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Abstract

The outbreak of the severe acute respiratory syndrome coronavirus 2 started in Wuhan,
China, towards the end of 2019 and spread worldwide. The rapid spread of the disease can be
attributed to many factors including its high infectiousness and the high rate of human mobility
around the world. Although travel/movement restrictions and other non-pharmaceutical inter-
ventions aimed at controlling the disease spread were put in place during the early stages of the
pandemic, these interventions did not stop COVID-19 spread. To better understand the impact
of human mobility on the spread of COVID-19 between regions, we propose a hybrid gravity-
metapopulation model of COVID-19. Our model explicitly incorporates time-dependent human
mobility into the disease transmission rate, and has the potential to incorporate other factors
that affect disease transmission such as facemasks, physical distancing, contact rates, etc. An
important feature of this modeling framework is its ability to independently assess the contribu-
tion of each factor to disease transmission. Using a Bayesian hierarchical modeling framework,
we calibrate our model to the weekly reported cases of COVID-19 in thirteen local health areas
in metro Vancouver, British Columbia (BC), Canada, from July 2020 to January 2021. We
consider two main scenarios in our model calibration: using a fixed distance matrix and time-
dependent weekly mobility matrices. We found that the distance matrix provides a better fit to
the data, whilst the mobility matrices have the ability to explain the variance in transmission
between regions. This result shows that the mobility data provides more information in terms
of disease transmission than the distances between the regions.

Keywords: SARS-CoV-2, COVID-19, gravity model, epidemics, metapopulation, hierarchical modeling,
Bayesian inference, human mobility.

1 Introduction

The pandemic of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which started in
the city of Wuhan, Hubei province, China [64] has since spread all over the world with over 585 million
reported cases and 6.4 million reported deaths, as of August 2022 [63]. In human populations, the virus
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can be transmitted through the inhalation of infectious droplets in aerosols, exposure to infectious respi-
ratory fluids, coughing, sneezing, and having physical contact with an infected individual. It can also be
transmitted indirectly when a susceptible individual comes in contact with a contaminated surface, such
as door handles or other commonly shared surfaces or objects [37, 47, 21, 65]. SARS-CoV-2 is the casual
agent for the coronavirus disease 2019 (COVID-19), and is estimated to be more infectious compared to
other coronaviruses such as the severe acute respiratory syndrome (SARS) and the Middle East respiratory
syndrome coronavirus (MERS) [44, 1]. The COVID-19 disease was declared a public health emergency by
the World Health Organization (WHO) on January 20, 2020 [66] and a pandemic on March 11, 2020 [67].

Due to the fast spread of COVID-19, during the early stages of the pandemic, governments around the
implemented non-pharmaceutical interventions (NPIs) such as movement/travel restrictions, wearing of
facemasks, closure of schools and business, physical distancing, etc. [48, 40, 20, 19, 7], to limit the spread
of the disease. Although, the implementation of these NPIs helped in slowing down the spread of COVID-
19, the disease still continues to spread under these restrictions. In addition, these NPIs have significant
social and economic effects around the world [9, 14, 32], and could not be put in place for too long. The
development of safe and effective COVID-19 vaccines brought some relief and were introduced to replace
stringent NPIs [41, 51]. The first set of COVID-19 vaccines became available towards the end of 2020 [18].
These vaccines provide significant protection against the earlier strains of SARS-CoV-2 virus [58, 49, 50].
However, the emergence of highly infectious mutant strains such as Omicron variant led to the continuous
spread of the disease.

The first case of COVID-19 was reported in Wuhan, China, in December 2019 [29]. On the 12th of January
2020, the first case of the disease outside of China was confirmed in Thailand [31]. By January 30, 2020,
COVID-19 has spread to 18 countries outside of China with a total of 7,818 confirmed cases worldwide
[31]. The first confirmed case of COVID-19 in Africa was reported on February 14, 2020 [30, 26], in North
America, January 21, 2020 [2], and in Europe, January 24, 2020 [53]. COVID-19 has spread more rapidly
and widely around the world than previous outbreaks of coronaviruses. This spread can be attributed to
globalization, settlement and population characteristics, and high human mobility [52]. Several studies have
looked at the effect of human mobility on the spread of COVID-19 [38, 27, 22]. In Kraemer, Moritz UG, et
al [38], real-time human mobility data was used to investigate the role of case importation in the spread of
COVID-19 across cities in China. The impact of human mobility network on the onset of COVID-19 in 203
countries was studied in [27]. They used exponential random graph models to analyze country-to-country
spread of the disease. Their study suggested that migration and tourism inflow contributed to COVID-
19 case importation, and that a mixture of human mobility and geographical factors contribute to the
global transmission of COVID-19 from one country to another. Human mobility data collected via mobile
devices such as cell phones, smartwatches, e-readers, tablets etc., has also been used to study the spread of
COVID-19 [15, 36, 46, 68]. In [15], county-level cell phone mobility data collected over a period of 1 year
in the US was used to study the spatio-temporal variation in the relationship between COVID-19 infection
and mobility. They found that in the spring 2020, sharp drop in mobility often coincide with decrease in
COVID-19 cases in many of the populous counties.

Mathematical models have been used to study the relationship between the spatio-temporal spread of
COVID-19 and human mobility [68, 70, 3, 8, 72, 5, 12, 25, 62]. A city-based epidemic and mobility model
together with multi-agent network technology and big data on population migration were used to simulate
the spatio-temporal spread of COVID-19 in China [62]. In [10], a stochastic, data-driven metapopulation
model was used to study the initial wave of COVID-19 in Belgium, and also to study different re-opening
strategies. Their model incorporates the mixing and mobility of different age groups in Belgium. Another
stochastic metapopulation model was used to study the spread of COVID-19 in Brazil [12]. This model as-
sumes that epidemics start in highly populated central regions and propagate to the countrysides. For many
states, they found strong correlations between the delay in epidemic outbreaks in the countrysides and their
distance from central cities. In [13], an SEIR country-wide metapopulation model was used to study the
spread of COVID-19 in England and Wales. The model was used to predict the COVID-19 epidemic peak in
England and Wales, and also to study the effect of different non-pharmaceutical intervention strategies on
the predicted epidemic peaks. Similarly, in [45] a stochastic SIR model was applied to describe the spatio-
temporal spread of COVID-19 across 33 provincial regions in China and to also evaluate the effectiveness
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of various local and national intervention strategies. Their model incorporates an outflow mobility index
for all the regions and the proportion of travelers between regions. More discussions on human mobility
and COVID-19 transmission can be found in the systematic review article [71]. The relative contribution
of mobility data to the observed variance in the COVID-19 transmission rates between regions still remains
an unexplored problem.

