healthy brain development.  

Functional magnetic resonance imaging (fMRI) allows non-invasive investigation of brain 

activity by measuring changes in the blood oxygen level dependent (BOLD) signal. In 

resting-state fMRI, the participant is scanned during rest (i.e. without engaging in a task or 

responding to stimuli) in order to measure spontaneous fluctuations in the BOLD signal 

(Biswal et al., 1995). Functional connectivity (FC) analysis allows investigation of 

functional interactions across the brain, by measuring correlations between pairs of brain 

regions in these low-frequency fluctuations of recorded BOLD signal (Lee et al., 2013; 

Smith et al., 2013; van den Heuvel and Pol, 2010). This approach can be extended to 

study the time-varying organisation of resting-state brain activity using dynamic functional 

connectivity (dFC) analysis (Calhoun et al., 2014; Cohen, 2018; Hutchison et al., 2013; 

Preti et al., 2017). One such approach is to use sliding-window correlations to calculate a 

series of FC matrices for each subject, which can then be clustered at the group level, 

revealing brain states representing repetitively occurring FC patterns (Allen et al., 2014; 

Calhoun et al., 2014). Spatiotemporal characteristics of these dFC states have been 

characterised in typically developing children (Marusak et al., 2017; Rashid et al., 2018), 

and have been shown to be sensitive to neurodevelopmental outcomes (Harlalka et al., 

2019; He et al., 2018; Li et al., 2020; Rashid et al., 2018, 2014; Zhu et al., 2023). 

Studies of neonates with HIE (including both those with and without severe disability such 

as cerebral palsy) have found alterations to resting-state FC compared to healthy controls 

(Jiang et al., 2022; Tusor, 2014), and associations between FC and HIE severity 
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(Boerwinkle et al., 2022; Li et al., 2019). However, it is unclear whether these alterations in 

the neonatal period affect brain function in later life. We have previously shown that 

children cooled for HIE have disrupted white matter connectivity (Byrne et al., 2023; 

Spencer et al., 2021b, 2021a) and structural alterations to subcortical structures (Spencer 

et al., 2023) and mammillary bodies (Spencer et al., 2022) compared to healthy controls at 

early school-age. It is unknown whether these alterations to brain structure and structural 

connectivity are associated with measurable differences in functional brain activity in these 

children.  

In this study, we investigated resting-state brain activity using fMRI in children aged 6-8 

years without cerebral palsy who were treated with therapeutic hypothermia for neonatal 

HIE (cases), and healthy controls matched for age, sex and socioeconomic status. We 

used group-level independent component analysis (ICA) to determine a set of intrinsic 

connectivity networks (ICNs), then studied case-control differences in the spatial maps of 

these ICNs, and in static and dynamic FC between ICNs. To our knowledge, this is the first 

study to investigate FC in children with HIE beyond the neonatal period, and the first study 

to investigate dFC in any children with HIE. 

Methods 

Participants 

This study investigated participants of the ‘CoolMRI’ study (Lee-Kelland et al., 2020; 

Spencer et al., 2021b), a study of early school-age children without cerebral palsy who 

received therapeutic hypothermia as a neuroprotective intervention for neonatal HIE, and 

control children matched for age, sex, and socioeconomic status. Informed and written 

consent was obtained from the parents of participants and assent obtained from the 

children. Ethical approval was obtained from the North Bristol Research Ethics Committee 

and the Health Research Authority (REC ID: 15/SW/0148).  

Cases were aged 6-8 years and were sequentially selected from those who received 

therapeutic hypothermia between October 2007 and November 2012 for moderate to 

severe encephalopathy, confirmed by amplitude-integrated EEG assessment (Thoresen et 

al., 2021), secondary to perinatal asphyxia. Cases did not have a diagnosis of cerebral 

palsy at 2 and at 6-8 years based on neurological examination and assessment of motor 

function. Children were excluded if they were cooled outside the standard criteria, born 

before 35 weeks gestation, had any additional diagnosis apart from HIE (such as genetic 
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or metabolic disorder), had a major intracranial haemorrhage or congenital brain 

malformation visible on neonatal MRI, or were non-native English speakers. 

