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Abstract
SARS-CoV-2 transmission is largely driven by heterogeneous dynamics at a local scale, leaving
local health departments to design interventions with limited information. We analyzed
SARS-CoV-2 genomes sampled between February 2020 and March 2022 jointly with
epidemiological and cell phone mobility data to investigate fine scale spatiotemporal
SARS-CoV-2 transmission dynamics in King County, Washington, a diverse, metropolitan US
county. We applied an approximate structured coalescent approach to model transmission within
and between North King County and South King County alongside the rate of outside
introductions into the county. Our phylodynamic analyses reveal that following stay-at-home
orders, the epidemic trajectories of North and South King County began to diverge. We find that
South King County consistently had more reported and estimated cases, COVID-19
hospitalizations, and longer persistence of local viral transmission when compared to North King
County, where viral importations from outside drove a larger proportion of new cases. Using
mobility and demographic data, we also find that South King County experienced a more modest
and less sustained reduction in mobility following stay-at-home orders than North King County,
while also bearing more socioeconomic inequities that might contribute to a disproportionate
burden of SARS-CoV-2 transmission. Overall, our findings suggest a role for local-scale
phylodynamics in understanding the heterogeneous transmission landscape.

Author Summary
State- or county-level data collected as part of routine surveillance often mask significant local
differences in SARS-CoV-2 transmission due to their lack of granularity. This leaves local public
health departments with incomplete information for resource allocation. Using King County,
Washington as an example of a diverse, metropolitan US county, we leveraged genomic
epidemiology to understand differences in transmission between North and South King County,
two adjacent regions within the same county with stark socioeconomic differences. By
combining epidemiological, mobility, and demographic data, we found that these two regions
had divergent SARS-CoV-2 epidemic trajectories following the start of statewide stay-at-home
orders in March 2020. Our approach also revealed important differences in the role of viral
importations and persistence of local viral transmission on changing SARS-CoV-2 incidence in
the background of large-scale non-pharmaceutical interventions. Our work shows that we can use
genomic epidemiology to reveal differences in transmission at a local scale, which can inform
equitable resource allocation at a local level to reduce the burden of infectious diseases.

Main Text

Introduction
The first confirmed SARS-CoV-2 infection in the United States was detected in Washington
State (WA) on January 19, 2020. Since initial detection of the virus, genomic epidemiology has
played a crucial role in identifying and estimating new introductions and community
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transmission in WA (1–3) and throughout the US (4,5) and has motivated rapid public health
interventions. While international introductions continue to seed new viral lineages into the US,
the majority of transmission is driven by infections and movement at a local scale, wherein
neighboring states, regions, counties, or even zip codes can have vastly different epidemic
dynamics (3,6,7).

In WA, genomic epidemiology has aided in understanding the spatiotemporal variation of the
SARS-CoV-2 epidemic. At a statewide level, previous studies have examined changes in the
relative frequency of variant viruses and the impact of non-pharmaceutical interventions on the
estimated effective population size of the virus (2). Phylodynamic analyses have estimated the
role of introductions in promoting community spread in the state at large and revealed an
asymmetrical interplay between the eastern and western regions of the state, wherein intra-state
transmission accounts for more than half of the introductions into the eastern region of WA but
only for less than 30% of the introductions into western WA (3).

Even a regional view fails to capture the nuance of epidemic dynamics needed to effectively curb
transmission in the state because neighboring counties and even intra-county areas are affected
by epidemic and demographic heterogeneity. King County, WA is a demographically diverse,
metropolitan US county that has been proactive in promoting testing and vaccination throughout
the SARS-CoV-2 epidemic. Despite these efforts, studies have revealed a large degree of
variation in SARS-CoV-2 infection probability and hospitalization, with communities of color
disproportionately impacted (8).

Previous studies have attributed differences in local case counts to unequal reductions in mobility
(9,10). When compared to a baseline average from 2019, King County, WA as a whole shows a
large decrease in mobility following the implementation of stay-at-home orders in March 2020
but differences between within-county regions are salient: North King County experienced a
60% reduction in mobility compared to the 40% reduction in South King County (Fig 1A).
While South King County eventually returned to baseline levels of mobility by the end of 2020,
North King County was able to maintain reduced levels through March 2022. The ability to
significantly reduce and maintain mobility changes has been previously attributed to
socioeconomic inequities, including geographical differences in income (11) and percentage of
the community that contributes as an essential worker (9). We see a similar pattern in King
County: South King County has a lower median household income, a larger percentage of
essential workers in the active workforce, and a higher average household size than North King
County (Fig 1B-D), despite a smaller population size (Fig. 1E).
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Figure 1: Socioeconomic Characteristics of King County. A. Percent change in mobility from Feb
2020 to March 2022 over time using average mobility in 2019 as baseline for North (blue line) and South
(orange line) King County. Dashed line denotes no change compared to baseline. B,C. Median household
income in 2020. (B) Percentage of the active workforce whose occupation is defined as “essential” from
2015-2020 (C) average household size from 2015-2020 (D) and population size (E) in King County by
Public Use Microdata Area (PUMA). Gray shaded regions above each figure show the time periods
during which ancestral virus, Alpha, Delta, and Omicron respectively represented greater than 30% of
sequenced case

While some studies have used genomic epidemiology to examine transmission between US
counties or boroughs (5–7), here we employ phylodynamic tools to understand the fine scale
spatial and temporal dynamics of SARS-CoV-2 viral transmission both within and between
regions of King County, WA, as a case study of a demographically and socioeconomically
diverse US metropolitan county. Using 11,737 viral sequences sampled from individuals in King
County between January 2020 and March 2022, we examined the role of introductions in
promoting community spread and the impact of non-pharmaceutical interventions on viral
transmission dynamics.