Here, we develop a hybrid gravity-metapopulation modeling framework for studying the spread of COVID-
19 within and between different regions. Our modeling framework allows for explicit incorporation of
factors that affect disease transmission such as human mobility, facemasks, physical distancing, contact
rate, etc., into a time-dependent disease transmission rate. Spatial mobility data collected through mobile
device counts are used to infer influx into a region and also to quantify movement within the region. As
an illustration, we use Bayesian hierarchical modeling framework to calibrate our model to the weekly
reported cases of COVID-19 in the thirteen local health areas (LHAs) of Fraser health authority (Fraser
Health), British Columbia (BC), Canada, from July 2020 to January 2021. The study area comprises of
1.9 million population on the eastern sections of the Greater Vancouver area. We estimate region-specific
scaling parameters for computing baseline disease transmission rates for each region, and a parameter for
quantifying the contribution of mobility to disease transmission. In addition, we estimate a time-dependent
piece-wise constant scaling parameter to account for the cumulative effect of the remaining factor that affect
disease dynamics, which are not explicitly included in our model. We consider two main model structures
in our example, which are determined by the mobility matrices used: one with a distance matrix (computed
using the distances between the regions, based on the population weighted centroid) and another with time-
dependent mobility matrices computed from mobile device data. The results from these two scenarios are
used to test the hypothesis of whether the time-dependent mobility matrices, computed from mobile device
counts, provide more information about human mobility, with respect to disease transmission between the
regions than the distances between the region.

2 Methods

2.1 Mathematical Model

We develop a hybrid gravity-metapopulation model to study the dynamics of COVID-19, within and between
regions. The model stratifies the population of each region into six compartments: susceptible (S), exposed
(E), pre-symptomatic infectious (P), symptomatic infectious (I1 and I2), and recovered (R). Individuals
in the pre-symptomatic infectious compartment are infectious (can transmit the disease) but do not show
symptoms yet. Similar to [35, 11], we divided the infectious compartment into two classes so that the recovery
time follows a Gamma distribution rather than an exponential distribution. This way, a symptomatic
infectious individual spends the first half of their infectious period in I1 and the other half in I2. Our model
assume that there are no reinfections.

A schematic diagram of the model illustrated for four (4) regions is shown in Figure 1, where the gray circles
on the left represent the regions, while the black arrows show the interactions and movements of individuals
between the regions. On the right, we have an illustration of the population dynamics in each of the regions,
where the subscript j represents the jth region. The black arrows here show the transition of individuals
through the different stages of COVID-19 at the rates indicated beside the arrows. The red dashed arrows
indicate disease transmission. Observe that there is a red dashed arrow extending from each of the remaining
three regions into region j, these arrows account for the contributions of infectious individuals in the three
regions to disease transmission in the jth region. The ordinary differential equations (ODEs) for the model
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Figure 1: Schematic of the model. An illustration of our hybrid gravity-metapopulation model
for four regions. Interactions and movements between the regions (left) and stratification of the
population of each region based on disease stages (right). Model compartments are defined as follows:
Susceptible (Sj); exposed (Ej); pre-symptomatic infectious (Pj); symptomatic infectious (I1j and I2j);
and recovered (Rj) for region j. Our model assumes that there are no reinfections. The black arrows
show the movement of individuals from one region to another (left) and the transition of individuals
through the different stages of COVID-19 at the rates indicated beside the arrows (right). The red
dashed arrows indicate disease transmission (see (2.1) for more details).

are given by (see Figure 1 for model schematic diagram and definition of state variables):

dSj
dt

= −βj Ψj Sj ,

dEj

dt
= βj Ψj Sj − h1Ej ,

dPi

dt
= h1Ej − h2 Pj ,

dI1
dt

= h2 Pj − 2γ I1j ,

dI2j
dt

= 2 γ I1j − 2 γ I2j ,

dRj

dt
= 2 γ I2j ,

(2.1)

where βj ≡ βj(t) is the time-dependent disease transmission rate for region j defined by

βj(t) = exp
(
c0j + c1mj(t) + g(t)

)
. (2.2)

Here, c0j is the scaling parameter for the baseline disease transmission rate for region j, c1 is the scaling
parameter used to remove biases from the time-series mobility data, and g(t) is a time-dependent piece-wise
parameter used to account for other factors that affect disease transmission other than human mobility
(e.g. facemask, social distancing, contact rates, etc.), which are not explicitly incorporated into the model.
Movement within the jth region is captured by a time-series mobility data represented by mj(t). This data
is used as a proxy for the time-dependent contact rate in the region. We observe from (2.2) that ec0j is the
baseline disease transmission rate for region j, while ec1mj(t) incorporates the effect of human mobility into
the transmission rate. Lastly, eg(t) is the effect of other factors that affect disease transmission, which are not
explicitly incorporated into the model, on the disease spread. Although, the formulation in (2.2) explicitly
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incorporates only human mobility into the disease transmission rate, this formulation can be extended to
include other factors that affect disease transmission such as facemaks, physical distancing, etc. See more
details in the discussion section.

The parameter Ψj ≡ Ψj(t) in (2.1) is used to incorporate infectious interactions within the jth region, and
their contribution to disease transmission in the region. In terms of a homogeneous single population model,
this parameter would represent the probability of making an infectious contact in the population. Here, Ψj

is defined as

Ψj(t) =
1

N̂j

[
(1− θ)(Pj + I1j + I2j) + θ

M∑
i=1

πji (Pi + I1i + I2i)

]
, (2.3)

where N̂j is the adjusted total population in region j, which incorporates the increase in the population of
the region due to the influx from other regions, and it is given by

N̂j = (1− θ)Nj + θ

M∑
i=1

πjiNi, (2.4)

where M is the total number of regions under consideration and Nj is the baseline population size of the
jth region. The parameter θ measures the effective contribution of human mobility to disease transmission
in all the regions. In (2.3) and (2.4), πji is the probability that an individual who migrated into region
j, originated from region i, given that he/she is from one of the other regions under consideration. We
compute this probability using two different approaches. The first approach uses the distances between the
regions. In this case, πji is given by

πji =
f(dij)∑M
i=1 f(dij)

, with f(dij) =
1

(1 + dij)k
, (2.5)

Where dij ≡ dji is the distance from region i to region j, k ∈ R+ and M is the total number of regions
considered. The second approach used to compute the probability πji involves using mobile device data (see
§2.2 for details).

