
Preprint submitted for peer review

Health Outcome Predictive Modelling in

Intensive Care Units

Chengqian Xian1*, Camila P. E. de Souza1† and Felipe F.
Rodrigues1,2†

1*Department of Statistical and Actuarial Sciences, University of
Western Ontario, 1151 Richmond Street, London, N6A 5B7,

Ontario, Canada.
2School of Management, Economics, and Mathematics, King’s
University College at Western University, 266 Epworth Avenue,

London, N6A 2M3, Ontario, Canada.

*Corresponding author(s). E-mail(s): cxian3@uwo.ca;
Contributing authors: camila.souza@uwo.ca; frodrig7@uwo.ca;

†These authors contributed equally to this work.

Abstract

The literature in Intensive Care Units (ICUs) data analysis focuses on
predictions of length-of-stay (LOS) and mortality based on patient acu-
ity scores such as Acute Physiology and Chronic Health Evaluation
(APACHE), Sequential Organ Failure Assessment (SOFA), to name a
few. Unlike ICUs in other areas around the world, ICUs in Ontario,
Canada, collect two primary intensive care scoring scales, a therapeutic
acuity score called the “Multiple Organs Dysfunctional Score” (MODS)
and a nursing workload score called the “Nine Equivalents Nursing Man-
power Use Score” (NEMS). The dataset analyzed in this study contains
patients’ NEMS and MODS scores measured upon patient admission
into the ICU and other characteristics commonly found in the liter-
ature. Data were collected between January 1st, 2015 and May 31st,
2021, at two teaching hospital ICUs in Ontario, Canada. In this work,
we developed logistic regression, random forests (RF) and neural net-
works (NN) models for mortality (discharged or deceased) and LOS
(short or long stay) predictions. Considering the effect of mortality out-
come on LOS, we also combined mortality and LOS to create a new
categorical health outcome called LMClass (short stay & discharged,
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2 Health Outcome Predictive Modelling in Intensive Care Units

short stay & deceased, or long stay without specifying mortality out-
comes), and then applied multinomial regression, RF and NN for its
prediction. Among the models evaluated, logistic regression for mor-
tality prediction results in the highest area under the curve (AUC) of
0.795 and also for LMClass prediction the highest accuracy of 0.630.
In contrast, in LOS prediction, RF outperforms the other methods
with the highest AUC of 0.689. This study also demonstrates that
MODS and NEMS, as well as their components measured upon patient
arrival, significantly contribute to health outcome prediction in ICUs.

Keywords: Intensive Care Units, Health outcome, Predictive modelling,
MODS, NEMS

1 Introduction

The Intensive Care Unit (ICU) is a unique hospital department, providing
the highest level of treatment for a hospital’s highest acuity patients. It is an
intrinsically technological environment where each patient generates thousands
of data points per day, and data-driven management applied to ICU allows not
only an evaluation of ICU performance but has other implications, including
better planning of scarce resources and transition of care and discharge [1, 2].

ICU scoring system is an essential tool to describe the severity of patients’
illnesses to improve clinical decision-making and predict patients’ health out-
comes [3–7]. Existing scoring systems to assess patient illness severity on
admission to ICU include the Acute Physiology and Chronic Health Evaluation
II and its variations (APACHE II) [8] as well as the Simplified Acute Physi-
ology Score (SAPS II) [9]. In addition to describing the severity of a patient’s
disease, Multiple Organ Dysfunction Score (MODS) [10] and Sequential Organ
Failure Assessment Score (SOFA) [11] were also developed to specifically evalu-
ate patients’ organ function or determine the rate of organ failure. The MODS
score (see the full list of its components in Appendix Table A6) is scaled from 0
to 24, and it is constructed from six organ systems and demonstrates a strong
correlation with the risk of ICU mortality [10]. The Nine Equivalents Nurs-
ing Manpower Use Score (NEMS) [12] (see the full list of its components in
Appendix Table A7) was developed from the Therapeutic Intervention Scoring
System (TISS) [13] to measure the nursing workload in ICU. NEMS is based
on nine life support interventions ranging from 0 to 56, and has been validated
in an adult 30-bed medical-surgical ICU in a tertiary care university hospital.
Its good agreement is further confirmed with TISS-28 [14].

In Ontario, Canada, hospitals collect MODS and NEMS for reporting pur-
poses, but they lack the necessary measurements to calculate widely used
severity scores like APACHE and SAPS [15]. Limited recent studies have
explored the relationship between MODS, NEMS, and the health outcomes of
ICU patients in Ontario. Notably, two main studies conducted by Kao et al.
[16] and Rodrigues [15] provide valuable insights. In their study, Kao et al.
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developed a logistic regression model to predict patient mortality using MODS,
NEMS, and general patient characteristics, such as age, based on a data set
comprising 8, 822 patients collected from Ontario between January 1, 2009,
and November 30, 2012. Rodrigues expanded on Kao et al.’s work in two ways
using more recent data collected between January 1, 2015, and December 31,
2016, which included 4, 758 patients. First, Rodrigues enhanced the mortality
prediction models by incorporating the components of MODS and NEMS, not
only through logistic regression but also utilizing supervised machine learn-
ing methods like random forests and neural networks. Additionally, Rodrigues
focused on developing models for predicting length of stay (LOS) in the ICU,
as it significantly influences ICU resource planning due to the strong correla-
tion between ICU costs and LOS [17]. The key distinction between these two
studies lies in their research focus. Rodrigues primarily compares the perfor-
mance of multiple statistical and supervised machine learning algorithms in
predicting mortality and LOS, while Kao et al. primarily investigate statisti-
cally significant predictors in distinguishing patients at low and high risk of
mortality.

In this work, we expand the work of [16] by adding the components of
MODS and NEMS as predictors. We then consider logistic regression and com-
pare it with two other common machine learning methods (random forests
and neural networks) for mortality or LOS predictions. We validate the work
of [15] using a larger data set with 15, 350 patients collected from the same
ICUs between Jan. 1, 2015, and May 31, 2021. Our main research objectives
are: (i) investigate the significance of MODS and NEMS along with their com-
ponents in both mortality and LOS predictions; (ii) analyze the quantitative
effect of patient general characteristics and the admission characteristics (e.g.,
MODS and NEMS) via regression models; (iii) construct a new categorical
outcome, LMClass (LOS-Mortality Class), to combine mortality and LOS,
and fit multinomial regression models, random forests, neural networks for its
prediction.

As we will demonstrate and discuss, our proposed models with MODS and
NEMS components added as predictors significantly improve the performance
of mortality and LOS predictions. Compared with [15], our second objective
fills the gap in the interpretation of risk factors on health outcomes predictive
modelling and provides a better understanding of a predictive model. More
sophisticated methods like machine learning algorithms may perform better
in classifying health outcomes. However, their complex model structures make
it harder to understand and may lose interpretation power [18]. Additionally,
the motivation for analyzing LMClass comes from the “endogeneity” of mor-
tality in ICU length of stay prediction [15, 19]. For instance, deceased patients
may have shorter or longer LOS than their discharged counterparts. Ignor-
ing this endogenous effect may cause bias in LOS prediction [20]. Combining
these two outcomes may provide a more comprehensive and useful assessment
of patient outcomes [21]. We, therefore, suggest a new categorical health out-
come, LMClass, with three categories: short stay & discharged; short stay &
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deceased; and long stay without specifying mortality outcomes. We will discuss
the definition of a prolonged LOS in Section 3.1. In this composite outcome,
we focus on mortality outcomes in patients with short LOS for short-term
allocation and planning of ICU resources.