Results

The COVID-19 epidemic in King County, WA shows distinct spatial and temporal patterns that
persisted throughout our study from February 2020 to March 2022. At the PUMA level,
confirmed COVID-19 cases and hospitalizations in King County are disproportionately higher in
more southern PUMAs than in northern PUMAs (Fig 2A, B) during almost every time period
analyzed. During the last time period encompassing the BA.1 Omicron wave, from December
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2021 to March 2022, we observed a more equal geographic distribution of confirmed COVID-19
cases, but COVID-19 hospitalizations continue to disproportionately affect southern regions.

Due to the salient differences between northern and southern PUMAs, we then divided King
County into two regions, North and South, and analyzed COVID-19 cases and hospitalizations
continuously over time (Fig 2C,D). From January 2020 to the end of March 2020, during the
beginning of the epidemic, we see that cases and hospitalizations are slightly higher in North
King County. However, starting in April 2020 soon after a stay-at-home order on March 23,
South King County consistently had higher confirmed cases and hospitalizations per capita than
North King County, a trend that mostly persisted throughout the time period studied, except
during the Omicron wave when cases were similar in both regions. Time series of cases and
hospitalizations replicated the geographical trends seen in Fig.1A and 1B: while the difference in
the number of confirmed cases seemed to contract in during the BA.1 Omicron wave (Dec
2021–March 2022), the magnitude of the difference in hospitalizations remains roughly constant,
with South King County disproportionately burdened.
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Figure 2: Descriptive Epidemiology of SARS-CoV-2 Epidemic in King County, WA. (A, B)
Confirmed positive cases (A) and hospitalizations (B) per 100,000 individuals of SARS-CoV-2 in King
County by Public Use Microdata Area (PUMA) averaged for each of the six waves of the epidemic up
until March 2022. Dark borders denote geographical boundaries between North and South King County
(C, D) Daily positive cases and hospitalizations of SARS-CoV-2 from February 2020 to March 2022 by
region of King County smoothed with a 14 day rolling average. Blue denotes North King County; Orange
denotes South King County. Gray shaded regions above each figure show the time periods during which
ancestral virus, Alpha, Delta, and Omicron respectively represented greater than 30% of sequenced case

To investigate transmission dynamics between and within these two King County regions, we
analyzed 11,602 sequenced King County viruses alongside contextual sequences from around the
world. Following the creation of time-resolved phylogenies using Nextstrain (12), we split the
sequences into local outbreak clusters using parsimony-based clustering to identify groups of
sequences whose ancestral states were inferred to be in King County (see Methods, Supp Fig. 1).
We identify 5964 clusters and find that the number of clusters increases over the time in both
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regions (Fig. 3A), most likely due to an increase in the number of cases being sequenced in WA.
Additionally, we find that the majority of clusters are single introductions (n = 5,095), with larger
clusters increasingly rare (Fig 3B, clusters with more than 10 sequences were excluded for
clarity). South King County has a greater mean cluster size (South: 1.87; North: 1.61;
two-sample t-test p-value: 0.048) as well as a larger maximum cluster size (max South cluster
size of 280 vs max North cluster size of 150). Figure 3C shows the phylogenetic tree of all
clusters with 5 or more sequences with inferred geographic location as coloring.

Figure 3: Representative SARS-CoV-2
Clusters by Region in King County. We
combined more than 11,500 SARS-CoV-2
genomes from King County with more than
45,000 contextual sequences from around
the world and built a time-resolved
phylogeny. King County outbreak clusters
were then extracted using a parsimony
based clustering approach. We inferred
geographic transmission history between
each region using MASCOT-GLM. Here,
we display the number of clusters over time
by King County Region (A), the frequency
of cluster size by region on a linear (B left)
and log (B right) scale (up to a cluster size
of 10. Larger clusters exist but were
excluded from the graph for clarity), and the
maximum clade credibility tree of all
clusters with five or more sequences (C)
where color represents posterior probability
of being in South King County. The x-axis
represents the collection date (for tips) or
the inferred time to the most recent common
ancestor (for internal nodes). Blue denotes
North King County, Orange denotes South
King County.
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We also analyzed the inferred ancestral location for all clusters over time divided out by the
dominant variant waves (Supp. Fig 2). We found that Alpha and Delta arrived first into King
County mainly from other US states before spreading into the larger WA region, with Alpha also
arriving from the UK where it originated. As time progressed, the source of introductions
switched from mainly North America (excluding WA) to predominantly from within Washington
(excluding Omicron which was introduced into King County primarily from WA). Additionally,
we saw that North King County has a larger proportion of viral introductions coming from
outside WA, while the majority of introductions into South King County come from within the
state.

We then employed phylodynamic inference methods on the identified outbreak clusters to
analyze SARS-CoV-2 spread in the county. Following subsampling, we used a MASCOT-GLM
approach with relevant predictors on a random subsample of 3000 sequences from our dataset of
local outbreak clusters to reconstruct SARS-CoV-2 transmission dynamics (Supp. Fig. 3).
Phylodynamic estimates of the effective population size (Ne) of the virus in both King County
regions over time mirror patterns seen in both confirmed COVID-19 hospitalizations and cases:
while the Ne in North King County is initially greater until the end of March 2020, following
WA stay-at-home orders, we find a consistently greater Ne in South King County throughout the
study period (Fig. 4A). We also find that hospitalizations one week in the future was the most
informative predictor for effective population size in our model (Fig 4B), while the migration
rate predictors were not significantly informative (Fig 4C).
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Figure 4: Phylodynamic Analysis via MASCOT-GLM. (A) Estimates of effective population sizes
from Feb 2020 to March 2022 in North (blue) and South (orange) King County using 3000 randomly
subsampled sequences. The inner band denotes the 50% highest posterior density (HPD) interva,l and the
outer band denotes the 95% HPD interval. Vertical gray lines denote dates of non-pharmaceutical
interventions in Washington State. (B) Estimates of model predictor coefficients for Ne estimation and
(C) for migration rate estimation. All of the predictors displayed on the x-axis were included in the
analytic model. Dark line represents median estimates, light bands represent 95% HPD. Gray shaded
regions above each figure show the time periods during which ancestral virus, Alpha, Delta, and Omicron,
respectively represented greater than 30% of sequenced case