The model parameters, their descriptions, and values are provided in Table 1. The estimated parameters
are presented in the result section (§3). As an illustration of concept, we consider the thirteen (13) local

Figure 2: Map of the local health areas in Fraser Health, British Columbia (BC),
Canada. The population size of each region is given in Table S3 of Supplementary material A.5.

health areas (LHA) of Fraser health authority, British Columbia (BC), Canada. These regions include the
communities of Abbotsford, Agassiz/Harrison, Burnaby, Chilliwack, Delta, Hope, Langley, Mission, Maple
Ridge/Pitt Meadows, New Westminster, South Surrey/White Rock, Surrey and Tri-Cities. Fraser health
authority (Fraser Health) is the largest of the five regional health areas in BC, with 12 acute care hospitals
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Table 1: Model parameters, their description, and value. The estimated parameters are
presented in the result section (§3). The population sizes for the regions are shown in Figure 2 and
Table S3 of Supplementary material A.5.

Parameter Description Value References
βj(t) Time-dependent disease transmission rate for re-

gion j
–– Computed

using (2.2)
c0j exp (c0j) is the baseline disease transmission rate

for region j
–– Estimated

c1 Scaling parameter for the time-series mobility data –– Estimated
g(t) Time-dependent piece-wise scaling parameters

used to account for the effect of other factors that
affect disease transmission

–– Estimated

h1 Rate of transitioning from exposed to pre-
symptomatic infectious

1/5 (days−1) [39, 4, 73]

h2 Rate of transitioning from pre-symptomatic infec-
tious to symptomatic infectious

1 (days−1) [42, 59, 23, 4]

γ Infection recovery rate 1/5 (days−1) [59, 23, 4]
θ Measures the effect of mobility on disease trans-

mission
–– Estimated

dij Distance from region i to region j See Figure 3 Computed
using [55]

πji Probability that an individual moving in region j
is from region i

See Figure 3
& 4

Computed
using (2.5)

Nj Baseline population size for region j See Table S3 [6]

N̂j Adjusted population size for region j –– Computed
using (2.4)

and providing health care to over 1.9 million people [28]. It has a width of 150 km. Figure 2 shows a map
of British Columbia (left) and Fraser Health (right) with the 13 health regions shaded in different colors.
The population sizes of the regions are detailed in Table S3 of Supplementary material A.5. We use a
Bayesian hierarchical modeling framework to calibrate our model to the weekly reported cases of COVID-19
in these 13 LHAs, from July 2020 to January 2021. From the model calibration, we estimate the parameters
c0j , c1 and g(t), which are used to construct and study the time-dependent disease transmission rate for
each region, and to study the dynamics of the time-dependent piece-wise parameter g(t). We also estimated
the parameter θ, used to quantify the effect of mobility, both within and between the regions, on disease
transmission in the regions

2.2 Data

Human population move between regions for many reasons including work, leisure, family visits, health
reasons, e.t.c. The main goal of this work is to develop a mathematical modeling framework for studying
and understanding the effect of mobility on the spread of COVID-19 within and between regions. We
consider the period from July 1, 2020 to January 27, 2021, inclusive. Although, movement restriction was
imposed in Fraser Health during some part of this period, we used the mobility data collected through
mobile device counts as a proxy for quantifying movements between the regions and the contact rate within
each region.

We quantify mobility between the regions using two approaches. The first approach uses the physical
distances between the regions, based on population weighted centroid (left panel of Figure 3) and the
formula in (2.5) to calculate the probability that an individual moving in region j, who came from one of
the 13 regions, originated from region i (πji). The premise of using physical distance between regions is
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based on the concept of geographic distance decay, where spatial and social interactions decrease as the
distance between regions increases [55]. The computed probabilities are presented in the right panel of
Figure 3. The diagonal entries of this matrix represents the probability that an individual moving in a

Figure 3: Distance matrices. Physical distances (in km) between the local health areas (LHAs)
based on population-weighted centroid (left) [55] and the probability matrix (π) computed using (2.5)
(right). πji is the probability that an individual who came from one of the 13 regions to region j,
originated from region i.

region is a resident of that region. It is important to note that the probability matrix is not symmetric, even
though the distance matrix (left panel of Figure 3) is symmetric. In addition, each row of the probability
matrix sums to 1. The second approach used to construct the probability matrix (π) is based on mobile
device counts and uses Telus mobility (TELUS) data.

TELUS is a Canadian national telecommunications company that has network coverage in 99% of the
populated areas of Canada. TELUS Insights provides anonymized geo-intelligence data, which reflects
population location and mass movement patterns based on information about locations and population
movement of TELUS mobile device users [57]. These data have helped answer a range of questions around
location and public mobility patterns within Canada, including in infrastructure planning, health services,
roads, and transit routes. As TELUS subscribers use their mobile devices, they connect to various cellular
towers for telecommunication services. Mobility data is determined from users who have actively turned
on their ‘Location History’ setting in correspondence with their mobile phones global positioning system
(GPS). This network data provides insights into movement patterns and trends across Canada. To provide
a layer of privacy, all the mobility data provided by TELUS are de-identified, aggregated into large data
pools, rounded-up to the nearest 10 counts and all results are extrapolated to represent the entire population
of a given region. This ensures that the data cannot be traced back to individual TELUS subscribers. The
results of the TELUS application programming interface (API) implementation, which provide the numbers
of mobile devices moving within and between geographical locations of interest and the neighbourhood that
a mobile device resides in, depend on cellular tower locations at the time of the analysis.