Age, sex and socioeconomic status matched controls were recruited through local schools 

and newsletters circulated at the University of Bristol. Children were included who were 

born at >35 weeks gestation, had not had perinatal asphyxia with HIE and spoke English 

as their primary spoken language.  

Socioeconomic status was measured based on participant’s postcode at examination, 

using the index of multiple deprivation as defined for England by the UK Government 

(www.gov.uk/government/statistics/english-indices-of-deprivation-2019). Each postcode in 

England is assigned a number, on a scale of 1–10, indicating the decile within which the 

local area is ranked in the country, from most deprived (1) to least deprived (10). 

MRI acquisition 

Images were acquired using a 3 tesla Siemens Magnetom Skyra and a 32-channel 

receive-only head coil. A child-friendly, detailed explanatory video was sent to the family 

before assessment day and presented again on the day of the scan together with the 

typical sounds in the MRI scanner. Head movement was minimised using cushions. A T1-

weighted volumetric scan was obtained, for spatial normalisation, with a magnetisation-

prepared rapid acquisition gradient echo (MPRAGE) pulse sequence using the following 

parameters: echo time (TE) = 2.19 ms; inversion time (TI) = 800 ms; repetition time (TR) = 

1500 ms; flip angle = 9°; field of view = 234 x 250 mm; 176 slices; 1.0 mm isotropic voxels; 

GeneRalized Autocalibrating Partially Parallel Acquisitions (GRAPPA) acceleration factor 4 

(Griswold et al., 2002). During acquisition of the volumetric scan, a film of the participants’ 

choice was projected onto a screen visible through the mirror assembly of the head coil. 

During the resting-state functional acquisition, the film was turned off and participants were 

instructed to keep their eyes open and look at a central fixation cross. T2*-weighted 

functional images were acquired using a gradient echo planar imaging sequence with the 

following parameters: TE = 30 ms; TR = 906 ms; multiband factor 6; flip angle = 60°; field 

of view = 185 x 185 mm; matrix = 64 x 64; slice thickness = 3.125 mm; 36 slices; 2.890 x 

2.890 x 3.125 mm voxels. We acquired 300 volumes giving a scan time of 4 minutes 32 

seconds. We also acquired dual-(gradient)-echo images for distortion correction of fMRI 

data (see below). 
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Preprocessing 

Resting-state fMRI data were preprocessed using FEAT (Woolrich et al., 2001) from the 

FMRIB Software Library (FSL v6.0, https://fsl.fmrib.ox.ac.uk) (Jenkinson et al., 2012; Smith 

et al., 2004). Processing steps were as follows: a) the first 5 volumes in the sequence 

were discarded to ensure steady-state magnetisation, leaving 295 volumes (4 minutes 27 

seconds); b) motion correction was then applied with MCFLIRT (Jenkinson et al., 2002) to 

align all volumes in the sequence using rigid-body registration; c) the derived fieldmap was 

used to correct distortions (induced by magnetic field inhomogeneities) in the fMRI data; d) 

non-brain tissue was removed using BET; e) Spatial smoothing was performed with a 5 

mm full-width at half-maximum Gaussian kernel; f) highpass temporal filtering was applied 

with a cutoff of 150 s to remove low-frequency artefacts. Preprocessed fMRI data were 

then transformed to Montreal Neurological Institute (MNI) standard space; first, subject 

fMRI data were registered to the subject’s T1-weighted image using rigid-body registration, 

then the subject T1-weighted image was registered to the MNI standard template using 

nonlinear registration and the resulting transformation was applied to the fMRI data. 