The rest of the paper is structured as follows. We provide a general lit-
erature review on health outcome predictive modelling in ICU in Section 2.
Section 3 presents the material and the statistical methodology. Then, Section
4 describes our analysis results. Finally, the conclusion and discussion are
presented in Section 5.

2 Literature review

With advances in information technology and data science, statistical models
and machine learning methods have been applied to ICU data for mortality
and LOS predictions [1, 22–25]. In what follows, we present a comprehensive
literature review of mortality prediction in Section 2.1 and LOS prediction in
Section 2.2.

2.1 Mortality prediction

ICU mortality prediction, involving the classification of patients as either
discharged or deceased, is commonly approached as a binary classification
problem. Extensive research has been conducted for ICU mortality prediction.
For comprehensive insights in this field, systematic reviews by Fusaro et al.
[26] and Keuning et al. [27] are valuable resources.

Logistic regression combined with the likelihood ratio test (LRT) is widely
used to predict patient mortality in ICU [16, 28–36]. In a recent study [37],
logistic regression was employed to detect risk factors associated with ICU
survival during the COVID-19 pandemic. As one of the most commonly used
generalized linear models, logistic regression has an excellent interpretation
power via odds ratio [38, 39], which helps quantitatively describe the impact
of each predictor in mortality risk [18].

Machine learning algorithms are widely acknowledged as alternatives to
logistic regression in various domains, including ICU mortality prediction.
These algorithms encompass a range of methods, such as decision trees, sup-
port vector machines, k-nearest neighbors, random forests, super learners,
boosting, and neural networks, among others [15, 40–44]. Furthermore, there
exists an extensive body of literature that explores the application of machine
learning methods to predict ICU mortality outcome specifically for COVID-
19 patients [45–49]. When reviewing these studies, it is essential to consider
several unique characteristics of the analyzed ICU data. These factors include
the country or region from which the data originates, the patient population
under study (e.g., adults or children, patients with severe pneumonia or heart
disease), and whether the data is sourced from a single center or multiple cen-
ters. By taking these factors into account, researchers can better contextualize
and interpret the findings from these diverse studies.
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2.2 LOS prediction

When reviewing the literature on ICU length-of-stay (LOS) prediction, we can
categorize the existing studies into three main groups: typical regression analy-
sis, binary classification, and survival regression. In typical regression analysis,
two common approaches are employed: multiple linear regression (MLR) and
regression using machine learning techniques. For binary classification, the
first step is to define what constitutes a prolonged LOS. Researchers need to
establish a threshold or criteria for defining a long stay in the ICU. Once this
definition is established, classification methods are applied to predict whether
a patient will have a prolonged LOS based on the available features and predic-
tors. Survival regression analysis is another approach used in LOS prediction,
specifically designed to handle censoring in the data collection process. It is
worth noting that different scoring systems may be employed in various stud-
ies, depending on the geographical location of the ICUs and the specific context
of the research. Recent comprehensive reviews on LOS prediction can be also
found in [50–52].

Zimmerman [7] developed an MLR procedure using APACHE IV to esti-
mate ICU stay using data across ICUs in the United States. They showed that
the accuracy and utility of the predictions based on the APACHE IV model
were unsatisfactory. In [53], researchers improved patient LOS prediction by
firstly optimizing a threshold for a prolonged stay and building a multivariate
linear regression with the severity score information on day five, achieving a
better prognosis than that based on ICU day one information alone. Similar
studies where the MLR was applied can be found in [28, 54, 55]. Regres-
sion models based on machine learning are also widely considered and built,
which include support vector regression [56], gradient boosting regression [57],
random forests regression [58, 59].

Sometimes, clinical practitioners are also interested in the binary classifica-
tion for LOS prediction (long-stay or short-stay), and therefore classification
methods including logistic regression, support vector machine, random forests,
and neural networks were also implemented in predicting prolonged LOS or
short LOS [15, 56, 60, 61]. Neural networks were developed as predictive instru-
ments for ICU LOS for the first time in [60]. Defining prolonged LOS as a stay
greater than two days, they found that the neural networks model performed
well with an area under the receiving operating characteristic curve (AUC) of
0.6960 in the validation set. In [56] and [15], the authors performed similar
work on LOS prediction by applying machine learning methods but based on
different severity scores (SOFA score in [56] while MODS in [15]).

Recently, survival regression analysis is also conducted for LOS prediction,
where the time of ICU stay is considered a survival time response to correct
for censoring. The AFT model with Weibull distribution was developed in [15]
for short-term capacity planning in ICUs from Ontario, Canada. The Weibull
AFT model was also applied in [62, 63] to investigate the effect of predictors
on LOS for COVID-19 patients in the UK. Authors in [62] further built the
log-normal AFT compared to the one with Weibull distributional assumption.
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The Cox PH model was developed in [64] to analyze the effect of severity
scores, SOFA, on LOS for COVID-19 patients in India.

3 Material and methods

3.1 Data source and data management

Our research is a retrospective study conducted at two teaching hospital ICUs
in southwestern Ontario, which specialize in the care of various patient pop-
ulations, including neurosurgical, cardiovascular surgery, and transplantation
patients. Data were collected from Jan. 1, 2015, to May 31, 2021 and stored in
four separate data sets called MODS, NEMS, Source and Awaiting Transfer.
MODS is the data set containing the MODS score along with its components
measured upon patient admission to ICU. NEMS is another important set con-
taining patients’ NEMS scores and their components measured daily in ICU.
ICU discharge time and destination are also provided in MODS and NEMS
data sets. The Source set includes de-identified patient general characteristics
(e.g., age, sex) and admission characteristics (e.g., admission source, admis-
sion diagnosis, patient category, referring service). The last data set, Awaiting
Transfer, provides the admission time and the awaiting transfer discharge start
date time, both of which were used to calculate the clinical LOS.

Since we have four separate data sets, several new variables were created
in each set before merging them into a single data set. In the MODS set, we
created Mortality as a binary response which can be constructed from dis-
charge destination: 1 if the patient is deceased at the end of the ICU stay,
otherwise 0 for being discharged alive. Besides, we calculated the total LOS,
defined as the period between patients’ admission to and exit from ICU, which
is used to detect extreme values of stay in data cleaning procedure as done
in [15]. In the Source set, we edited the admission source and admission diag-
nosis by combining some of their categories in the same way proposed in
[15]. For admission sources, we kept the Emergency Department, Operating
Room, and Unit/Ward/Stepdown while combining the other levels to Outside
Hospital/Other. For admission diagnosis, we kept the Cardiovascular/Car-
diac/Vascular, Gastrointestinal, Neurological, Respiratory, and Trauma while
combining other levels to Other. In the Awaiting Transfer set, we calculated
the clinical LOS, defined as the period between patient admission to ICU and
the physician’s disposition decision (i.e., transfer or discharge). Then the pro-
longed LOS called IsLong is defined as a stay longer than five days, based on
the empirical distribution of LOS as discussed in Section 4.1. In other words,
IsLong takes the value of 1 if clinical LOS > 5 days and 0 otherwise. Besides,
LMClass, a categorical response with three levels, was also created by combin-
ing Mortality and IsLong : short stay & discharged, short stay & deceased, or
long stay without specifying mortality outcomes.