We generate the mobility data for each region using a one-day bucket size and 120-minute minimum dwell
time. We filtered for “non-residents”, “moving residents” and “residents”, which represent, respectively,
the daily number of mobile devices residing in an LHA and spending at least two hours in another LHA
(movement between regions), the daily number of mobile devices residing in an LHA and spends over two
hours outside their census track within the LHA (movement within a region), and the total number of mobile
devices residing in an LHA. To construct the weekly mobility matrices, we consider the “non-residents” and
“moving residents” data. For each region and for a specified time interval (weekly), we compute the number
of mobile devices from the other 12 regions that visited the region and stayed there for at least 2 hours
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Figure 4: Mobility matrices. Probability matrix (π) computed from the Telus mobility data for week
1 (left) and week 30 (right), corresponding to July 1-7, 2020 and January 21-27, 2021, respectively.
πji is the probability that an individual who came from one of the 13 LHAs to region j, originated
from region i. Mobility matrices for the remaining weeks are presented in Figures (S2 - S6) of
Supplementary material A.2.

during the visit. This gives us the mobile device count for movement into the region (off-diagonal entries).
For movement within the regions (diagonal entries), we used the “moving residents” data, from which
we computed the number of mobile devices registered to a region and moving within the region. These
information are used to construct a mobility matrix of device counts within the specified time interval for
each region. We normalize each row of the matrix with the total number of devices in the row. This way,
the ith element of the jth row represents the fraction of mobile devices that came into the jth region (from
the 13 regions) that originated from the ith region. These fractions can also be interpreted as the probability
that an individual moving within the jth region (whom originated from one of the 13 regions) is from the
ith region (πji). Using this approach we compute the probability/mobility matrices for each week from July
1, 2020 to January 27, 2021. The computed matrices for week 1 (July 1-7, 2020) and 30 (January 21-27,
2021) are shown in Figure 4, while the matrices for the remaining weeks are presented in Figures (S2 - S6)
of Supplementary material A.2. The distance matrix (right panel of Figure 3) and the constructed mobility
matrices are used to describe the interaction between individuals from different regions. We considered
two main scenarios in our Bayesian inference based on the distance and mobility matrices and investigated
whether the mobility data is more informative, in terms of disease transmission than the distances between
the regions.

We also used the Telus mobility data to compute the weekly mobility rate for each region. To compute these
rates, we sum the daily device count in each region for “non-residents” and “moving resident”, and divide
it by the sum of the “residents” and “non-residents” device count for our entire study period. This gives us
the proportion of mobile devices moving in each region with respect to the total number of devices in the
region during our entire study period. For each week in our study period, we sum the computed proportion
of mobile devices and divide by 7 to get the weekly average proportion of mobile devices moving in each
of the regions, as shown in Figure 5. These mobility rates are used as proxy for the contact rates in the
regions and are represented by mj(t) is the disease transmission rate (βj(t)) defined in (2.2). We observe
from Figure 5 that there is a sharp decline in mobility rate around the first week of September 2020 in most
of the regions. Similarly, there is another decline in mobility rate around the first week on November. This
decline is associated with the implementation of public health measures in BC.

We calibrate our model to the weekly reported cases of COVID-19 in the thirteen local health areas of Fraser
Health, BC, obtained from the British Columbia Centre for Disease Control (BCCDC). We extracted these
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Figure 5: Weekly mobility rates. Weekly time-series mobility rates for each region from July 2020
- January 2021, computed from the Telus mobility data.

data from a line list generated by BCCDC Public Health Reporting Data Warehouse (PHRDW), based on
symptom onset date or reported date where symptoms onset date is not available. The collected case data
spans the period from July 2020 to January 2021, inclusive, and was incorporated into the model likelihood
based on the computed disease incidence as shown in (2.6). The collected weekly reported cases of COVID-
19 for the 13 regions are shown in Figure S1 of Supplementary material A.1. Similar to [35], our model
incidence is computed as the number of individuals in the pre-symptomatic population (P ), transitioning
to the infectious compartment (I1).
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2.3 Bayesian inference

Our hybrid gravity-metapopulation model (2.1) is fitted to the COVID-19 cases in all the thirteen regions
simultaneous using a Bayesian hierarchical modeling framework and the RStan package in R version 3.6.3
[54]. For the jth region, we construct the likelihood as

casesj(t) ∼ NegBin(incidencej(t)), ψ), (2.6)

where NegBin(·) is the negative binomial distribution, casesj(t) and incidencej(t) are the weekly reported
cases of COVID-19 and the incidence computed from the model (2.1), respectively, for region j. The
Bayesian inference framework gives us the flexibility to incorporate our prior knowledge into the model
parameters and the ability to evaluate probabilistic statements of the data based on the model. In addition,
the hierarchical modelling framework allows us to construct the posterior distribution for the population
mean and variance of the model parameters and those of the individual parameters for each region, which are
conditioned on the population mean and variance. Uninformative priors were implemented in the Bayesian
inference framework.

We incorporate the time-series mobility data (Figure 5) into our modeling framework using an exponential
scaling approach for the disease transmission rate. The disease transmission rate is given by (2.2), where
c0j ∼ N+(0, 1) is the scaling parameter for the baseline transmission rate for the jth region (ec0j is the
baseline transmission rate) and c1 ∼ N+(0, 1) is the scaling parameter used to remove biases from the
time-series mobility data (mj(t)). Here, ec1 mj(t) models the time-varying effect of mj(t) on the disease
transmission rate (βj) for region j. The time-dependent piece-wise constant parameter g(t) is used to
account for other factors that affect disease transmission, which are not explicitly accounted in the model.
This parameter vector is estimated every four weeks (except for the last interval which has 2 weeks). We
also estimated the total prevalence of COVID-19 in all the 13 regions at the beginning of our study period.
Similar to [4, 35], when building our Bayesian inference modeling framework, we simulated the incidence for
the metapopulation model (2.1) using known parameters values and then tested the ability of our framework
to recover the values. We inspect the resulting posterior distribution for biases and their coverage of the
true parameters.

Throughout this paper, we used the Variational Bayes (VB) method with the meanfield algorithm imple-
mented in RStan [56, 69] for our inferences, from which we estimate the total initial prevalence in all the
13 region and a parameter (θ) used to quantify the effect of mobility on disease transmission in the regions
(see the formulation in (2.4)). In addition, we used Bayesian hierarchical modeling framework to construct
the posterior distribution for the mean and variance hyper-parameters for c0j , which are then used as prior
distributions for the estimates of these parameters for each region, c0j for j = 1, . . . , 13. Similarly, we
construct the posterior distributions for the population mean and variance for the parameter g(t), which
are then used as prior mean and variance, respectively for the estimated values of g(t) for each interval.
We estimated a fixed value of the parameter g(t) for every four weeks, starting from the beginning of our
study period, and for the last two weeks. Thereby making it a time-dependent and piece-wise parameter.
To ensure that the estimated parameters are identifiable and that the estimated values of g(t) from the
second interval onward are relative to that of the first interval, for each region, we rescaled the time-series
mobility data by using the first week’s mobility rate as a reference for the remaining rates. This was done by
subtracting the mobility rate for the first week from the weekly rates for the entire study period. This way
the rescaled mobility rate for the first week is 0, while those for the remaining weeks are centered around
0. Similarly, g(t) for the first four weeks (first sub-interval) was set to 0. The remaining parameters of the
model are fixed and are as presented in Table 1.