We next analyzed the posterior set of phylogenies produced by the MASCOT-GLM analysis to
understand viral circulation within and between the two regions. Given the higher estimated Ne
in South King County, we quantified the average persistence time of viral transmission chains in
each region (Fig 5A, see Methods). While the average monthly persistence time remained
relatively equal between the two regions during the early stages of the epidemic, following May
2020 up until 2022, we see that transmission chains in South King County consistently have
significantly higher persistence times than in North King County, with the mean local
transmission length averaged over the entire time period of 21.5 days in South King County and
13.5 days in North King County. We see an increase in average persistence times in both regions
during large waves of COVID-19 cases attributable to the introduction of a new variant with a
transmissibility advantage (such as in late 2020- early 2021 with the introduction of Alpha) and
the relaxation of stay-at-home order, with South King County consistently having longer
persistence times.

To understand if these longer transmission chains in South King County could be due to a higher
number of viral introductions from outside the county, we reconstructed the ancestral states of
each a priori defined King County transmission cluster to quantify the relative number of
introductions into each region (Fig 5B). While greater than 50% of introductions prior to May
2020 were into South King County, the majority of the time period studied was characterized by
a greater relative proportion of introductions from outside into North King County.

These fine scale phylodynamic analyses also allow us to investigate the interplay between local
regions. Introductions from outside regions have been shown to play a driving force in
maintaining local outbreaks (13) but often these introductions are focused on interstate or
international travel. Here we quantify the interplay between two inner-county regions, examining
the number of transmission events that occur between North and South King County (Fig 5C).
By quantifying the number of migration jumps between the two regions, we see a clear pattern
emerge in which prior to June 2020 when WA lifted emergency stay at home orders, there was
little difference in the number of transmission events between regions. Following the elimination
of the stay-at-home orders however, transmission events become asymmetrical, where we
consistently see disproportionally more transmission from South King County to North King

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 21, 2024. ; https://doi.org/10.1101/2022.12.15.22283536doi: medRxiv preprint 

https://www.zotero.org/google-docs/?OECu9V
https://doi.org/10.1101/2022.12.15.22283536
http://creativecommons.org/licenses/by-nd/4.0/


County than in the opposite direction, with the largest differences occurring in the beginning
months of 2021.

Figure 5: Within and Inter-Regional Dynamics in King County inferred from pathogen genomes
and relevant covariates. A. Persistence time (in days) of local transmission chains over time in both
regions of King County. Accompanying graph showing persistence times averaged over the entire time
period for both regions with error bars denoting 95% CIs. B. Inferred reconstruction of ancestral state for
each transmission cluster over time. Blue denotes initial introduction in North King County and orange
denotes initial introduction in South King County. Average values are normalized to 100% over time. The
Accompanying graph showing inferred introductions averaged over the entire time period for both regions
with error bars denoting 95% CIs. C. Number of migration events from North to South King County
(purple) and from South to North King County (green) over time. Bands denote 95% CI. The
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accompanying figure shows the number of migration events between the two regions averaged over the
entire time period with error bars denoting 95% CIs. Gray shaded regions above each figure show the
time periods during which ancestral virus, Alpha, Delta, and Omicron respectively represented greater
than 30% of sequenced cases.

Given the higher number of introductions into North King County but the larger Ne and longer
transmission chain length in South King County, we sought to estimate the relative contribution
of introductions versus local community spread in driving the epidemic in both King County
regions. To do so, we calculated the percentage of new cases from introductions in each region
using the estimated changes in Ne over time as well as the estimated rates of introduction both
from outside King County and from the neighboring inner-county region. We estimated a
relatively higher percentage of cases due to introductions in South vs North King County prior to
emergency stay-at-home order in WA on March 23, 2020 (Fig 6A). Following the stay-at-home
order, the pattern switched and was largely constant throughout the epidemic, with North King
County averaging about 35% of new cases from introductions versus local spread while only
about an average of 25% of new cases were estimated to be from introductions in South King
County. To further support this estimate, we calculated the percentage of visits to POIs in North
and South King County for devices having an outside home location using SafeGraph mobility
data. We find similar estimates ranging from about 25%-40% throughout time (Fig. 6A, black
lines).

To better compare transmission dynamics between the two regions, we next used the effective
population size dynamics to compute Rt, the time-varying effective reproductive number (Fig.
6B, Supp. Fig. 4). Additionally, we also employed our estimates of the percentage of new cases
that are due to introductions to separate out the effects of local transmission and introductions on
Rt. We find that the Rt for both regions closely follows variant waves, with an Rt above 1, which
implies increasing transmission, matching with dates of increased case counts. Additionally, by
separating out contributions into being from local transmission, introductions from the
neighboring King County region, or introductions from outside King County, we find that local
transmission is the main contributor to Rt in both regions but that introductions have a
differential impact. We see that introductions as a whole play a much larger role in promoting
and maintaining transmission in North King County, with outside regions being the main
contributor of introductions. In South King County, Rt is more driven by local within-region
spread, with introductions from North King County being more influential than introductions
from outside the county.