Following standard preprocessing steps, each subject’s fMRI data was cleaned to remove 

artefacts due to motion, physiological noise, and scanner noise, using FSL’s FIX (Griffanti 

et al., 2014; Salimi-Khorshidi et al., 2014). FIX uses a training dataset to automatically 

classify subject-level ICA components (calculated using MELODIC from FSL) into signal 

and noise, then regresses out the noise components from the fMRI data. A study-specific 

training dataset was generated by hand-labelling components from a random sample of 15 

subjects which were matched to the full cohort for case-control status. For each subject in 

the training sample, components were labelled signal or noise by two raters (APCS & 

JCWB) based on characteristics of the spatial maps, timeseries, and frequency spectra 

(for detailed description of characteristics of signal and noise components, see (Griffanti et 

al., 2017)). Leave-one-out cross validation of the training dataset gave a mean true 

positive rate of 94.2% and a mean true negative rate of 88.4%. The training dataset was 

used to denoise all subjects’ fMRI data, including regressing out the movement 

parameters estimated during the motion correction preprocessing step.  

Quality Control 

To assess quality of the fMRI scan, we quantified the amount of movement of each subject 

during acquisition using mean framewise displacement and maximum absolute 

displacement. Framewise displacement combines measurements of translation (x, y, z) 

and rotation (pitch, yaw, roll) into a single scalar quantity to summarise instantaneous 
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head motion at each time point. This was calculated according to (Power et al., 2012), 

using the movement parameters estimated during the motion correction preprocessing 

step, and averaged across time points to give mean framewise displacement for each 

subject. Note that this is likely an overestimation of the framewise displacement, as 

rotational displacements are calculated based on an approximate radius (distance from 

the centre of the brain to the cortex) of 50 mm, but this distance will be slightly smaller in 

this paediatric cohort. Acquisitions were excluded if they had a mean framewise 

displacement >0.5 or if the maximum absolute displacement from the reference volume 

exceeded 4 mm. T1-weighted scans were visually assessed and those with severe 

movement artefact, which would affect the registration of the subject data to the standard 

template, were excluded.  

Group Independent Component Analysis 

Following preprocessing, resting-state fMRI data for the whole cohort were analysed using 

spatial group independent component analysis (GICA). GICA decomposes data into 

maximally spatially independent components, whose time courses can be linearly 

combined to reconstruct the original data. GICA was applied using GIFT (Calhoun et al., 

2001; Erhardt et al., 2011), as follows. An initial dimensionality reduction step was applied 

to the fMRI data for each subject, using principal component analysis (PCA) to reduce 295 

timepoint data to 120 directions of maximal variability. Subject data for the whole cohort 

were then concatenated across time and a group PCA step reduced this into 100 

components with the expectation maximisation algorithm. The infomax algorithm (Bell and 

Sejnowski, 1995) was then used to calculate 100 independent components from the 

reduced-dimensionality group data. To ensure robust estimation of independent 

components, ICA was repeated 20 times using ICASSO, and aggregate spatial maps were 

estimated as the modes of component clusters. We selected only components which gave 

a stability index (Iq) >0.8 in ICASSO. For these components, subject-specific spatial maps 

and time courses were calculated using the GICA back-reconstruction method, which is 

analogous to dual regression, differing only in the projection through the initial PCA step 

(Erhardt et al., 2011).  

We inspected the spatial maps and temporal properties of the independent components to 

identify intrinsic connectivity networks (ICNs) based on the criteria described by (Allen et 

al., 2014), as follows: a) peak activation coordinates were in grey matter and had low 

spatial overlap with known artifacts (vascular, ventricular, motion or susceptibility); b) time 

courses were dominated by low-frequency fluctuations, characterised by a high ratio of 
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power <0.10 Hz to 0.15-0.25 Hz (Cordes et al., 2000); c) time courses had a high dynamic 

range (the difference between maximum and minimum power frequencies). Through this 

process we identified 31 ICNs which were sorted into seven functional networks (basal 

ganglia, sensorimotor, auditory, visual, DMN, attention/cognitive control, cerebellar) based 

on the spatial maps provided by (Shirer et al., 2012). 