We considered two main scenarios in our model calibration: one with a fixed distance matrix (computed from
the distances between the regions, see Figure 3) and another with weekly mobility matrices (computed from
Telus mobility data, see Figure 4 and Supplementary material A.2). These two matrices are used to quantify
mobility between the 13 regions. Performing inference based on these two scenarios enabled us to understand
the effect of mobility on the posterior predictive distributions of the model and to determine which of the
two mobility quantifiers best recreates the observed case data. It would also help us to identify, which of the
two approaches provides more information on human mobility in terms of disease transmission. The two
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scenarios were ranked by comparing their leave-one-out predictions and standard errors, computed using
the leave-one-out cross-validation (LOO) method [43, 17, 60], and using the widely applicable information
criterion (WAIC) method [61, 16]. We compared the Variational Bayes method to the adaptive Hamiltonian
Monte Carlo method No-U-Turn sampling. The results from both methods are found to produce comparable
estimates of the posterior distribution with significant reduction in total computation time [33]. For the case
of a fixed distance matrix, the mean and/or median ELBO usually converges in 5, 000 − 6, 000 iterations
of the stochastic gradient ascent algorithm, while it converge in 11, 000 − 12, 000 iteration for the weekly
mobility matrices case (see [34, 69, 24] for more information about ELBO in the variational Bayes method).

3 Results

Figure 6: Observed and estimated COVID-19 cases. Weekly reported cases of COVID-19 and
model prediction (columns 1 and 3). Disease transmission rate, βj(t) and the contribution of mobility
to disease transmission, ec1mj(t) (green curves in columns 2 and 4). Model types: fixed distance matrix
(blue) and weekly mobility matrices (gold). Black dots are the weekly reported cases of COVID-19, the
solid lines are the mean estimates of cases/parameters, the darker bands are the 50% CrI, while the
lighter bands are the 90% CrI. Similar results for the remaining regions are presented in Figures S7
and S8 of Supplementary material A.3.

We considered two main scenarios when fitting our model to the weekly reported cases of COVID-19 (see
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Methods). Results for the two scenarios, for selected regions (Agassiz/Harrison, New Westminster, Maple
Ridge/Pitt Meadows and Surrey), are presented in Figure 6. We selected these regions based on their
population sizes and geographical locations, to show the diversity in reported cases and population sizes in
the regions considered, and the model’s ability in predicting cases irrespective of these factors. The results
for the remaining regions are presented in Figures S7 and S8 of Supplementary material A.3.

For each model scenario, we present the posterior predictions of the weekly cases of COVID-19 in each
region (columns 1 & 3 of Figure 6). We compute the time-dependent disease transmission rate, βj(t), using
the estimated parameters and the formula in (2.2). These rates are presented in blue for the fixed distance
matrix scenario (column 2 Figure 6) and in gold for the weekly mobility matrices scenario (column 4 of
Figure 6), together with the contribution of mobility to the transmission rate, ec1mj(t) (green) with 50%
credible interval (CrI) (darker bands) and 90% CrI (lighter bands). We observe from these results that our

Figure 7: Baseline disease transmission rate. The distributions for the baseline disease trans-
mission rate, ec0j , for each region computed using the estimated parameters c0j for j = 1, . . . , 13 (see
Tables S1 and S2 of Supplementary material A.4 for the estimates of c0j). Scenarios: fixed distance
matrix (blue) and weekly mobility matrices (gold).

model is able to capture the trends and reported cases of COVID-19 in each of the regions with a high
degree of accuracy for both model scenarios. In addition, we see that there are significant changes in the
computed disease transmission rate over time, which has a similar trend for all the regions. Even though
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there are no much changes in the time-series mobility data, its effect on the disease transmission rates is
still noticeable in the plot for each region.

The mean estimate for the initial total prevalence in the 13 regions is 47.61 (90% CrI: 44.82 - 50.31) for the
distance matrix scenario and 50.19 (90% CrI: 47.37 - 53.04) for the weekly mobility matrix scenario. The
mean estimate of the parameter used to quantify the effect of mobility on disease transmission in the regions
(θ) for the distance matrix scenario is given by 0.53 (90% CrI: 0.44-0.60) and 0.90 (90% CrI: 0.72-0.98) for
the scenario with weekly mobility matrices. This implies that movement between the regions contribute to
a mean fraction of 0.53 and 0.90 of the total reported cases of COVID-19 in the regions for the distance
and mobility matrix scenarios, respectively. The scaling parameter used to remove biases in the time-series
mobility data (c1) was estimated as 1.51 (90% CrI: 0.90 - 2.10) for the distance matrix and 2.11 (90% CrI:
1.52 - 2.69) for the mobility matrix scenario.

Figure 8: Contribution of other factors to disease transmission. The distributions for the
contribution of other factors that affect disease transmission (eg(t)) to the transmission rate (β(t)),
computed every four weeks and for the last two weeks. g1 = 0 (weeks 1-4), g2 (weeks 5-8), g3 (weeks
9-12), g4 (weeks 13-16), g5 (weeks 17-20), g6 (weeks 21-24), g7 (weeks 25-28), g8 (weeks 29 & 30).
Scenarios: fixed distance matrix (blue) and weekly mobility matrices (gold). The estimated means
with 90% credible interval for are presented in Tables S1 and S2 of Supplementary material A.4.

We estimated the scaling parameters for the baseline disease transmission rate, c0j for j = 1, . . . , 13, using
Bayesian hierarchical modeling framework. These parameters are used to compute the baseline disease
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transmission rate for each region defined by ec0j for j = 1, . . . , 13. The mean estimate for the hyper-mean
and -variance are 0.45 (90% CrI: 0.35 - 0.54) and 0.18 (90% CrI: 0.12 - 0.26), respectively, for the distance
matrix and 0.21 (90% CrI: 0.05 - 0.36) and 0.35 (90% CrI: 0.24 - 0.47), respectively, for the mobility matrix
scenario. The mean estimate for c0j , for j = 1, . . . , 13 with 90% credible interval (CrI) are presented
in Tables S1 (distance matrix) and S2 (mobility matrix) of Supplementary material A.4. The estimated
distribution for the baseline disease transmission rates for the regions are presented in Figure 7. We observe
from the results in this figure that the predicted distributions for the larger and more urbanized cities
with dense population are similar for the distance and mobility matrix scenarios. These cities include
Abbotsford, Burnaby, New Westminster, Surrey, and Tri-Cities. On the other hand, the predictions for the
less densely populated smaller cities are relatively different for the two scenarios. In addition, the variance
of the distributions for the smaller cities is larger than that of bigger cities with larger populations.