To build predictive models for each health outcome, we need to combine
these four separate data sets into a single one. Patients’ ID and admission
time can link these four data sets. We first extracted the MODS score with
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its components from the MODS set and used patients’ IDs and admission
time to merge the NEMS score with its components on admission day in the
NEMS set. To obtain the clinical LOS, patient characteristics, and admission
characteristics, we merged the latest combined data set with the Awaiting
Transfer set and the Source set, resulting in a single data set with 15,474
cases. Similar to [15], some cases with large total LOS (≥ 60 days, 90 cases),
unknown or missing sex (15 cases), and unusual age (≥ 110 years, 19 cases)
were removed from our merged data set for further analysis, resulting in a
finalized data set with 15,350 cases. A flow chart of this process is provided in
Figure 1.

Fig. 1: Flow chart of data cleaning

3.2 Statistical analysis

The finalized data set (N = 15, 350) was split into a training set (N = 10, 745)
and a validation set (N = 4, 605) with a ratio of 7:3. Each proposed model was
built on the training set and validated on the validation set. Figure 2 presents
a flow chart of ICU health outcome predictive modelling. To present more
details of our methodology and assure reproduciblility, we fill in the scorecards
suggested by [65] for mortality or LOS prediction (Table A1 in Appendix A)
and LMClass prediction (Table A2).

Logistic and multinomial regression are two widely used generalized linear
models for modelling binary and multi-class responses, respectively [18]. As
we illustrated in our objectives, we aim to apply the odds ratio with respect
to a unit change from the risk factor to describe the corresponding effect
on the health outcome. For example, in mortality prediction, considering a
fitted logistic regression model on a series of risk factors including MODS
with a positive estimated regression coefficient denoted by β̂, we can describe
as follows: with other risk factors unchanged, an ICU patient with one unit
increase in MODS score will increase the odds of death by 100

(
exp

(
β̂
)
− 1

)
%

[18].
Random forests (RF), proposed in [66], is another popular model for clas-

sification by constructing a multitude of decision trees. The two most critical
parameters in the random forests model are the number of trees to be built and
the number of variables randomly sampled as candidates at each split. In the
R package RandomForest [67], these parameters are represented by function
arguments ntree and mtry, respectively. In our data set, there are 23 predic-
tors, so mtry can be 1, 2, ..., or 23. For the number of trees, we chose from
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100, 500 and 1000. Combining both ntree and mtry, we have 69 (i.e., 23× 3)
alternative models built on the training set using all predictors available. To
analyze the black-box mechanisms of random forests, one of the most efficient
variable importance measures, mean decrease accuracy (MDA) introduced in
[68], can be applied, which is a method of computing the predictor importance
on permuted out-of-bag samples based on the mean decrease in the accuracy.
In other words, if MDA is high for a predictor, this predictor is important.
Visualization of MDA for all predictors is provided after fitting an RF model
in the same R package, RandomForest.

Neural networks (NN) were built based on the resilient back-propagation
with weight backtracking algorithm proposed by Riedmiller M. in 1994 [69].
Before modelling, we conducted data preprocessing for numeric predictors
(e.g., age) and ordinal categorical predictors (e.g., components of MODS) by
min-max normalization and for nominal categorical predictors (e.g., admission
diagnosis) by a one-hot encoding scheme [70]. The two most important param-
eters of the NN are the number of hidden layers and the number of neurons on
each layer. We consider one or two hidden layers with one to five neurons, and
as a result, we need to find the optimal NN model from 30 (i.e., 5 + (5 × 5))
alternative combinations of different numbers of hidden layers and neurons.
All statistical analyses were performed using software R version 4.2.1.

In what follows, the evaluation metrics for the classification are demon-
strated. In mortality and LOS binary predictions, we assessed model discrimi-
nation performance by AUC from the receiver operating characteristic (ROC)
curve, sensitivity (Sen, also called “recall”), specificity (Spe), accuracy (Acc),
Matthews correlation coefficient (MCC), positive predictive value (PPV, also
called “precision”), negative predictive value (NPV) and F1 score. In LMClass
prediction, which is a three-class classification problem, we calculate the accu-
racy (i.e., the overall percentage of cases correctly classified), the balanced
accuracy (i.e., the average of recalls from each class) and the Kappa statistic
[71] to evaluate the performance of each proposed model. In binary classi-
fication, we use the AUC as a criterion for parameter optimization in RF
and NN models, while we use the Kappa statistic for LMClass classification.
As discussed in [72], AUC evaluates the overall diagnostic performance of a
binary classification and helps select the optimal threshold for determining
the presence or absence of a specific health outcome. Furthermore, the Kappa
statistic in multi-class classification is an appropriate metric to account for
class imbalance [73].

4 Results

In this section, we first present the descriptive analysis results of our data
set, and then the results regarding mortality, LOS, and LMClass prediction,
respectively. We also quantitatively elaborate on how MODS and NEMS affect
the prediction of health outcomes via the odds ratio (i.e., the relative risk
ratio) from regression-based models.
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Fig. 2: Flow chart of ICU health outcomes predictive modelling

4.1 Descriptive analysis

In our dataset, 11, 963 admitted patients were discharged alive when exiting
the ICU while 3, 387 patients died. Most patients stayed less than 5 days in
ICU, accounting for 70% of the study population. Table 1 shows the general
characteristics of patients (excluding the components of MODS and NEMS) in
the training and validation sets. The median with interquartile interval (IQI)
was presented for numeric variables, and for categorical variables, raw counts
and percentages were presented. We can observe that the median values of
MODS and NEMS scores are the same in the training and validation sets (5
points with IQI 3-7 and 32 points with IQI 27-39, respectively). The mortality
rate in training is 21.83%, 0.78% lower than that in the validation set. Median
clinical LOS in training and validation is 2.545 days (IQI 1.082-5.776) and
2.537 days (IQI 1.115-5.878), respectively.

Figure 3 shows the histogram with the estimated density function (the red
curve) of clinical LOS. There are only a few cases with clinical LOS longer than
20 days and most of cases have clinical LOS between 0 and 4 days, resulting
in a right-skewed distribution. Specifically, 30% of ICU patients in the data
set stayed longer than 5 days and 15% longer than 10 days. Teaching hospitals
in Ontario define a prolonged ICU LOS as longer than 21 days [15], which
accounts for 4.1% in our data set. Therefore, we need to adjust the definition of
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a prolonged LOS to preserve clinical significance while avoiding an extremely
imbalanced data set. We consider a stay longer than 5 days (i.e., the 70th
percentile) as a prolonged stay in our data set. First, patients may require 2-
day stay in ICU for routine postoperative monitoring [74, 75]. Second, most
standard classification machine learning methods including random forests face
great challenge in presence of imbalanced data [76]. It is important to note
that different studies may define prolonged LOS using different thresholds, for
example, 3-day [77], 5-day [78, 79], 7-day [80], 8-day [81], and 21-day [82].