For these 31 ICNs, subject-specific time courses (obtained from back-reconstruction, as 

described above) were detrended (for linear, quadratic and cubic trends), despiked using 

AFNI’s 3dDespike algorithm (http://afni.nimh.nih.gov/afni) to replace outliers with values 

calculated from a third order spline fit to neighbouring clean data points, and low-pass 

filtered using a fifth order Butterworth filter with a 0.15 Hz cut-off frequency. 

Static Functional Connectivity 

We calculated a 31 x 31 static functional connectivity (sFC) matrix for each subject by 

measuring the pairwise Pearson correlation coefficient between the subject-specific 

timeseries of each ICN and applying Fisher’s z-transform. 

Dynamic Functional Connectivity 

Recent studies have demonstrated that investigating resting-state connectivity in shorter 

time windows of tens of seconds can reveal dynamic changes in FC, offering greater 

insight into functional properties of brain networks (Allen et al., 2014; Gonzalez-Castillo et 

al., 2015; Handwerker et al., 2012). We assessed time-varying dFC in this cohort using the 

methodology described in (Spencer and Goodfellow, 2022), which builds on the standard 

sliding-window correlations framework (Allen et al., 2014) by including a dimensionality 

reduction step prior to clustering. We used deep clustering (Caron et al., 2018; Guo et al., 

2017), which consists of autoencoders for dimensionality reduction prior to k-means 

clustering, as this provides more accurate measurements of state temporal properties in 

synthetic data than other dimensionality reduction methods, or k-means clustering alone 

(Spencer and Goodfellow, 2022). Autoencoders are a type of artificial neural network 

which, in dimensionality reduction applications, are trained to copy the input data to the 

output via a low-dimensional encoding layer (Goodfellow et al., 2016; Vincent et al., 2008). 

The low-dimensional encoding layer extracts salient features from which the original data 

can be reproduced via the decoding layers (Guo et al., 2017; Xie et al., 2016). Sliding-

window correlations and deep clustering were performed as follows.  

First, we used the sliding-window correlations approach to convert each ICN time course 

for each subject to a series of FC matrices, representing time-varying functional 
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connections (Figure 1). We used a tapered window of length 50 TR (45.3 s), created by 

convolving a rectangular window with a Gaussian function with a sigma of 6 TR (5.436 s). 

Sliding the window in steps of 1 TR (0.906 s), we calculated FC within each window by 

estimating covariance from the precision matrix with L1 regularisation (Allen et al., 2014; 

Smith et al., 2011; Varoquaux et al., 2010), where the regularisation parameter, λL1, was 

estimated for each subject using cross-validation, and applied Fisher’s z-transform. 

Figure 1: Pipeline of analysis methods. Each subject’s resting-state fMRI data was 

preprocessed, then group independent component analysis (GICA) was used to extract 

intrinsic connectivity networks (ICNs). We identified 31 ICNs and obtained subject-specific 

spatial maps and time courses using back-reconstruction. Static functional connectivity 

(sFC) was computed for each subject by measuring pairwise correlation between ICNs. 

Dynamic functional connectivity (dFC) was computed by sliding-window correlations 

followed by deep clustering (Spencer and Goodfellow, 2022) to group FC windows into k = 
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4 states (determined using the elbow criterion of the within-cluster distance to the 

between-cluster distance). Dwell time and fractional occupancy were measured for each 

subject. ICN spatial maps and characteristics of sFC and dFC were compared between 

cases and controls. 

 

For dimensionality reduction, we used the autoencoder architecture described in (Spencer 

and Goodfellow, 2022). Specifically, this consisted of a fully-connected autoencoder with 

three encoding layers (number of units: 512, 256, 32) and a symmetric decoder. Linear 

activation functions were used for the low-dimensional layer and output layer, and rectified 

linear unit (ReLU) activation functions were used for all other layers. We trained the 

autoencoder for 200 epochs with a batch size of 50, using the Adam optimiser (Kingma 

and Ba, 2014) to minimise the mean-squared error (MSE) between the input and output. 