Phylodynamic estimates of epidemic dynamics were similar regardless of subsampling strategy
used (Supp. Figs 5, 6).
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Figure 6: Phylodynamic estimates of the differential impact of introductions and local spread on
transmission dynamics of SARS-CoV-2 by region in King County. (A) Percentages of new cases due
to introductions were estimated as the relative contribution of introductions to the overall number of
infections in the region. The inner area denotes the 50% HPD interval and the outer area denotes the 95%
HPD interval. Blue = North King County; Orange = South King County. Black lines represent the same
calculation using SafeGraph mobility data as parameter approximations. Solid black line is for North
King County; Dashed black line is for South King County. (B) Estimates of local Rt highlighting the
contribution of introductions from outside King County (red) and from the neighboring King County
region (gold) on local transmission in each King County region. Dashed line denotes an Rt of 1. Estimates
were smoothed using a 7 day rolling average. Estimates higher than 1 suggest an exponentially growing
epidemic. Gray shaded regions above each figure show the time periods during which ancestral virus,
Alpha, Delta, and Omicron respectively represented greater than 30% of sequenced cases.

Discussion

The surge of whole genome sequencing has enabled large-scale investigation into key
COVID-19 epidemiological dynamics. Yet, genomic epidemiology can also be employed to
analyze transmission patterns at a local scale to aid in policy making and intervention evaluation.
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Here, we examined fine-scale SARS-CoV-2 transmission dynamics at a sub-county level for
King County, WA, a large metropolitan area with a demographically diverse population.

We used novel phylodynamic methods to reconstruct the epidemic in King County from January
2020 to March 2022 and examine within-region dynamics and their interplay from pre-identified
local outbreak clusters. We divide King County into North and South, informed by the clear
differences in outcomes (cases and hospitalizations) at the PUMA level, in which South King
County has been disproportionately affected despite having a smaller population size (673,548 in
South versus 1,400,211 in North King County in 2020 (14)). We estimated that for the majority
of the time period studied, introductions accounted for a larger percentage of new cases in North
than in South King County (Fig 5). While a higher proportion of introductions among new cases
can be attributed to either a higher rate of introduction or a lower local transmission rate, we find
evidence of a greater number of viral introductions into North King County over time, from both
outside and within the county, but longer chains of local transmission in South King County (Fig
5). Together, our data suggest a larger impact of introductions in North King County and a larger
role of local community spread in South King County in driving the respective regional
epidemics. This conclusion is supported via our Rt estimates, or the time-varying estimate of
secondary infections, which show that outside introductions play a significant role in
transmission in North King County while local spread is more contributory in South King
County (Fig 6). Importantly, cases being driven by a higher percentage of introductions can be
due to either an increase in introductions from outside, a decrease in local spread, or a
combination of both.

Given the smaller population size in South King County, one potential explanation for higher
local spread in that region is reduced access to social and economic capital and health care
resources needed to curb community transmission. Previous studies looking at SARS-CoV-2 test
positivity in King County at a census tract level have found that a higher test positivity was
associated with various socioeconomic indicators including lower educational attainment, higher
rates of poverty, and high transportation costs (15,16). Additionally, they found that communities
with a higher proportion of people of color, which are more likely to be located in South King
County, were also associated with higher test positivity in 2020. Hansen et al. (16), specifically
found that having a place of residence in South King County was associated with SARS-CoV-2
test positivity. The stark contrast in health outcomes between North and South King County has
been previously attributed to historical redlining and systemic racism, whereby decades of racial
segregation prevented communities of color from residing in northern areas of Seattle and were
forced into the south into present day South King County (17,18).

The associations between test positivity and socioeconomic status are not a unique King County
phenomenon; they have been found in various metropolitan areas around the US (9,10,19).
Similarly, a previous study that used phylodynamics to analyze differences in SARS-CoV-2
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spread in two Wisconsin counties found that the county with the highest basic reproductive
number, an approximate measure of local spread in a naive population, was also the county with
the higher proportion of people in poverty and lower access to health as well as with the highest
proportion of communities of color, which mimics the transmission dynamics and demographic
differences seen at a within-county level in King County (6). While we are unable to ascribe
causality, our work adds to the growing body of literature showing a correlation between
geographic differences in SARS-CoV-2 transmission and socioeconomic inequities potentially
related to the ability to reduce mobility following non-pharmaceutical interventions.

Our results are not without limitations. Whole genome sequencing in WA is conditional on
laboratory-confirmed testing in which sample quality must meet minimum requirements in terms
of PCR cycle threshold, potentially biasing our dataset towards more symptomatic cases,
although previous studies have found no significant difference in viral load between
symptomatic and asymptomatic individuals (20–22). Additionally, the changing availability of
genomic sequencing, as well as of at-home testing, is impacting the chance a case shows up in
our data through the period studied (see Figure 4b). In order to limit the impact of the increased
use of at-home antigen testing, we limited our analysis to only include sequences from before
April 2022. Multiple subsampling strategies were considered and implemented in an effort to
account for this variation (Supp. Figs 5, 6).

Our phylodynamic analyses are conditioned on inferred King County sequence clusters that are
found through the incorporation of contextual sequences from around the world into a
temporally-resolved phylogeny. As such, it is possible that differential sampling from other
locations could impact our identified clusters. Limited SARS-CoV-2 sequence diversity,
especially during periods of rapid transmission, could impact our ability to break up larger
clusters (23), which might lead to collapsing multiple introductions into King County into shared
clusters. Prior studies have used GLM approaches to ameliorate this bias (24), similar to our use
of MASCOT-GLM. Optimally, we would like to avoid having to a priori define local outbreak
clusters entirely by, for example, explicitly accounting for locations outside of King County in
the model. This is currently not possible due to the additional computational cost of explicitly
considering an outside deme. Additionally, Bayesian coalescent models assume random
sampling of infected individuals, meaning that targeted sampling, such as super spreader events
or contact tracing, could bias our phylodynamic estimations. Such sampling from outbreak
analyses may also not be constant through time, complicating Ne inferences. Lastly, our Rt
calculations assume that the change in Ne over time is proportional to the change in the number
of infected individuals over time.