0.00

0.05

0.10

0.15

0.20

0 20 40 60
Clinical LOS (days)

de
ns

ity

Fig. 3: Histogram plot with estimated density (red curve) of clinical LOS.

4.2 Mortality prediction

The best RF model in mortality prediction is with mtry = 3 and ntree = 1000.
In other words, the number of variables randomly sampled as candidates at
each split on the tree is three, and 1000 trees were built to construct the forests.
The best NN model has one hidden layer on which there are two neurons.

Performance of logistic regression, RF and NN on the validation set for
mortality prediction is shown in Table 2. ROC curves for all models in the
validation set are also presented in Figure 4 which shows no big difference
among different models. Logistic regression outperforms RF and NN with the
highest scores in AUC (0.795), accuracy (0.705), F1 score (0.532) and PPV
(0.415). RF performs the best in achieving the highest sensitivity of 0.748 and
NPV of 0.904. Logistic regression has the second highest sensitivity (0.743),
while NN provides a relatively lower sensitivity (0.732). The MCC values are
low, ranging from 0.364 to 0.373 and the F1 scores are better, ranging from
0.527 to 0.532.

In mortality prediction, the F1 scores from the proposed models are slightly
larger than 0.5, which, one may think, is close to a random guess. The F1
score in binary classification takes into account both PPV (i.e., precision)
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and sensitivity (i.e., recall) to provide a more robust evaluation in case of
data imbalance. In our predictive modelling for patient mortality, we obtained
a lower PPV, around 0.4, while a higher sensitivity, around 0.7, from each
proposed model. Therefore, the F1 score is around 0.5. In principle, an F1
score of 0.5 indicates a lower prediction performance. However, such an F1
score resulting from a higher sensitivity still carries meaning for this type of
application. For example, since we define death as the outcome of interest, a
higher sensitivity means the model correctly detects most patients who will
actually die. Moreover, if our model predicts a patient’s death, the patient is
still likely to survive based on our PPV values. In contrast, due to our high
NPV values, a survival prediction is likely a true negative, i.e., the patient
survives.
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Fig. 4: ROC curves for mortality prediction in the validation set.

Red: logistic regression; Green: random forests; Blue: neural networks

Table A3 in the Appendix A shows the results of selected predictors for
logistic regression based on AIC. Those selected predictors include six com-
ponents of MODS (Haematologic, Hepatic, Renal, Cardiovascular, Neurologic
and Respiratory), NEMS score, six components of NEMS (Basic Monitoring,
Intracranial Pressure Monitor, Dialysis, Intra-Aortic Balloon Pump, Other
Interventions Within this Unit and Interventions Outside this Unit), Age, Sex,
Patient Category, Admission Source and Admission Diagnosis. The odds ratio
and its 95% confidence interval (CI) were also calculated for each selected pre-
dictor. We find that MODS score is not selected in the optimal model but its
six components are. However, NEMS is selected in the model and has an odds
ratio of 1.07 (95% CI = [1.06, 1.08]), which indicates that one point increase
in NEMS score would increase the relative risk of mortality (i.e., death) by 7%
(95% CI = [6%, 8%]), holding the other covariates fixed.
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The significant variables returned by the regression model and the impor-
tant variables from random forests have a high degree of agreement. In logistic
regression, the likelihood ratio test (LRT) was applied to all the selected pre-
dictors to assess their significance [18], and the corresponding p-values were
reported in the A3. Except for one of the NEMS components, the Intra-
Aortic Balloon Pump, we find that all other selected predictors are statistically
significant for mortality prediction. We present a visualization of predictor
importance using MDA from the RF model in the left plot of 5. The plot shows
that NEMS, MODS, ICU admission source, age, neurological level, patient
category and ICU admission diagnosis are the seven most important predic-
tors with an MDA higher than 30%. In addition, these seven predictors are all
significant predictors in the logistic regression model for mortality prediction.

Practitioners may be interested in the sensitivity (i.e., recall) of the fitted
model for mortality prediction. Specifically, they are concerned about the pro-
portion of correct prediction for those patients who deceased at the end of ICU
stay. In mortality prediction, the sensitivity coming from RF is 0.748, mean-
ing that it works relatively well in predicting the mortality outcome in those
patients who deceased in the end and 74.8% could be correctly predicted. NPV
is also an important index in mortality prediction. RF has the highest NPV of
0.904, meaning that if we predict that someone will be discharged alive at the
end of the stay, they would likely be discharged with a probability of 90.4%.

Fig. 5: Importance of predictors based on RF model in mortality (left) and
LOS (right) predictions.
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4.3 LOS prediction

In LOS prediction, the optimal RF model has the same parameter structure
as that in mortality prediction where three predictors were randomly sampled
at each split on the tree and 1000 trees were built. The best NN model has one
hidden layer with one neuron. This simplest NN model was also presented and
investigated as the best model in [84] for survival prediction in the ICUs, which
is consistent with the empirical analysis result that reducing the complexity
of a neural network structure may provide a better performance of prediction
for health outcomes in ICUs [85, 86].

Table 3 presents the evaluation measures of all models for LOS prediction
in the validation set. The AUC values of all models are lower than those in mor-
tality prediction by around 10%. The MCC values ranging from 0.247 to 0.251
are very low while the F1 scores ranging from 0.503 to 0.508 are still accept-
able. On the whole, logistic regression and RF outperform NN. Specifically,
logistic regression has the highest score in sensitivity (0.673), MCC (0.251)
and NPV (0.820), while RF has the highest score in AUC (0.689), specificity
(0.622), accuracy (0.630) and PPV (0.411). The corresponding ROC curves
were shown in Figure B1 in Appendix B and once again, no big difference
among models can be seen from the plot.

In LOS prediction, sensitivity is one of the most important indices for the
choice of models. Logistic regression has the highest sensitivity of 0.673, indi-
cating that 67.3% of patients who stayed more than 5 days could be correctly
predicted. The negative predictive values (NPV) from logistic regression is also
the highest (0.82), meaning that if we predict one stays less than 5 days, they
would probably stay less than 5 days with a probability of 0.82.

Table A4 in Appendix A contains information of the selected predictors for
logistic regression in LOS prediction. MODS score with its two components
(Cardiovascular and Respiratory), NEMS score with its five components (Cen-
tral Venous Line, Arterial Line, Intracranial Pressure Monitor, Dialysis and
Interventions Outside this Unit), Sex, Admission Source and Admission Diag-
nosis are selected in the best model. The odds ratios for MODS and NEMS
are 1.04 (95% CI = [1.02, 1.06]) and 1.04 (95% CI = [1.04, 1.05]), respec-
tively. This indicates that one point increase in MODS score or in NEMS score
would increase the relative risk of staying more than 5 days by 4%, holding
the other predictors fixed. Furthermore, from the right plot of Figure 5, we
can see NEMS and MODS are both important predictors in prolonged LOS
prediction, which is consistent with results of LRT for testing the significance
of MODS and NEMS based on logistic regression.