We then applied k-means clustering to the low-dimensional representation of the dFC data 

for all subjects, as follows. First we selected exemplar FC windows at local maxima in 

variance and applied 128 repetitions of k-means (max 1000 iterations) to the low-

dimensional representation of these windows, each initialised with the k-means++ 

algorithm (Arthur and Vassilvitskii, 2006). From these 128 runs, the set of centroids which 

gave the lowest sum of squared error between each data point and its nearest centroid 

was used to initialise k-means clustering (max 10,000 iterations) for all windows. 

We determined the number of clusters using the elbow criterion of the within-cluster 

distance to the between-cluster distance, which resulted in k = 4. For each subject, we 

measured the mean dwell time of each cluster (the average time spent in that state) and 

the fractional occupancy of each cluster (the fraction of the total scan time spent in that 

state).  

Statistical Analysis 

After data processing, for each subject we had: i) subject-specific spatial maps for 31 

ICNs; ii) a subject-specific sFC matrix denoting pairwise FC between ICNs; and iii) dFC 

outputs for each state, consisting of state FC matrices and measurements of dwell time 

and fractional occupancy.  

To investigate differences in ICN spatial maps between cases and controls, we performed 

case-control comparison of subject-specific spatial maps for each ICN using FSL’s 

RANDOMISE (Winkler et al., 2014). Age and sex were included as covariates in a general 

linear model, performing two-tailed voxelwise comparison between cases and controls with 
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10,000 permutations and applying threshold-free cluster enhancement to control the 

family-wise error rate.  

We then investigated group differences in sFC between cases and controls; we regressed 

age and sex from each pairwise functional connection (pairwise association between 

ICNs), and performed a two-tailed t-test using the residuals. We present uncorrected 

results, in addition to results after applying FDR correction for multiple comparisons.  

To compare dFC characteristics, we compared dwell time and fractional occupancy 

between cases and controls using ANCOVA with age and sex included as covariates. To 

assess group differences in state FC matrices between cases and controls, we calculated 

subject-specific state FC matrices as the median of FC windows assigned to each state for 

a given subject. We performed element-wise comparison between cases and controls by 

first regressing age and sex from each functional connection, then performing a two-tailed 

t-test using the residuals. We applied FDR multiple comparisons correction. 

Data Availability 

The data that support the findings of this study are available from the corresponding 

author, upon reasonable request. The code used for dFC analysis (including sliding-

window correlations and deep clustering) is available at GitHub 

(https://github.com/apcspencer/dFC_DimReduction) (Spencer and Goodfellow, 2022). 

 

Results 

Participant Demographics 

50 cases and 43 controls were recruited for the CoolMRI study. 7 cases and 4 controls did 

not want to undergo scanning and 7 cases had incomplete data due to movement during 

the scan. Quality control of the fMRI data resulted in rejection of 13 cases and 19 controls. 

One additional case was rejected due to poor quality of their T1-weighted image, meaning 

that the data could not be spatially normalised. This left 22 cases and 20 controls with 

suitable data. Participant demographics are shown in Table 1. There was no significant 

difference between cases and controls in age, sex, deprivation index, or framewise 

displacement. As previously reported (Spencer et al., 2021a, 2021b), cases had lower 

cognitive scores (p = 0.0053) measured by the Wechsler Intelligence Scale for Children 

4th Edition (Kaufman et al., 2006), and a larger proportion of the case group were at risk of 
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motor impairment (p = 0.0221), defined as a score under the 15th centile on the Movement 

Assessment Battery for Children 2nd Edition (MABC-2) (Henderson et al., 2007). 