The time-dependent piece-wise parameter, g(t), was also estimated using a Bayesian hierarchical modeling
framework with population mean and variance estimate with 90% credible interval given by -0.33 (-0.52,
-0.14) and 0.30 (0.16, 0.47), respectively, for the distance matrix scenario, and -0.28 (-0.45, -0.10) and 0.32
(0.19, 0.50), respectively, for the weekly mobility matrix scenario. The mean estimates with 90% credible
interval for the interval-specific parameters (g2 − g8) are given in Tables S1 (distance matrix scenario) and
S2 (mobility matrix scenario) of Supplementary material A.4. It is important to emphasize that we have set
g1 = 0 (week 1-4) to ensure that the model parameters are identifiable, and to estimate g2, . . . , g8 relative to
g1. The distributions for the time-dependent effect of other factors that affect disease transmission, other
than mobility, on the disease transmission rate β(t), are given in Figure 8. We observe that the constructed
distributions for the two scenarios agree well.

Lastly, we compare the estimated expected leave-one-out predictions and their standard errors, for the two
model scenarios, computed using the leave-one-out cross-validation (LOO) method [43, 17, 60] and the
widely applicable information criterion (WAIC) method [61, 16]. The comparison is summarized in Table 2,

Table 2: Model comparison using leave-one-out cross-validation (LOO) and the widely
applicable or Watanabe-Akaike information criterion (WAIC). Model ranking (in de-
scending order) is shown in the first column. The difference between the expected log pointwise
predictive density (elpd) and its standard error (se elpd) for the best model and those of the remain-
ing models are shown in the second column. In the third column, we have the Bayesian leave-one-out
estimate of out-of-sample predictive fit (elpd loo) and its standard error (se elpd loo). Lastly, the
computed Watanabe-Akaike information criterion (waic) for each model is shown in the fourth col-
umn.

Scenario elpd diff (se diff) elpd loo (se elpd loo) looic (se looic) waic (se)
Distance matrix 0.0 (0.0) −1537.8 (34.4) 3075.6 (68.9) 3074.9 (68.8)
Mobility matrix −9.5 (6.9) −1547.3 (36.2) 3094.6 (72.4) 3093.4 (72.3)

where the distance matrix scenario is ranked better than the mobility matrix scenario, in terms of their
ability to capture the case data. Even though the distance matrix scenario captures the case data better
than the weeekly mobility matrix scenario, the difference in the fits for the two approaches is not much.

4 Discussion

An important feature of our modeling framework includes the formulation of the disease transmission rate as
an exponential function of a linear combination of factors that affect disease transmission. This formulation
allows for explicit incorporation of factors into the transmission rate. In the example presented in this
article, due to lack of adequate data, only time-series mobility data was incorporated explicitly into the
disease transmission rate. The effect of other factors that affect disease transmission was accounted for
using a time-dependent piece-wise parameter. We attempted to incorporate the effect of facemasks into
the model but could not get adequate data for facemask usage in each region. In this case, the disease
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transmission rate was formulated as follows

βj(t) = exp
(
c0j + c1mj(t) + c2 f(t) + g(t)

)
, (4.1)

where c0j for j = 1, . . . , 13 are region-specific scaling parameters used to compute the baseline disease
transmission rate for each region (ec0j is the baseline transmission rate in region j). The parameters c1
and c2 are covariates for the mobility and facemask usage rates, respectively, and g(t) is a time-dependent
piece-wise parameter that is used to incorporate the effect of other factors that affect disease transmission
other than mobility and facemask. This formulation can also be extended to explicitly account for other
factors that affect disease transmission in βj(t) based on data availability.

Our model was able to capture the trends and reported cases of COVID-19 cases in each region (see Figure 6,
and Figures S7 and S8 of Supplementary material A.3). In addition, the results of the two model scenarios
agree well, although, there is a slight different in the estimated time-dependent disease transmission rates and
the contribution of mobility to disease transmission (columns 2 & 4) for some regions. There are significant
changes in the computed disease transmission rate over time, which may be attributed to the intervention
strategies implemented by the government during this period. Even though there are no much changes in
the time-series mobility data, its effect on the disease transmission rate is still apparent for each region. The
estimated total initial prevalence of COVID-19 in all the regions for the two scenarios agree well, as well
as the estimates for the time-dependent piece-wise parameter (g(t)), used to incorporate the effect of other
factors that affect disease transmission into the transmission rate (see Figure 8). However, the estimated
effect of mobility on disease transmission is significantly different for the two scenarios. The mean estimate
of this parameter was 0.53 (90% CrI: 0.44-0.60) for the distance matrix scenario and 0.90 (90% CrI: 0.72 -
0.98) for the weekly mobility matrix scenario. This can be interpreted as mobility contributing to 53% and
90% of the cases in the regions for the distance and mobility matrices scenarios, respectively. These results
show that the weekly mobility data provides more information, in terms of disease transmission, than the
distances between the regions. Note that the mobility referred to here is for both within and between the
regions. To confirm that indeed the weekly mobility data provides more information, we considered a third
scenario, where we used a fixed mobility matrix computed using the mobility data for the entire study from
July 2020 to January 2021. For this scenario, we estimated the effect of mobility on disease transmission
as 0.60 (90% CrI: 0.52 - 0.70) (see Supplementary material A.6 for more details). As expected, the fixed
mobility matrix does not provide more information about disease transmission than the weekly mobility
matrices, even though it does better than the distance matrix.