4.4 LMClass prediction

In LMClass prediction, only NN models with one hidden layer reliably con-
verged. Therefore, we considered one to ten neurons within the hidden layer
and found that three neurons yielded the highest Kappa statistic. For the RF
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model fitting, the optimal number of random predictors at each split and the
optimal number of trees built are 9 and 500, respectively.

Table 4 presents each overall accuracy, balanced accuracy and the Kappa
statistic from the fitted multinomial regression, RF and NN models on the
validation set. Multinomial regression, with a higher accuracy of 0.630, slightly
outperforms the NN model, which has an accuracy of 0.628. However, the NN
model results in the highest Kappa statistic of 0.303 and the highest balanced
accuracy of 0.5. All three models have a balanced accuracy of around 0.5 and a
Kappa statistic of around 0.3, indicating room for improvement in predicting
LMClass with imbalanced categories.

The information of selected predictors in the multinomial regression model
for LMClass prediction is provided in Table A5 in Appendix A . In multinomial
regression, we set the baseline class to be short stay & discharged, and the odds
ratio with 95% CI for each selected predictor was collected for another two
classes (e.g. short stay & deceased and long stay without specifying mortality
outcomes) with respect to the baseline. The odds ratios of MODS for the class
short stay & deceased and the class long stay without specifying mortality
outcomes are 1.40 (95% CI = [1.34, 1.46]) and 1.15 (95% CI = [1.11, 1.19]),
respectively. This means if one point increase in MODS score would increase
the relative risk of short stay & discharged over short stay & deceased and long
stay without specifying mortality outcomes by 40% (95% CI = [34%, 46%])
and 15% (95% CI = [11%, 19%]), respectively. Similarly, the odds ratios of
NEMS for short stay & deceased and long stay without specifying mortality
outcomes are 1.11 (95% CI = [1.10, 1.13]) and 1.07 (95% CI = [1.06, 1.08]),
respectively. This means that one point increase in NEMS score would increase
the relative risk of short stay & discharged over short stay & deceased and
long stay without specifying mortality outcomes by 11% (95% CI = [10%,
13%]) and 7% (95% CI = [6%, 8%]), respectively, holding the other predictors
fixed. As a reference, importance of predictors based on MDA is visualized in
Figure B2 in the Appendix B which shows that both NEMS and MODS are
important in LMClass prediction.

Table 4: Performance of multinomial regression, RF and NN models on the
validation set for LMClass prediction.

Model Accuracy Balanced accuracy Kappa
Multinomial 0.630 0.499 0.299

RF 0.619 0.494 0.290
NN 0.628 0.500 0.303

5 Conclusions and Discussion

In this work, we developed several models for health outcomes prediction in
intensive care units. Compared with [16], adding the components of MODS
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and NEMS in the logistic regression for mortality prediction has an improve-
ment of 3.5% in AUC values in the validation set (see Table 5). This study
also demonstrates that MODS and NEMS with their components measured
upon patient arrival significantly contribute to health outcome prediction in
ICUs. In mortality prediction, achieving the highest sensitivity and NPV, RF
outperforms logistic regression and NN, but logistic regression achieves the
highest AUC. In LOS prediction, no big difference in the performance appears
in the logistic regression and NN model. In practice, we need to evaluate the
pros and cons of each model, and choose the best according to the type and
goals of the analysis. For example, if we are concerned about correctly predict-
ing the mortality outcomes among all the ICU patients, logistic regression is
our first choice, while we would choose RF if we emphasize on prediction accu-
racy among the deceased patients. Explanation power may also play a role,
especially with respect to the implications of such predictions. As an example,
the predictors of long stays may help inform capacity planning and resource
scheduling.

Furthermore, in terms of the definition of prolonged stay in the ICU, ran-
dom forests and neural networks have greatly improved LOS prediction when
we cut the short and long LOS at 5 days instead of 7 or 21 days as in [15].
A comparison on AUC values in LOS prediction between previous works and
our study is provided in Table 6. However, as in [15] for LOS prediction, we
find it is harder to classify a short or long stay than to detect mortality status.
The underlying reason could be the definition of prolonged LOS as a binary
health outcome. To improve the prediction accuracy, survival models can be
developed for LOS prediction, and in this scenario LOS can be considered as
a continuous time-to-event response.

A trade-off between interpretation power and accuracy of prediction usu-
ally exists in predictive modelling. Logistic and multinomial regression models
provide an interpretation for quantitative relationships between predictors and
health outcomes using odds (i.e., relative risk). Compared with regression-
based models, RF provides qualitative relationships using MDA, while NN is a
black box whose statistical theoretical justifications are still under investigation
in different frameworks [87, 88].

To our best of knowledge, we are the first to combine mortality with pro-
longed LOS to construct a new categorical health outcome and develop MODS
and NEMS based predictive models for its prediction. In our expectation, more
complexity occurs in this three-level outcome, making it more challenging to
achieve high prediction accuracy. More complex deep learning models such as
convolutional neural networks [89] and recurrent neural networks [90] can be
applied but with higher computational costs.

It is important to note that, our data, with two main intensive care scoring
systems, MODS and NEMS, were collected from two ICUs in London, Ontario,
Canada, and the results may not be consistent with those in other ICUs outside
of London, Ontario. For future work, a larger data set including the cases in
several different ICUs from the Critical Care Information System in Ontario
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will be obtained for further analysis and validation based on [91]. COVID-19
patients will also be included in the new data set for predictive modelling.

Table 5: Comparison on AUC values in Mortality prediction between previous
works and our study.

Model AUC value

Logistic regression in [16] 0.760
Logistic regression in [15] 0.767
Logistic regression in our study 0.795

Random forest (RF) in [15] 0.751
Random forest in our study 0.788

Neural network (NN) in [15] 0.638
Neural network (NN) in our study 0.789

Table 6: Comparison on AUC values in LOS prediction between work in [15]
and our study.

Logistic regression RF NN

LOS cutting at 7 days in [15] 0.701 0.677 0.606
LOS cutting at 21 days in [15] 0.635 0.622 0.526
LOS cutting at 5 days in our study 0.681 0.689 0.682
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Table A3: Selected predictors in logistic regression for mortality prediction.