 

 Cases (n = 22) Controls (n = 20) p 

Age, median (IQR) /years 7.08 (6.85-7.52) 6.75 (6.48-7.25) 0.0909 

Sex, n male (%) 7 (32) 11 (55) 0.2118 

Deprivation index, median (IQR) 6 (4-9) 7 (5-8) 0.4099 

Framewise displacement, mean ± 

standard deviation /mm 

0.302 ± 0.090 0.274 ± 0.083 0.3077 

Cognitive and Motor Scores    

Full-scale IQ, median (IQR) 98 (89-103) 108 (99-116.5) 0.0053 

MABC-2 total score, median (IQR) 11 (6-13) 11 (9.5-13) 0.4707 

MABC-2 score <15th centile, n (%) 8 (36) 1 (5) 0.0221 

Perinatal Clinical Information    

Assisted ventilation at 10 min of age, n 

(%) 

15 (68)   

Cardiac compressions required, n (%) 4 (18)   

Apgar score at 10 min of age, median 

(IQR) 

6 (5-7)   

Worst pH within 1 h of birth, median 

(IQR) 

6.98 (6.90-7.13)   

Amplitude-integrated EEG abnormalities 

prior to TH, n (%): 

   

Moderate 21 (95)   

Severe 1 (5)   

Table 1: Participant demographics and perinatal clinical information. Apgar score is 

measured on a 1-10 scale where a higher score indicates healthier (7-10 indicates good 

health). Perinatal asphyxia is characterised by pH <7.20.  
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Intrinsic Connectivity Networks 

Figure 2 shows the spatial maps of the 31 ICNs identified from independent component 

analysis, grouped into seven functional networks (Shirer et al., 2012). These ICNs are 

consistent with those found in previous studies of children (de Bie et al., 2012; Muetzel et 

al., 2016; Rashid et al., 2018; Thomason et al., 2011) and adults (Allen et al., 2014; 

Damaraju et al., 2014; Fiorenzato et al., 2019; Shirer et al., 2012). Details of each 

independent component are provided in Supplementary Table 1, with spatial maps shown 

in Supplementary Figure 1. There were no case-control differences in ICN spatial maps 

(p>0.05) indicating the spatial extent of independent components are consistent between 

groups. 

 

Figure 2: Spatial maps of intrinsic connectivity networks identified by group independent 

component analysis, grouped into functional networks, with arbitrary colours for 

visualisation. Orientation is indicated by the labels in the sensorimotor panel as follows: S/I 

= superior/inferior; A/P = anterior/posterior; R/L = right/left.  

 

 

/I 
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Static Functional Connectivity 

The average sFC matrix for the whole cohort is shown in Figure 3. Similar to previous 

studies (Allen et al., 2014; Rashid et al., 2018), sFC patterns in this cohort show modular 

organisation, with most functional networks (e.g. sensorimotor, visual, DMN, 

attention/cognitive control) exhibiting positive connectivity between ICNs within the 

network. The ICNs which comprise the DMN exhibited negative correlation with most other 

functional networks.  

 

 

Figure 3: Average static functional connectivity (sFC) matrix for the whole cohort. 

Independent component number and label is shown in the right, corresponding to the 

intrinsic connectivity networks (ICNs) shown in Supplementary Table 1. ICNs are arranged 

into seven functional networks shown on the left. Pairwise functional connectivity (FC) is 

indicated by the colour bar. The number of each component corresponds to the 

independent component number in Supplementary Table 1 and Supplementary Figure 1. 

 

We investigated group differences in sFC between ICNs after regressing age and sex. 

After FDR correction there were no case-control differences in sFC. The uncorrected t-

statistic map is presented in Figure 4. Before multiple comparisons correction, there were 

group differences in FC within the attention/cognitive control network, and between this 

and other functional networks (Figure 4). 

er 
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Figure 4: Case-control differences in static functional connectivity (sFC). Colourmaps from 

left to right show average sFC in cases, average sFC in controls, the difference between 

these, and the t-statistic from a two-tailed t-test of residual functional connectivity (FC) 

after regressing age and sex. A t-statistic of |t| > 2.02 corresponds to uncorrected p < 0.05. 

None of these differences were significant after FDR-correction. 

 

Dynamic Functional Connectivity 

We used sliding-window correlations and deep clustering to identify k = 4 repetitively 

occurring FC states, shown in Figure 5 along with the distribution of residual dwell time 

and fractional occupancy of each state in cases and controls after regressing age and sex. 