The constructed distributions for the baseline disease transmission rate for the two model scenarios are
similar for some of the regions and significantly different for other regions. These distributions are similar for
the larger and more urbanized cities with dense population (Abbotsford, Burnaby, New Westminster, Surrey
and Tri-Cities) and significantly different for the less densely populated smaller regions (see Figure 7). The
difference in the predicted distributions for these two groups of regions may be attributed to their population
size and mobility in the regions. Lastly, we compared the results obtained from the two scenarios using the
leave-one-out cross-validation (LOO) and the widely applicable information criterion (WAIC) methods. This
comparison ranks the distance matrix results better than those of the weekly mobility matrices, although,
the computed loo and waic for the two scenarios are very similar (see Table 2). We considered these two
model scenarios in order to test the hypothesis of whether the time-dependent mobility matrices, computed
from the mobile device data, provide more information about human mobility between the regions in terms
of disease transmission than the distances between the regions. Based on our results, we conclude that even
though the distance matrix provides a better fit to the data, the weekly mobility matrices have the ability
to explain the variance in transmission between regions. The model for when the distance matrix is used is
considered a gravity model, while the scenario where the weekly mobility matrices are used is referred to as
a metapopulation model. Hence, our hybrid gravity-metapopulation model.

Overall, our modeling framework provides the ability to explicitly incorporate real data on factors the affect
disease transmission into the disease transmission rate, and also allows independent assessment of the effect
of these parameters on disease transmission in an epidemic. Furthermore, this framework allows us to
quantify the effect of mobility on disease transmission in the regions. However, this work is not without
limitations. We quantified the effect of mobility on disease transmission in the 13 LHAs of Fraser Health,
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BC, based on movements between these thirteen regions only. However, there are movement in and out
of these regions to other parts of Canada, and even international. Another limitation of this work is that
some regions in Fraser Health are closer to regions in other regional health areas in British Columbia, than
they are to other regions in Fraser Health. For example, Burnaby is closer to Vancouver than it is to many
of the LHAs in Fraser Health. As a result of this, the spread of COVID-19 in Burnaby may be influenced
more by the number of cases in Vancouver than in other regions in Fraser Health, e.g. Hope, Chilliwack and
Agassize/Harrision. In the example presented here, we explicitly incorporated only the time-series mobility
data into the disease transmission rate and accounted for other factors that affect disease transmission
through a piece-wise parameter. Interesting extensions of this work would be to incorporate the data for
other factors that affect disease transmission explicitly into the model. This way, the effect of each factor on
disease spread can easily be assessed. Another future work on this project is to extend the model to include
vaccination and the variants of concern of COVID-19. Since mobility rate varies by age, another interesting
extension of this work would be to stratify the population of each region by age. This way, in addition to
assessing the impact of mobility on disease spread, it would also be possible to assess the contribution of
each age group to disease spread.
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A Supplementary material

A.1 Weekly reported cases of COVID-19

We present the weekly reported cases of COVID-19 in the thirteen local health areas of Fraser Health, BC,
Canada, from July 2020 to January 2021, inclusive. The data was extracted from a line list generated by
BCCDC Public Health Reporting Data Warehouse (PHRDW), based on symptom onset date or reported
date where symptoms onset date is not available.
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Figure S1: Reported cases of COVID-19. Weekly reported cases of COVID-19 for the 13 local
health areas (LHA) of Fraser Health, British Columbia (BC), Canada, for the period from July 2020
to January 2021.
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A.2 Weekly mobility matrices

We present the weekly mobility matrices constructed from Telus mobility data for the period from July 2021
to January 2022.

Figure S2: Mobility matrices. Probability matrix (π) computed from the Telus mobility data for
week 1 - 6 (July 1, 2020 - Aug 12, 2020). πji is the probability that an individual who migrated from
one of the 13 LHAs to region j, originated from region i.
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Figure S3: Mobility matrices. Probability matrix (π) computed from the Telus mobility data for
week 1 - 6 (Aug 13, 2020 - Sept 23, 2020). πji is the probability that an individual who migrated
from one of the 13 LHAs to region j, originated from region i.
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Figure S4: Mobility matrices. Probability matrix (π) computed from the Telus mobility data for
week 1 - 6 (Sept 24, 2020 - Nov 4, 2020). πji is the probability that an individual who migrated from
one of the 13 LHAs to region j, originated from region i.
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Figure S5: Mobility matrices. Probability matrix (π) computed from the Telus mobility data for
week 1 - 6 (Nov 5, 2020 - Dec 16, 2020). πji is the probability that an individual who migrated from
one of the 13 LHAs to region j, originated from region i.
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Figure S6: Mobility matrices. Probability matrix (π) computed from the Telus mobility data for
week 1 - 6 (Dec 17, 2020 - Jan. 27, 2021). πji is the probability that an individual who migrated
from one of the 13 LHAs to region j, originated from region i.
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A.3 Reported cases and model predictions

In this section, we present the model’s predicted cases and the estimated parameters for the remaining nine
LHA whose results are not presented in the result section (§3).

Figure S7: Observed and estimated COVID-19 cases. Weekly reported cases and model predic-
tion (columns 1 and 3). Disease transmission rate, βj(t) and the contribution of mobility to disease
transmission, ec1mj(t) (columns 2 and 4). Scenarios: fixed distance matrix (blue) and weekly mobility
matrices (gold). Black dots are the weekly reported cases of COVID-19, the solid lines are the mean
estimates of cases/parameters, the darker bands are the 50% CrI, while the lighter bands are the 90%
CrI.
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Figure S8: Observed and estimated COVID-19 cases. Weekly reported cases and model predic-
tion (columns 1 and 3). Disease transmission rate, βj(t) and the contribution of mobility to disease
transmission, ec1mj(t) (columns 2 and 4). Scenarios: fixed distance matrix (blue) and weekly mobility
matrices (gold). Black dots are the weekly reported cases of COVID-19, the solid lines are the mean
estimates of cases/parameters, the darker bands are the 50% CrI, while the lighter bands are the 90%
CrI.

.
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A.4 Table of estimated parameters

We present the estimated parameters for the distance matrix and weekly mobility matrices scenarios.

Table S1: Estimated parameters for the distance matrix scenario. The estimated parame-
ters obtained for the distance matrix scenario with 90% credible interval (CrI).