Predictor Coefficient Odds ratio [95% CI] LRT p-value1

Haematologic < 0.0001
None (reference) - -
Minimal 0.38 1.46 [1.25, 1.71]
Mild 0.45 1.57 [1.25, 1.96]
Moderate 0.85 2.35 [1.82, 3.02]
Severe 1.22 3.40 [2.22, 5.20]

Hepatic < 0.0001
None (reference) - -
Minimal 0.13 1.14 [0.94, 1.39]
Mild 0.27 1.30 [0.94, 1.80]
Moderate 0.87 2.39 [1.57, 3.61]
Severe 1.20 3.32 [2.14, 5.15]

Renal < 0.0001
None (reference) - -
Minimal 0.30 1.36 [1.20, 1.53]
Mild 0.49 1.64 [1.38, 1.95]
Moderate 0.57 1.77 [1.37, 2.27]
Severe 0.13 1.14 [0.86, 1.51]

Cardiovascular < 0.0001
None (reference) - -
Minimal 0.27 1.31 [1.16, 1.47]
Mild 0.57 1.77 [1.44, 2.17]
Moderate 0.53 1.70 [1.24, 2.32]
Severe 0.71 2.03 [1.22, 3.42]

Neurologic < 0.0001
None (reference) - -
Minimal 0.28 1.32 [1.09, 1.61]
Mild 0.13 1.14 [0.93, 1.40]
Moderate 0.06 1.06 [0.84, 1.34]
Severe 0.89 2.45 [2.13, 2.81]

Respiratory < 0.0001
None (reference) - -
Minimal -0.07 0.94 [0.80, 1.09]
Mild 0.13 1.14 [0.98, 1.33]
Moderate 0.33 1.39 [1.20, 1.60]
Severe 0.52 1.68 [1.37, 2.05]

1p-value of the likelihood ratio test for significance of the corresponding predictor
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Table A3 continued: Selected predictors in logistic regression for mortality
prediction.

Predictor Coefficient Odds ratio [95% CI] LRT p-value1

NEMS Score 0.07 1.07 [1.06, 1.08] < 0.0001

Basic Monitoring 0.005
No (reference) -
Yes -2.23 0.11 [0.03, 0.48]

Intracranial Pressure Monitor < 0.0001
No (reference) - -
Yes 0.74 2.09 [1.46, 2.95]

Dialysis 0.002
No (reference) - -
Yes -0.44 0.65 [0.49, 0.85]

Intra-Aortic Balloon Pump 0.119
No (reference) - -
Yes -0.40 0.67 [0.40, 1.11]

Other Interventions 0.001
No (reference) - -
Yes -0.21 0.81 [0.72, 0.92]

Interventions Outside this Unit < 0.0001
No (reference) - -
Yes -0.43 0.65 [0.57, 0.75]

Age 0.03 1.03 [1.03, 1.04] < 0.0001

Sex 0.001
Female (reference) - -
Male -0.17 0.84 [0.76, 0.94]

Patient Category 0.001
Medical (reference) - -
Surgical -0.25 0.78 [0.67, 0.91]

Admission Source < 0.0001
Emergency (reference) - -
Operating Room -0.94 0.39 [0.31, 0.48]
Outside Hospital/Other -0.01 0.99 [0.86, 1.13]
Unit/Ward/Stepdown 0.36 1.43 [1.23, 1.66]

Admission Diagnosis < 0.0001
Cardiovascular (reference) - -
Gastrointestinal -0.45 0.64 [0.51, 0.80]
Neurological -0.06 0.94 [0.79, 1.14]
Other -0.58 0.56 [0.47, 0.66]
Respiratory -0.48 0.62 [0.53, 0.72]
Trauma -0.11 0.89 [0.68, 1.16]

1p-value of the likelihood ratio test for significance of the corresponding predictor
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Table A4: Selected predictors in logistic regression for LOS prediction.

Predictor Coefficient Odds ratio [95% CI] LRT p-value1

MODS Score 0.04 1.04 [1.02, 1.06] 0.012

Cardiovascular 0.052
None (reference) - -
Minimal 0.09 1.09 [0.98, 1.21]
Mild -0.19 0.83 [0.68, 1.00]
Moderate -0.22 0.81 [0.59, 1.09]
Severe -0.29 0.75 [0.45, 1.22]

Respiratory < 0.0001
None (reference) - -
Minimal 0.12 1.12 [0.98, 1.28]
Mild 0.29 1.34 [1.16, 1.53]
Moderate 0.40 1.50 [1.30, 1.73]
Severe 0.17 1.19 [0.97, 1.46]

NEMS Score 0.04 1.04 [1.04, 1.05] < 0.0001

Central Venous Line < 0.0001
No (reference) - -
Yes 0.46 1.59 [1.41, 1.79]

Arterial Line 0.041
No (reference) - -
Yes 0.23 1.25 [1.12, 1.41]

Intracranial Pressure Monitor 0.001
No (reference) - -
Yes 0.67 1.96 [1.43, 2.66]

Dialysis 0.001
No (reference) - -
Yes -0.22 0.80 [0.64, 0.99]

Interventions Outside this Unit 0.007
No (reference) - -
Yes -0.13 0.88 [0.78, 0.98]

1p-value of the likelihood ratio test for significance of the corresponding predictor
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Table A4 continued: Selected predictors in logistic regression for LOS pre-
diction.

Predictor Coefficient Odds ratio [95% CI] LRT p-value1

Sex 0.026
Female (reference) - -
Male 0.11 1.12 [1.02, 1.23]

Admission Source < 0.0001
Emergency (reference) - -
Operating Room -0.33 0.72 [0.62, 0.83]
Outside Hospital/Other 0.47 1.61 [1.43, 1.81]
Unit/Ward/Stepdown 0.34 1.40 [1.23, 1.60]

Admission Diagnosis < 0.0001
Cardiovascular (reference) - -
Gastrointestinal 0.21 1.23 [1.01, 1.49]
Neurological 0.23 1.25 [1.06, 1.49]
Other 0.18 1.20 [1.03, 1.39]
Respiratory 0.55 1.73 [1.51, 1.99]
Trauma 0.86 2.37 [1.94, 2.90]

1p-value of the likelihood ratio test for significance of the corresponding predictor
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Table A5: Selected predictors in multinomial regression for LMClass predic-
tion.

Predictor short & deceased long stay

Odds Ratio 95% CI Odds Ratio 95% CI

MODS Score 1.40 [1.34, 1.46] 1.15 [1.11, 1.19]

Renal
None (reference) - - - -
Minimal 1.03 [0.87, 1.21] 0.99 [0.87, 1.13]
Mild 0.99 [0.78, 1.26] 1.02 [0.84, 1.25]
Moderate 0.83 [0.59, 1.18] 1.21 [0.92, 1.60]
Severe 0.30 [0.21, 0.45] 0.69 [0.52, 0.92]

Neurologic
None (reference) - - - -
Minimal 1.06 [0.83, 1.36] 0.97 [0.81, 1.17]
Mild 0.54 [0.41, 0.72] 0.98 [0.81, 1.18]
Moderate 0.40 [0.29, 0.55] 0.79 [0.64, 0.99]
Severe 0.85 [0.68, 1.07] 0.95 [0.79, 1.14]

Respiratory
None (reference) - - - -
Minimal 0.67 [0.56, 0.81] 0.96 [0.84, 1.11]
Mild 0.61 [0.49, 0.75] 1.11 [0.95, 1.30]
Moderate 0.60 [0.48, 0.75] 1.28 [1.08, 1.52]
Severe 0.60 [0.45, 0.82] 1.10 [0.85, 1.42]

NEMS Score 1.11 [ 1.10, 1.13] 1.07 [1.06, 1.08]

Basic Monitoring
No (reference) - - - -
Yes 0.07 [0.01, 0.35] 0.70 [0.08, 5.94]

Central Venous Line
No (reference) - - - -
Yes 1.04 [0.87, 1.23] 1.54 [1.36, 1.74]

Arterial Line
No (reference) - - - -
Yes 0.94 [0.80, 1.11] 1.22 [1.08, 1.38]

Intracranial Pressure Monitor
No (reference) - - - -
Yes 2.05 [1.29, 3.25] 2.34 [1.65, 3.33]

Dialysis
No (reference) - - - -
Yes 0.58 [0.41, 0.82] 0.70 [0.54, 092]

Other Interventions Within Unit
No (reference) - - - -
Yes 0.74 [0.64, 0.86] 0.94 [0.84, 1.05]

Interventions Outside Unit
No (reference) - - - -
Yes 0.56 [0.47, 0.66] 0.76 [0.67, 0.86]
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Table A5 continued: Selected predictors in multinomial regression for
LMClass prediction.