The transmission dynamics of the SARS-CoV-2 pandemic have been highly heterogeneous
across countries. Here we show that even different areas of the same metropolitan region can
have different trajectories. Changes in incidence throughout the course of an epidemic can be
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driven by changes in local transmission, importations, or both. Common methods to estimate
incidence and changes in incidence via Rt often ignore or are unable to quantify these differences
(25–27), leading to situations where local health departments have limited information with
which to tackle growing case counts. Our local scale genomic epidemiology approach can reveal
these differences by quantifying the contribution of importations and local transmission on Rt
(Fig 6B) through the joint integration of genomic and epidemiological information. Quantifying
changes and differences in contribution to incidence can directly lead to tailored interventions.
For example, in an area where incidence is driven mostly by outside viral introductions,
interventions could focus on limiting their impact by implementing testing at the airport or
quarantine for recent travelers. Meanwhile, ramping up testing, vaccination, and masking as well
as providing medical and economic aid to promote quarantine and isolation without furthering
income inequities could be more impactful for areas where local community transmission is the
main driver of epidemic growth.

Methods

Experimental Design and Data Sources
For this retrospective phylodynamic study, we aimed to understand local SARS-CoV-2
transmission dynamics in a diverse, metropolitan county. We analyzed 11,602 whole genome
SARS-CoV-2 sequences from King County, WA and 69,588 genome sequences from around the
world downloaded from GISAID (28) with sample collection dates between February 1 2020 and
March 6 2022. In order to analyze local scale phylodynamics, ZIP code information for our
primary dataset from King County was obtained from the Washington State Department of
Health (WADOH) on March 22, 2022. 7289 (62%) of genomes from King County were
sequenced by UW Virology and 2631 (22%) of genomes from King County were sequenced by
Seattle Flu Study / Brotman Baty Institute for Precision Medicine. Three other laboratories
(Altius, CDC and WA PHL) sequenced the remaining 1,917 (16%) of genomes collectively.

Time series of zip code-aggregated cases and hospitalizations were found on WADOH and
Public Health Seattle King County’s (PHSKC) Covid Data Dashboard(29). Publicly available
demographic information by ZIP code was obtained through the U.S. Census Bureau’s American
Community Survey (ACS). This study utilized both ACS 2015-2019 (5-Year Estimates) and
ACS 2020 (14).

Additionally, we obtained mobile device location data from SafeGraph (https://safegraph.com/),
a data company that aggregates anonymized location data from 40 million devices, or
approximately 10% of the United States population, to measure foot traffic to over 6 million
physical places (points of interest) in the US (30). We estimated population mobility within and
between North and South King County and the in-flow of visitors residing outside of King
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County from January 2019 to March 2022, using SafeGraph’s “Weekly Patterns” dataset, which
provides weekly counts for the total number of unique devices visiting a point of interest (POI)
from a particular home location. Points of interest (POIs) are fixed locations, such as businesses
or attractions. A “visit” indicates that a device entered a building or the spatial perimeter
designated as a POI. A “home location” of a device is defined as its common nighttime
(18:00-7:00) census block group (CBG) for the past 6 consecutive weeks.

Geographic Scales
To understand local-scale dynamics, most of this study was focused on geographic scales finer
than the county level. We divided King County into both Public Use Microdata Areas (PUMAs),
which are non-overlapping, statistical geographic areas containing no fewer than 100,000 people
each, and general regions, North and South. Information as to how we aggregate ZIP codes into
PUMAs and PUMAs into North and South can be found in Supplementary Table 1.

Maximum likelihood tree generation
A temporally-resolve phylogeny was created using the Nextstrain (12) SARS-CoV-2 workflow
(https://github.com/nextstrain/ncov), which aligns sequences against the Wuhan Hu-1 reference
using nextalign (https://github.com/nextstrain/nextclade), infers a maximum-likelihood
phylogeny using IQ-TREE (31) with a GTR nucleotide substitution model, and estimates
molecular clock branch lengths using TreeTime (32). All sequences were downloaded from the
GISAID EpiCoV database on May 26 2022 (28).

In order to capture the SARS-CoV-2 epidemic in King County with high resolution and
computational efficiency, we created four separate temporally resolved phylogenies that span
from February 2020 to March 2022. To do so, we created specific phylogenies for Omicron
(Nextstrain clades 21K, 21L, 21M comprising 2856 King County Sequences and 18,817
contextual sequences from around the world), Delta (Nextstrain clades 21A, 21I, 21J comprising
2955 King County Sequences and 19,197 contextual sequences from around the world), Alpha
(Nextstrain clade 20I comprising 2941 King County Sequences and 15,406 contextual sequences
from around the world), and all other SARS-CoV-2 lineages (2850 King County Sequences,
16,168 contextual sequences from around the world). These builds provided higher resolution
during epidemic waves while also being mutually exclusive to sequences found in the alternative
builds.

Contextual sequences are needed in order to investigate how King County samples relate to
regional and global viral diversity, and to identify local outbreak clusters specific to King
County. Given that cluster identification is conditional on the number of background sequences
that interdigitate large clades on the phylogeny, we attempted to maximize the number of
contextual sequences within the bounds of reasonable computational efficiency. We prioritized
sequences from WA and North America in order to optimize regional context. For each variant,
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we specified contextual data sampling to include up to 10,000 genomes per time-period from
WA, sampled from all counties and months, up to 7000 genomes per month from other US states,
and up to 5000 genomes per month from the rest of the world. In each variant-specific
phylogeny, contextual sequences comprise 83-86% of the total number of sequences. While we
expect the number of the clusters to increase with an increasing number of contextual sequences,
prior work has shown that changes in the proportion of background sequences that make up the
analytical dataset above a proportion of 50% have a limited impact on the number of clusters
identified and mean cluster size (Fig. S13 in (2)), and downstream phylodynamic analyses.

Phylogeographic reconstruction of spread around King County was conducted using the same
Nextstrain workflow via ancestral trait reconstruction of PUMAs and North and South region
geographic attributes. Metadata on ZIP code, PUMA, and region was manually added to the
GISAID metadata using the ZIP code information obtained from WADOH as described above.