Parameter Mean estimate (90% CrI)

i0 47.61 (44.82, 50.31)

c0j (pop. mean) 0.45 (0.35, 0.54)

c0j (pop. variance) 0.18 (0.12, 0.26)

c01 0.62 (0.60, 0.64)

c02 0.41 (0.28, 0.56)

c03 0.58 (0.55, 0.61)

c04 0.54 (0.50, 0.58)

c05 0.54 (0.50, 0.57)

c06 0.18 (0.00, 0.36)

c07 0.46 (0.41, 0.50)

c08 0.20 (0.09, 0.30)

c09 0.37 (0.31, 0.43)

c010 0.52 (0.45, 0.58)

c011 0.36 (0.31, 0.42)

c012 0.65 (0.646, 0.656)

c013 0.51 (0.48, 0.54)

θ 0.53 (0.44, 0.60)

c1 1.51 (0.90, 2.10)

g (pop. mean) -0.33 (-0.52, -0.14)

g (pop. variance) 0.30 (0.16, 0.47)

g2 -0.19 (-0.21, -0.17)

g3 -0.50 (-0.52, -0.48)

g4 -0.12 (-0.14, -0.10)

g5 -0.02 (-0.03, -0.003)

g6 -0.57 (-0.60, -0.54)

g7 -0.50 (-0.55, -0.45)

g8 -0.59 (-0.77, -0.40)
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Table S2: Estimated parameters for the weekly mobility matrices scenario. The estimated
parameters obtained for the scenario we used weekly mobility matrices with 90% credible interval
(CrI).

Parameter Mean estimate (90% CrI)

i0 50.19 (47.37, 53.04)

c0j (pop. mean) 0.21 (0.05, 0.36)

c0j (pop. variance) 0.35 (0.24, 0.47)

c01 0.59 (0.56, 0.61)

c02 0.25 (0.06, 0.45)

c03 0.50 (0.47, 0.54)

c04 0.38 (0.33, 0.43)

c05 0.19 (0.08, 0.30)

c06 -0.30 (-0.54, -0.04)

c07 0.01 (-0.10, 0.11)

c08 -0.19 (-0.36, -0.03)

c09 -0.02 (-0.15, 0.12)

c010 0.34 (0.21, 0.45)

c011 0.02 (-0.09, 0.15)

c012 0.601 (0.597, 0.61)

c013 0.37 (0.31, 0.43)

θ 0.90 (0.72, 0.98)

c1 2.11 (1.52, 2.69)

g (pop. mean) -0.28 (-0.45, -0.10)

g (pop. variance) 0.32 (0.19, 0.50)

g2 -0.16 (-0.17, -0.14)

g3 -0.48 (-0.50, -0.45)

g4 -0.08 (-0.10, -0.06)

g5 0.02 (0.003, 0.04)

g6 -0.53 (-0.56, -0.50)

g7 -0.47 (-0.51, -0.43)

g8 -0.58 (-0.74, -0.40)

.
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A.5 Regions and their population sizes

Table S3: List of regions and their population sizes. The thirteen local health areas (LHAs)
in Fraser Health, British Columbia, Canada, and their population sizes. Source [6].

Local Health Authority (LHA) Population
1 Abbortsford 161, 912
2 Agassiz/Harrison 10, 770
3 Burnaby 257, 926
4 Chilliwack 105, 862
5 Delta 112, 259
6 Hope 8, 931,
7 Langley 161, 725
8 Mission 47, 652
9 Maple Ridge/Pitt Meadows 111, 502
10 New Westminster 82, 590
11 South Surrey/White Rock 107, 347
12 Surrey 512, 436
13 Tri-Cities 254, 583

A.6 Results for the scenario with a fixed mobility matrix for the entire
study period

In this section, we consider a scenario where mobility is described by fixed matrix computed from the Telus
mobility data for the entire study period.

Figure S9: Fixed mobility matrix for the entire study period. Probability matrix (π) computed
from the Telus mobility data for the entire study period from July 1, 2020 to Jan. 27, 2021. πji is
the probability that an individual who migrated from one of the 13 LHAs to region j, originated from
region i.
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Figure S10: Observed and estimated COVID-19 cases. Weekly reported cases and model
prediction (columns 1 and 3), computed using the fixed mobility matrix in Figure S9. Disease trans-
mission rate, βj(t) and the contribution of mobility to disease transmission, ec1mj(t) (columns 2 and
4). Black dots are the weekly reported cases of COVID-19, the solid lines are the mean estimates of
cases/parameters, the darker bands are the 50% CrI, while the lighter bands are the 90% CrI.
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Figure S11: Observed and estimated COVID-19 cases. Weekly reported cases and model
prediction (columns 1 and 3), computed using the fixed mobility matrix in Figure S9. Disease trans-
mission rate, βj(t) and the contribution of mobility to disease transmission, ec1mj(t) (columns 2 and
4). Black dots are the weekly reported cases of COVID-19, the solid lines are the mean estimates of
cases/parameters, the darker bands are the 50% CrI, while the lighter bands are the 90% CrI.
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Table S4: Estimated parameters for the fixed mobility matrix scenario. Estimated param-
eters with 90% credible interval (CrI).

Parameter Mean estimate (90% CrI)

i0 35.75 (33.79, 37.78)

c0j (pop. mean) 0.31 (0.14, 0.48)

c0j (pop. variance) 0.38 (0.26, 0.52)

c01 0.71 (0.69, 0.73)

c02 0.30 (0.10, 0.50)

c03 0.66 (0.62, 0.70)

c04 0.54 (0.47, 0.63)

c05 0.36 (0.26, 0.45)

c06 -0.29 (-0.56, 0.01)

c07 0.21 (0.11, 0.32)

c08 0.02 (-0.16, 0.18)

c09 0.19 (0.07, 0.32)

c010 0.45 (0.34, 0.58)

c011 0.15 (0.05, 0.25)

c012 0.76 (0.756, 0.77)

c013 0.55 (0.49, 0.61)

θ 0.60 (0.52, 0.70)

c1 1.55 (1.10, 1.99)

g (pop. mean) -0.41 (-0.60, -0.21)

g (pop. variance) 0.31 (0.17, 0.48)

g2 -0.34 (-0.36, -0.32)

g3 -0.60 (-0.62, -0.57)

g4 -0.22 (-0.24, -0.20)

g5 -0.11 (-0.13, 0.10)

g6 -0.67 (-0.71, -0.64)

g7 -0.60 (-0.64, -0.55)

g8 -0.71 (-0.92, -0.51)

S-14

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 18, 2022. ; https://doi.org/10.1101/2022.12.16.22283600doi: medRxiv preprint 

https://doi.org/10.1101/2022.12.16.22283600
http://creativecommons.org/licenses/by-nc-nd/4.0/

	Introduction
	Methods
	Mathematical Model
	Data
	Bayesian inference

	Results
	Discussion
	Supplementary material
	Appendix Supplementary material
	Weekly reported cases of COVID-19 
	Weekly mobility matrices
	Reported cases and model predictions
	Table of estimated parameters
	Regions and their population sizes
	Results for the scenario with a fixed mobility matrix for the entire study period