State 1, which makes up the largest proportion of FC windows, is characterised by very 

weak connectivity among most ICNs. Previous studies have found similar connectivity 

patterns in the most frequently observed state, and have suggested this may be the 

average of multiple additional states which are not sufficiently distinct or prevalent to be 

distinguished (Allen et al., 2014; Marusak et al., 2017). State 2 is characterised by positive 

connectivity within the sensorimotor network, within the DMN, and between the 

sensorimotor and attention/cognitive control networks, but negative connectivity between 

the DMN and other functional networks. State 3 exhibits strong positive connectivity 

between ICNs in the visual network, and between ICNs in the DMN, but strong negative 

connections between many ICNs across all networks. State 4 represents a highly 

integrated state, characterised by positive connectivity between ICNs across all networks. 

After FDR-correction there were no differences in the state FC matrices. There were no 

case-control differences in dwell time or fractional occupancy in any of the states.  

 

5. 
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Figure 5: Dynamic functional connectivity (dFC) state maps and temporal properties. A) 

dFC state maps, ordered by prevalence, are shown for the whole cohort (top row), and for 

controls (middle) and cases (bottom). The distribution of residual dwell time (B) and 

fractional occupancy (C), after regressing age and sex, are shown as box plots with boxes 

indicating the interquartile range with a line for the median and whiskers extending to the 

range of the data, not including outliers which are shown as diamonds.  

 

Discussion 

In this study we investigated resting-state networks measured from fMRI in children 

treated with therapeutic hypothermia for HIE, who did not develop cerebral palsy, and 

controls matched for age, sex and socioeconomic status. There were no case-control 

differences in ICN spatial maps, sFC between ICNs, and dFC states and temporal 

characteristics. From 100 independent components derived by spatial group ICA, we 

identified 31 ICNs based on characteristics of the time courses, spatial maps and power 

spectra. These ICNs correspond to known resting-state networks previously reported in 

both children and adults (Allen et al., 2014; de Bie et al., 2012; Marusak et al., 2017; 

Muetzel et al., 2016; Rashid et al., 2018; Shirer et al., 2012; Thomason et al., 2011). We 

found no case-control differences in the spatial maps of these ICNs. We investigated sFC 

by measuring pairwise correlations between ICN time courses over the duration of the 

scan for each subject. Before multiple comparisons correction there were case-control 

 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 4, 2023. ; https://doi.org/10.1101/2022.12.17.22283576doi: medRxiv preprint 

https://doi.org/10.1101/2022.12.17.22283576
http://creativecommons.org/licenses/by/4.0/


differences in attention and cognitive networks, however these were not significant after 

FDR correction. Using dFC analysis to investigate dynamic fluctuations in resting-state 

activity revealed k = 4 repetitively occurring brain states. There were no differences 

between cases and controls in dwell time, fractional occupancy, or state FC matrices.  

There have been few studies of resting-state FC in children with HIE (Smyser et al., 2019); 

resting-state networks in children with HIE have previously only been examined in the 

neonatal period. Jiang et al. investigated resting-state FC in motor networks in neonates 

cooled for HIE (5 mild, 8 moderate and 3 severe, as determined using Sarnat criteria), in 

comparison with healthy controls at 1-2 weeks of age (Jiang et al., 2022). They reported 

reduced FC between primary motor regions in neonates with HIE, and case-control 

differences in FC spatial maps. Tusor et al. reported reduced FC in auditory, somatomotor, 

visual and default-mode networks in infants cooled for HIE compared to healthy controls 

(Tusor, 2014). In a retrospective study of neonates with acute brain injury, 27 of whom 

were cooled for HIE (14 mild, 7 moderate, 6 severe as determined by Sarnat criteria), 

more severe outcomes were associated with atypical resting-state activity in the basal 

ganglia, frontoparietal and default-mode networks (Boerwinkle et al., 2022). Additionally, Li 

et al. found that functional brain networks in neonates with severe HIE had lower local 

efficiency and clustering coefficient compared to those with moderate HIE at around 2 

weeks of age, indicating reduced capacity for segregated functional processing (Li et al., 