Clustering
To identify local outbreak groups in King County, we clustered all King County sequences based
on inferred internal node location. Following Müller et al (2), we used a parsimony-based
approach to reconstruct the locations of internal nodes. Briefly, using the Fitch parsimony
algorithm, we inferred internal node locations by considering only two sequence locations: King
County and then anywhere else. We then identified local outbreak clusters by selecting groups of
sequences in which all their ancestral nodes were inferred to be from King County, up until there
was a change in location.

After identifying relevant King County clusters from each of the four variant Nextstrain builds,
we then annotated the clusters in a combined dataset.

Subsampling

To reduce computation times in subsequent MCMC analyses, we utilized three different
subsampling schemes. Three thousand sequences from King County, WA from identified clusters
were chosen either at random, through equal temporal subsampling for every year-week in the
studied time period, or via weighted subsampling informed by daily hospitalization counts
smoothed using a 14-day rolling average. The random subsampling scheme with 3000 sequences
was chosen for the main result as it allowed for better resolution during variant waves.

MASCOT GLM on multiple local outbreak clusters

To analyze the transmission dynamics within and between South and North King County, we
used an adapted version of MASCOT (33) on the 3000 subsampled King County clusters and
sequences. MASCOT is an approximate structured coalescent approach (34) that models how
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lineages coalesce (share a common ancestor) within the same locations or migrate between them.
In order to distinguish between local transmission and transmission occurring outside of King
County, we extended MASCOT to jointly infer coalescent and migration rates from local
outbreak clusters (2). In short, we model the transmission dynamics in King County as a
structured coalescent model. We then model the introduction of lineages into King County
(independent of whether it is North or South King County) as a backwards in time process of
lineages having originated from outside King County. This backwards in time process is assumed
to be independent of the transmission dynamics in King County and occurs at a rate given by the
introduction rate (2). The rate of introduction that is estimated as part of the MCMC is allowed to
vary over time.

We used generalized log-linear models (35) to estimate whether COVID-19 hospitalizations,
cases, seroprevalence, NPIs, and mobility are predictive of SARS-CoV-2 effective population
sizes and migration rates over time. The model included error terms to account for observation
noise and omitted predictor variables. We implemented a MASCOT-GLM (35) analysis on King
County transmission clusters with BEAST2 (36) software, allowing the effective population
sizes and the rates of introduction to change every day and every 14 days, respectively. We
performed effective population size and migration rate inference using an adaptive multivariate
Gaussian operator (37) and ran the analyses using an adaptive Metropolis-coupled MCMC (38).

Empirical Predictors

We chose several predictors to inform estimates of the migration and effective population size of
SARS-CoV-2 in King County regions. To inform the effective population size, we used daily
COVID hospitalizations (lagged 1-3 weeks), daily confirmed SARS-CoV-2 cases, and percent
immunity against SARS-CoV-2 in Western Washington.

Percent immunity for Western Washington was found via the Nationwide COVID-19 Infection-
and Vaccination-Induced Antibody Seroprevalence from the Centers for Disease Control (CDC)
(39). To include daily values, the monthly seroprevalence surveys estimates were plotted, fit to a
spline and daily percent immunity values based on the fitted spline were extrapolated for the
time period studied to include as a predictor.

We also used dates of non-pharmaceutical interventions (NPIs) in WA and between-region
mobility to inform migration rates between North and South King County. Dates of NPIs were
found as part of the COVID-19 US State Policy Database (40). NPIs included are start and end
of emergency stay at home orders as well as closing and reopening of bars and restaurants. We
chose not to include the opening and closing of public schools due to a high degree of overlap
with the NPIs already included. Washington State closed down public schools on March 16th,
2020, which was only a week before the statewide shelter in place was issued on March 23rd,
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2020. Similarly, public schools returned to in-person instruction on April 5th, 2021, which is
near to the date of restaurant reopening at the end of February 2021.

To measure movement between North and South King County, we extracted the home CBG of
devices visiting either North or South points of interest (POIs) and limited our dataset to devices
with home locations in South King County visiting North King County POIs, or vice versa, and
to POIs that had been recorded in SafeGraph’s dataset since January 2019. For each POI in each
week, we excluded home census block groups with fewer than five visitors to that POI. To adjust
for variation in SafeGraph’s panel size over time, we divided Washington’s census population
size by the number of devices in SafeGraph’s panel with home locations in Washington state
each month and multiplied the number of weekly visitors by that value. To estimate the total
number of visits from each home CBG each week, we multiplied the number of weekly visitors
by the total number of visits divided by the total number of unique visitors in Washington state
each week. For each direction of movement, we summed these adjusted weekly visits across
POIs and measured the percent change in movement from North to South or South to North over
time relative to the average movement observed in all of 2019.

Posterior processing

Parameter traces were visually evaluated for convergence using Tracer (v1.7.1) (41), and 10%
burn-in was applied for all phylodynamic analyses. All tree plotting was performed with baltic
(https://github.com/evogytis/baltic) and data visualizations were done using Altair (42). We
summarized trees as maximum clade credibility trees using TreeAnnotator and visually inspected
posterior tree distributions using IcyTree (43).

Transmission between regions was calculated by measuring the number of migration jumps from
North to South King County and vice versa walking from tips to root in the posterior set of trees.
In order to account for unequal sampling between the two regions, the rate of migration was
estimated as the total number of migration jumps per month in each region divided by the
average branch lengths for that region for the same month.

Persistence time was measured by calculating the average number of days for a tip to leave its
sampled location (North vs South), walking backwards up the phylogeny from the tip up until
node location was different from tip location (following Bedford et al. (44)).