Predictor short & deceased long stay

Odds Ratio 95% CI Odds Ratio 95% CI

Age 1.03 [1.03, 1.04] 1.01 [1.00, 1.01]

Sex
Female (reference) - - - -
Male 0.76 [0.67, 0.86] 1.04 [0.94, 1.14]

Admission Source
Emergency (reference) - - - -
Operating Room 0.27 [0.21, 0.33] 0.53 [0.46, 0.62]
Outside Hospital/Other 1.03 [0.87, 1.22] 1.63 [1.43, 1.85]
Unit/Ward/Stepdown 1.50 [1.26, 1.80] 1.58 [1.37, 1.83]

Admission Diagnosis
Cardiovascular (reference) - - - -
Gastrointestinal 0.58 [0.44, 0.77] 1.00 [0.81, 1.23]
Neurological 1.19 [0.95, 1.48] 1.21 [1.00, 1.46]
Other 0.63 [0.52, 0.77] 1.00 [0.85, 1.18]
Respiratory 0.66 [0.54, 0.79] 1.45 [1.24, 1.69]
Trauma 1.24 [0.91, 1.67] 2.28 [1.83, 2.85]
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Appendix B Figures
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Fig. B1: ROC curves for LOS prediction in validation set.

Red: logistic regression; Green: random forests; Blue: neural networks

Fig. B2: Importance of predictors based on RF model in LMClass prediction.

 . CC-BY-NC 4.0 International licenseIt is made available under a 
the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

 is(which was not certified by peer review)The copyright holder for this preprint 18, 2023. 
this version posted June; https://doi.org/10.1101/2022.12.15.22283527doi: medRxiv preprint 

https://doi.org/10.1101/2022.12.15.22283527
http://creativecommons.org/licenses/by-nc/4.0/


Preprint submitted for peer review

Health Outcome Predictive Modelling in Intensive Care Units 31

References

[1] Salluh J, Chiche JD, Reis CE. New perspectives to improve critical care
benchmarking. Ann Intensive Care. 2018;8(1):17.

[2] Silva Ramos F, Figueira Salluh JI. Data-driven management for intensive
care units. ICU Management & Practice. 2019;19.

[3] Rapsang AG, Shyam DC. Scoring systems in the intensive care unit: A
compendium. Indian journal of critical care medicine. 2014;18(4):220–228.

[4] Salluh J, Soares M. ICU severity of illness scores: APACHE, SAPS and
MPM. Current Opinion in Critical Care. 2014;20(5):557–565.

[5] Le Gall JR, A N, F H, et al. Mortality prediction using SAPS II: an
update for French intensive care units. Crit Care. 2005;9:R645.

[6] Rubenfeld G, Angus D, Pinsky M, Curtis J, Connors AJ, GR B. Outcomes
research in critical care: Results of the American Thoracic Society Critical
Care Assembly Workshop on Outcomes Research. Am J Respir Crit Care
Med. 1999;160:358–367.

[7] Zimmerman JE, Kramer AA, McNair DS, Malila FM, Shaffer VL. Inten-
sive care unit length of stay: Benchmarking based on Acute Physiology
and Chronic Health Evaluation (APACHE) IV ⋆. Critical Care Medicine.
2006;34(10):2517–2529.

[8] Le GJ, Lemeshow S, Saulnier F. A New Simplified Acute Physiology Score
(SAPS II) Based on a European/North American Multicenter Study.
JAMA. 1993;270(24):2957–2963.

[9] Lemeshow S, Teres D, Klar J, Avrunin J, Gehlbach S, J R. Probability
Models (MPM II) Based on an International Cohort of Intensive Care
Unit Patients. JAMA. 1993;270(20):2478–2486.

[10] Marshall JC, Cook DJ, Christou NV, R BG, Sprung CL, Sibbald WJ.
Multiple organ dysfunction score: a reliable descriptor of a complex
clinical outcome. Critical Care Medicine. 1995;23(10):1638–1652.

[11] Vincent J, de Mendonça A, Cantraine F, Moreno R, Takala J, Suter P,
et al. Use of the SOFA score to assess the incidence of organ dysfunction/-
failure in intensive care units: results of a multicenter, prospective study.
Working group on “sepsis-related problem” of the European Society of
Intensive Care Medicine. Critical care medicine. 1998;26(11):1793–800.

[12] Reis MD, Moreno R, Iapichino G. Nine equivalents of nursing manpower
use score (NEMS). Intensive Care Medicine. 1997;23(7):760–765.

 . CC-BY-NC 4.0 International licenseIt is made available under a 
the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

 is(which was not certified by peer review)The copyright holder for this preprint 18, 2023. 
this version posted June; https://doi.org/10.1101/2022.12.15.22283527doi: medRxiv preprint 

https://doi.org/10.1101/2022.12.15.22283527
http://creativecommons.org/licenses/by-nc/4.0/


Preprint submitted for peer review

32 Health Outcome Predictive Modelling in Intensive Care Units

[13] Cullen D, Civetta J, Briggs B, Ferrara L. Therapeutic intervention scoring
system: a method for quantitative comparison of patient care. Crit Care
Med. 1974;2(2):57–60.
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[65] Kühl N, Hirt R, Baier L, Schmitz B, Satzger G. How to conduct rigorous
supervised machine learning in information systems research: the super-
vised machine learning report card. Communications of the Association
for Information Systems. 2021;48(1):46.

[66] Ho TK. The Random Subspace Method for Constructing Decision
Forests. IEEE Transactions on Pattern Analysis and Machine Intelligence.

 . CC-BY-NC 4.0 International licenseIt is made available under a 
the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

 is(which was not certified by peer review)The copyright holder for this preprint 18, 2023. 
this version posted June; https://doi.org/10.1101/2022.12.15.22283527doi: medRxiv preprint 

https://doi.org/10.1101/2022.12.15.22283527
http://creativecommons.org/licenses/by-nc/4.0/


Preprint submitted for peer review

Health Outcome Predictive Modelling in Intensive Care Units 37

1998;20(8):832–844.

[67] Liaw A, Wiener M. Classification and Regression by randomForest. R
News. 2002;2(3):18–22.

[68] Breiman L. Random Forests. Machine Learning. 2001;45(1):5–32. https:
//doi.org/10.1023/A:1010933404324.