2019). However, the authors did not report whether participants received therapeutic 

hypothermia and it is not standard care nationwide in China, where the study was carried 

out (Wang et al., 2021). Our cohort did not include those with cerebral palsy, thus is not 

directly comparable to the previous studies on infants too young to rule out a diagnosis of 

cerebral palsy. Our cohort was almost entirely made up of those with moderate HIE (only 

one case had severe HIE); it is possible that a cohort made up of cases with severe HIE 

might have more distinguishable differences in FC. However, in the same cohort with a 

similar proportion of severe vs moderate HIE, we previously reported widespread 

alterations to structural connectivity and white matter diffusion properties (Spencer et al., 

2021b). 

The limited case-control differences in ICN spatial maps, sFC, and dFC characteristics 

between the case groups and matched healthy controls is despite previous findings in the 

same cohort showing widespread alterations to brain structure and white matter 

connectivity, which are associated with cognitive and motor impairments in cases (Byrne 

et al., 2023; Robb et al., 2022; Spencer et al., 2023, 2022, 2021b, 2021a). This may be 
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due to the small sample size; our previous work has identified heterogeneity in the severity 

of impairments to brain structure and cognition in this cohort (Lee-Kelland et al., 2020; 

Spencer et al., 2022, 2021b), therefore any alterations to resting-state brain activity are 

also likely to be heterogeneous. The subtle differences shared across the cohort would 

require a large sample size to distinguish from healthy resting-state activity. Before 

multiple comparisons correction, there were group differences in FC between the 

attention/cognitive control network and the sensorimotor and visual networks 

(Supplementary Figure 2). This may reflect neural correlates of the attention and 

visuospatial processing difficulties observed in behavioural studies in this cohort (Tonks et 

al., 2019), and the altered structural connectivity to regions association with attention and 

visuospatial processing previously reported (Spencer et al., 2021b). However, further 

study with a larger sample size is required to robustly identify these differences. 

Differences in brain activity in this cohort may also be detected by a task-based fMRI 

paradigm which demands the specific aspects of cognition known to differ between cooled 

children and controls (Zhao et al., 2023). 

Given the difficulty in recruiting and studying patients who were cooled for HIE up to eight 

years ago, such exploratory studies of whole-brain functional connectivity are always likely 

to be underpowered to detect results corrected for family wise error. As such we took a 

pragmatic approach of presenting the data with and without correction, pointing out 

overlap with previous findings (which were corrected for multiple comparisons), and 

suggest that by correcting for the sheer number of ICNs observed makes it difficult to meet 

the most stringent statistical tests. 

It is possible that the minimal group differences reflect a level of recovery of healthy 

resting-state brain function, despite the structural differences in this cohort. This may 

suggest that healthy cognitive function could also be recovered in this developmental 

period. For example, if the appropriate support or intervention was provided in this 

developmental period between infancy and early school-age, it may be possible to 

minimise cognitive impairments (Astle et al., 2015; Blasco et al., 2023; Galetto and Sacco, 

2017; Prosperini et al., 2015).  

Strengths & Limitations 

To our knowledge, this is the first study to investigate resting-state FC in children with HIE 

beyond the neonatal period, and the first to investigate dFC in any children with HIE. The 

main difficulty when scanning children of this age group is movement during the scan, 

which can affect FC measurements (Lurie et al., 2020; Power et al., 2015; Van Dijk et al., 
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2012). We took steps to alleviate the effect of movement, using thorough preprocessing 

and data cleaning procedures to identify and regress noisy signals and motion 

parameters, in addition to rejecting participants based on quantitative evaluation of 

movement during the scan. As a result, there was no group difference in framewise 

displacement. However, rejection of those with excessive movement resulted in a small 

sample size, which is the main limitation of this study.  
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