Estimating percentage of new cases due to introductions

We estimated the percentage of new cases due to introductions for both North and South King
County by adapting the methods previously described in Müller et al (2). The percentage of cases
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due to introductions at time t can be calculated by dividing the number of introductions at timeπ
t by the total number of new cases at time t.We first represented the total number of new cases in
a region as the sum of the number of introductions and the number of new local infections due to
local transmission, resulting in the following equation:

π(𝑡) = # 𝑜𝑓 𝑖𝑛𝑡𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛𝑠(𝑡)
# 𝑜𝑓 𝑛𝑒𝑤 𝑙𝑜𝑐𝑎𝑙 𝑐𝑎𝑠𝑒𝑠(𝑡) + # 𝑜𝑓 𝑖𝑛𝑡𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛𝑠(𝑡) 

We estimated the number of new local cases at time t by assuming the local epidemic in each
King County region follows a simple transmission model, in which we estimate the number of
new cases at time t as the product of the transmission rate (new infections per day perβ
individual) multiplied by the number of people already infected in that region I. For the number
of introductions, we similarly assumed that the number of introductions equals the product of the
rate of introduction (introductions per day, which we refer to as migration rate m) and the
number of people already infected in that region I. We use the number of infected individuals in
the destination region rather than the origin region for calculating the number of introductions
since the approximate structured coalescent approach models epidemic processes as
backwards-in-time, resulting in the equation containing only information about the number of
infected individuals in the destination region. We then rewrote the above equation as

,π(𝑡) = 𝑚(𝑡) 𝐼(𝑡)
β(𝑡) 𝐼(𝑡) + 𝑚(𝑡) 𝐼(𝑡) 

where I(t) denotes the number of infected people in that region at time t. Given the presence of
I(t) in every element, we factored out I(t) to arrive at

.π(𝑡) = 𝑚(𝑡)
β(𝑡) + 𝑚(𝑡) 

For each region in King County, we considered introductions at time t to be the sum of the
introductions coming into the region from outside of King County and introductions coming
from the neighboring King County region. Splitting up the introductions by source of
contribution, we ultimately defined the percentage of new cases due to introductions at time tπ
for region y as

,π
𝑦
(𝑡) =

𝑚𝑏
𝑧𝑦

(𝑡) + 𝑚
𝑜𝑢𝑡

(𝑡)

β
𝑦
(𝑡) + 𝑚𝑏

𝑧𝑦
(𝑡) + 𝑚

𝑜𝑢𝑡
(𝑡) 

where denotes the backwards migration rate per day from the neighboring King County𝑚𝑏
𝑧𝑦

region z into region y, and refers to the migration rate per day into region y from outside of𝑚
𝑜𝑢𝑡

 

King County.
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In a transmission modeling framework, the transmission rate is equal to the sum of the growthβ
rate r and the per-day uninfectious rate whereδ

β =  𝑟 + δ

To compute the growth rate in region y, we assume that differences in effective population size

between adjacent time intervals can approximate the growth rate r and thus . In
𝑑(𝑙𝑜𝑔(𝑁𝑒

𝑦
)

𝑑𝑡  ≈  𝑟

addition, we assumed that dNe/dt is independent from the rate of introduction. We calculated the
growth rate of the effective population size as𝑑𝑁𝑒

𝑑𝑡

= ,𝑑(𝑙𝑜𝑔(𝑁𝑒))
𝑑𝑡

𝑙𝑜𝑔(𝑁𝑒(𝑡+Δ𝑡)) − 𝑙𝑜𝑔(𝑁𝑒(𝑡))

Δ𝑡

where denotes the effective population size of a region at time t. We ran our𝑁𝑒(𝑡)

MASCOT-GLM analysis using daily time intervals but calculated using a rolling weekly𝑁𝑒 
average in order to smooth our estimates.

By also assuming an expected time until becoming uninfectious for each individual of 7 days
(45), we calculated the transmission rate at time t in region y asβ

y(t) =β 𝑑(𝑙𝑜𝑔(𝑁𝑒))
𝑑𝑡  +  δ

The rate of introduction per day from outside of King County into a King County region 𝑚
𝑜𝑢𝑡

(𝑡)

y is a parameter that was directly inferred by MASCOT-GLM for each daily time interval by
modeling everything outside of King County as a separate third deme.

To compute the backwards migration rate, we first calculate the forward-in-time varying

migration rate for region y into region z over a linear combination of c different𝑚𝑓
𝑦𝑧

(𝑡)

predictors:

𝑚𝑓
𝑦𝑧

(𝑡) =  𝑏 𝑒𝑥𝑝(
𝑖=1

𝑐

∑ 𝑤𝑖σ𝑖𝑝𝑖(𝑡) + 𝑒) 

where the forward migration rate is computed via MASCOT-GLM coefficients ,𝑚𝑓(𝑡) 𝑤𝑖

indicators , log-standardized predictor values for predictor i and the respective errorσ𝑖 𝑝𝑖

parameter e. The variable outside the summation refers to the overall migration rate scaler𝑏
while, refers to the migration rate scalar for each of the individual c predictors.𝑤𝑖
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From the forward-in-time migration rate , we can then calculate the backwards-in-time𝑚𝑓
𝑦𝑧

(𝑡)

migration rate from state z to state y, as the product of the ratio of effective population𝑚𝑏
𝑧𝑦 

(𝑡),

sizes and the calculated forward migration rates:
𝑁𝑒

𝑦
(𝑡)

𝑁𝑒
𝑧
(𝑡)

,𝑚𝑏
𝑧𝑦 

(𝑡) =  
𝑁𝑒

𝑦
(𝑡)

𝑁𝑒
𝑧
(𝑡) 𝑚𝑓

𝑦𝑧
(𝑡) 

Where refers to the effective population size in region y at time t and refers to the𝑁𝑒
𝑦
(𝑡) 𝑁𝑒

𝑧
(𝑡) 

effective population size in the neighboring King County region z at time t.