[69] Riedmiller MA. Rprop - Description and Implementation Details; 1994. .

[70] Harris D, Harris S. Digital Design and Computer Architecture 2nd
Edition. San Francisco, Calif.: Morgan Kaufmann; 2012.

[71] McHugh ML. Interrater reliability: the kappa statistic. Biochemia medica.
2012;22(3):276–282.

[72] Nahm FS. Receiver operating characteristic curve: overview and practical
use for clinicians. Korean journal of anesthesiology. 2022;75(1):25–36.

[73] Abdul Bujang SD, Fujita H, et al. Imbalanced Classification Methods for
Student Grade Prediction: A Systematic Literature Review. 2022;.

[74] Laupland KB, Kirkpatrick AW, Kortbeek JB, Zuege DJ. Long-term mor-
tality outcome associated with prolonged admission to the ICU. chest.
2006;129(4):954–959.

[75] Taccone P, Langer T, Grasselli G.: Do we really need postoperative ICU
management after elective surgery? No, not any more! Springer.

[76] Kumar P, Bhatnagar R, Gaur K, Bhatnagar A. Classification of imbal-
anced data: review of methods and applications. In: IOP conference series:
materials science and engineering. vol. 1099. IOP Publishing; 2021. p.
012077.

[77] Morton A, Marzban E, Giannoulis G, Patel A, Aparasu R, Kakadiaris IA.
A comparison of supervised machine learning techniques for predicting
short-term in-hospital length of stay among diabetic patients. In: 2014
13th International Conference on Machine Learning and Applications.
IEEE; 2014. p. 428–431.

[78] Kramer AA, Zimmerman JE. A predictive model for the early identifica-
tion of patients at risk for a prolonged intensive care unit length of stay.
BMC medical informatics and decision making. 2010;10(1):1–16.

[79] Livieris IE, Kotsilieris T, Dimopoulos I, Pintelas P. Decision support soft-
ware for forecasting patient’s length of stay. Algorithms. 2018;11(12):199.

 . CC-BY-NC 4.0 International licenseIt is made available under a 
the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

 is(which was not certified by peer review)The copyright holder for this preprint 18, 2023. 
this version posted June; https://doi.org/10.1101/2022.12.15.22283527doi: medRxiv preprint 

https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1101/2022.12.15.22283527
http://creativecommons.org/licenses/by-nc/4.0/


Preprint submitted for peer review

38 Health Outcome Predictive Modelling in Intensive Care Units

[80] Hassan A, Anderson C, Kypson A, Kindell L, Ferguson TB, Chitwood Jr
WR, et al. Clinical outcomes in patients with prolonged intensive care unit
length of stay after cardiac surgical procedures. The Annals of thoracic
surgery. 2012;93(2):565–569.

[81] Hermans G, Van Aerde N, Meersseman P, Van Mechelen H, Debaveye Y,
Wilmer A, et al. Five-year mortality and morbidity impact of prolonged
versus brief ICU stay: a propensity score matched cohort study. Thorax.
2019;74(11):1037–1045.

[82] Soares M, Salluh JI, Torres VB, Leal JV, Spector N. Short-and long-term
outcomes of critically ill patients with cancer and prolonged ICU length
of stay. Chest. 2008;134(3):520–526.

[83] Youden WJ. Index for rating diagnostic tests. Cancer. 1950;3(1):32–35.

[84] Goss EP, Ramchandani H. Survival prediction in the intensive
care unit: a comparison of neural networks and binary logit regres-
sion11Study supported by a grant from Bishop-Clarkson Hospital and
Applied Information Management Institute. Socio-Economic Planning
Sciences. 1998;32(3):189–198. https://doi.org/https://doi.org/10.1016/
S0038-0121(97)00039-6.

[85] Trigg H. An investigation of methods to enhance the performance of
artificial neural networks used to estimate medical outcomes. University
of New Brunswick, Electrical Engineering Department; 1997.

[86] Frize M, Ennett CM, Stevenson M, Trigg HCE. Clinical decision support
systems for intensive care units: using artificial neural networks. Medical
Engineering Physics. 2001;23(3):217–225. https://doi.org/https://doi.
org/10.1016/S1350-4533(01)00041-8.

[87] Schmidt-Hieber J. Nonparametric regression using deep neural networks
with ReLU activation function. The Annals of Statistics. 2020;48(4):1875
– 1897. https://doi.org/10.1214/19-AOS1875.

[88] Wu H, Fan Y, Lv J. Statistical insights into deep neural network learning
in subspace classification. Stat. 2020;9(1):e273. https://doi.org/https:
//doi.org/10.1002/sta4.273.

[89] Fukushima K, Miyake S. Neocognitron: A Self-Organizing Neural Network
Model for a Mechanism of Visual Pattern Recognition. In: Amari Si,
Arbib MA, editors. Competition and Cooperation in Neural Nets. Berlin,
Heidelberg: Springer Berlin Heidelberg; 1982. p. 267–285.

[90] Hopfield JJ. Neural networks and physical systems with emergent col-
lective computational abilities. Proceedings of the National Academy of

 . CC-BY-NC 4.0 International licenseIt is made available under a 
the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

 is(which was not certified by peer review)The copyright holder for this preprint 18, 2023. 
this version posted June; https://doi.org/10.1101/2022.12.15.22283527doi: medRxiv preprint 

https://doi.org/https://doi.org/10.1016/S0038-0121(97)00039-6
https://doi.org/https://doi.org/10.1016/S0038-0121(97)00039-6
https://doi.org/https://doi.org/10.1016/S1350-4533(01)00041-8
https://doi.org/https://doi.org/10.1016/S1350-4533(01)00041-8
https://doi.org/10.1214/19-AOS1875
https://doi.org/https://doi.org/10.1002/sta4.273
https://doi.org/https://doi.org/10.1002/sta4.273
https://doi.org/10.1101/2022.12.15.22283527
http://creativecommons.org/licenses/by-nc/4.0/


Preprint submitted for peer review

Health Outcome Predictive Modelling in Intensive Care Units 39

Sciences. 1982;79(8):2554–2558. https://doi.org/10.1073/pnas.79.8.2554.

[91] Priestap F, Kao R, Martin CM. External validation of a prognostic
model for intensive care unit mortality: a retrospective study using the
Ontario Critical Care Information System. Can J Anesth/J Can Anesth.
2020;67:981–991.

 . CC-BY-NC 4.0 International licenseIt is made available under a 
the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

 is(which was not certified by peer review)The copyright holder for this preprint 18, 2023. 
this version posted June; https://doi.org/10.1101/2022.12.15.22283527doi: medRxiv preprint 

https://doi.org/10.1073/pnas.79.8.2554
https://doi.org/10.1101/2022.12.15.22283527
http://creativecommons.org/licenses/by-nc/4.0/

	Introduction
	Literature review
	Mortality prediction 
	LOS prediction

	Material and methods
	Data source and data management
	Statistical analysis

	Results
	Descriptive analysis
	Mortality prediction
	LOS prediction
	LMClass prediction

	Conclusions and Discussion
	Tables
	Figures