In addition to the calculation of percentage of new cases due to introductions, we repeated the
above calculation using only SafeGraph mobility data. We used the in-flow of visitors from
outside of King County and movement between each region of King County as approximations
for the number of introductions and within-region mobility as an approximation for the
transmission rate, following the same equation presented above. When estimating in-flows from
outside King County and within-region movement, we applied the same filtering and
normalization methods used when estimating between-region movement.

Estimating the effective reproductive number Rt

We calculated the effective reproductive number Rt , the time-varying average of secondary
infections, in both regions, using both the daily time-varying transmission rate and theβ
becoming uninfectious rate where . Additionally, we sought to separate out theδ 𝑅𝑡 =  β

δ

contributions of introductions versus local transmission to the Rtt of each region. To do so, we
modified the Rt equation to include the percent of new cases from introductions as an estimate of
local community spread only:

, where refers to the percentage of new cases due to introductions as described𝑅𝑡 =  β(1−π)
δ π

above.

To estimate the contribution of introductions from outside of King County separately from that
of the neighboring King County region, we calculated Rtusing the above equation and the
percent of cases from introductions as previously described but omitting introductions from
outside King County. Briefly:

π
𝑦𝑧

(𝑡) =  
𝑚

𝑦𝑧
(𝑡)

β(𝑡)+ 𝑚
𝑦𝑧

(𝑡) ,

where refers to the percentage of cases in region z due to introductions from region y into π
𝑦𝑧

(𝑡)

region z at time t, and refers to the per-day migration rate from region y to z as derived𝑚
𝑦𝑧

above.
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Data Availability
Nextstrain builds, BEAST XMLS, scripts, sequence information, and de-identified data can be
found at https://github.com/blab/ncov-king-county.
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Supplementary Materials: a list of the supplementary materials, followed by the actual text
of the Supplementary Materials.

1. Supp.Fig 1: Time-resolved maximum likelihood phylogenies for King County, WA
2. Supp.Fig 2: Source of introduction for each identified King County cluster
3. Supp.Fig 3: Number of local outbreak clusters over time by subsampling scheme
4. Supp.Fig 4: Rt estimation using phylodynamic estimates
5. Supp.Fig 5: Phylodynamic estimates of SARS-CoV-2 transmission in King County with

equal temporal subsampling.
6. Supp.Fig 6: Phylodynamic estimates of SARS-CoV-2 transmission in King County with

subsampling weighted by hospitalizations.
7. Supp. Table 1: Geocoding for different geographical scales in King County, WA
8. Supp.Table 2: Sequence Accession IDs and acknowledgements table
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Supplementary Figure 1: Time-resolved maximum likelihood phylogenies for King County, WA by dominant variant wave with
sample collection dates between February 1 2020 and March 6 2022. Trees are filtered to highlight genomes from King County among
contextual sequences from around the globe. Tip color represents the region within King County, with pink corresponding to North
King County and blue representing South King County. Branches are colored based on inferred ancestry. Panel A represents all variant
clades excluding Alpha, Delta, and Omicron (the full tree can be explored interactively at
https://nextstrain.org/groups/blab/ncov-king-county/other), the other panels represent Alpha (B,
https://nextstrain.org/groups/blab/ncov-king-county/alpha), Delta (C, https://nextstrain.org/groups/blab/ncov-king-county/delta), and
Omicron (D, https://nextstrain.org/groups/blab/ncov-king-county/omicron
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Supplementary Figure 2: Source of introduction for each identified King County cluster. The left
column is introductions into North King County, the right into South King County. The panels show how
the inferred geographical source of each introduction changes over time as a percentage of all
introductions into the regions for that time period. The top row contains all the introductions among the
four different time-resolved phylogenies. Each subsequent row represents a different variant studied and
is labeled accordingly.
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Supplementary Figure 3: Number of local outbreak clusters over time by subsampling scheme:
random (A, Blue), equal temporal weighting by year-week (B, Gold), and subsampling weighted
by daily hospitalizations calculated using a 14 day moving average (C, Red)
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Supplementary Figure 4: Rt estimation using phylodynamic estimates (Blue North King
County; Orange = South King County) and case data (Black lines, solid = North King County,
dashed = South King County) The inner area denotes the 50% HPD interval and the outer area
denotes the 95% HPD interval.
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Supplementary Figure 5: Phylodynamic estimates of SARS-CoV-2 transmission in King
County with equal temporal subsampling. Results presented above were inferred using 3000
sequences subsampled using equal temporal weighting by year-week. Analyses presented, as
defined previously, are: effective population size over time (A), percent of cases due to
introductions (B), and local Rt estimations divided by region and source of contribution (C).
Orange denotes South King County; blue denotes North King County.
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Supplementary Figure 6: Phylodynamic estimates of SARS-CoV-2 transmission in King
County with subsampling weighted by hospitalizations. Results presented above were inferred
using 3000 sequences subsampled using weighting by hospitalizations over time using a 14 day
rolling average. Analyses presented, as defined previously, are: effective population size over
time (A), percent of cases due to introductions (B), and local Rt estimations divided by region
and source of contribution (C). Orange denotes South King County; blue denotes North King
County.
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Supplementary Table 1: Geocoding for different geographical scales in King County, WA

Region PUMA ZIPCODE

North
King
County

11601

98103

98107

98117

11602

98105

98115

98125

98195

11603

98101

98102

98104

98109

98119

98121

98154

98164

98199

11604

98112

98118

98122

98144

11605

98106

98108

98116

98126

98134

98136

11606

98133

98155

98177
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98011

98028

11607

98033

98034

98052

11608

98004

98005

98006

98007

98008

98039

11609

98040

98029

98076

98075

11616

98045

98065

98014

98077

98053

98024

98072

98019

South
King
County

11610

98055

98057

98056

98178

11611

98146

98148

98166

98168
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98188

11612

98003

98023

98198

98070

11613

98030

98031

98032

98092

11614

98001

98002

98047

11615

98010

98022

98038

98051

98027

98042

98059

98058
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