1 T	Title: Prevalence of salivary anti-SARS-CoV-2 IgG antibodies in vaccinated children
3 Aut 4 S 5	hor names and affiliations: María Noel Badano, PhD ^{a,b} ; Alejandra Duarte, PhD ^{a*} ; Gabriela Salamone, PhD ^{a*} ; Florencia Sabbione, PhD ^a , Matias Pereson, BSc ^c ; Roberto Chuit, MD ^d ; Patricia Baré, PhD ^{a,b}
0 7	
, 8 Affil	iations: ^a Instituto de Medicina Experimental (IMEX)-Conseio Nacional de Investigaciones
9 Cien	tíficas y Técnicas (CONICET), Academia Nacional de Medicina. Postal address: J.A.
10 Pach	eco de Melo 3081, CABA 1425, Buenos Aires, Argentina; ^b Instituto de Investigaciones
11 Hem	atológicas (IIHEMA), Academia Nacional de Medicina. Postal address: J.A. Pacheco de
12 Melo	o 3081, CABA 1425, Buenos Aires, Argentina; ^c Instituto de Investigaciones en Bacteriología
13 y Vir	rología Molecular (IBaViM), Facultad de Farmacia y Bioquímica, Universidad de Buenos
14 Aires	s. Junín 956, CABA CP 1113, Buenos Aires, Argentina; ^d Instituto de Investigaciones
15 Epid	emiológicas (IIE), Academia Nacional de Medicina. Postal address: J.A. Pacheco de Melo
16 3081	, CABA 1425, Buenos Aires, Argentina.
17	
18 Con	tributed equally to this research.
19	
20 Add	ress correspondence to: Maria Noel Badano, Laboratorio de Patogenia de Infecciones
21 Viral	les, Instituto de Medicina Experimental (IMEX)-CONICET, Academia Nacional de
22 Med	101167596125
23 +345	71107360133.
24 25 Sho i	t title. Salivary SARS-CoV-2 antibodies in vaccinated children
25 SHO	ture. Sanvary SARS-Cov-2 antibodies in vacemated emidien
20 27 Con ⁴	flict of Interest Disclosures: The authors declare that they have no known competing
28 finar	including and the second relationships that could have appeared to influence the work
29 repor	rted in this paper.
30	
31 Fun	ding/Support: This research received no external funding
32.	
33	
34 Abb	reviations: binding antibody units (BAU) per mL (BAU/mL), geometric mean
35 conc	entrations (GMC), 95% confidence intervals (95% CI)
36	
37	
38	
39	
40	
41	
42	

43	Contributors Statement Page		
44 45 46 47 48 49 50 51 52 53 54 55 56 57	Drs María Noel Badano and Patrica Baré conceptualized and designed the study, coordinated and supervised data collection, measured antibody concentrations, performed statistical analysis, drafted the initial manuscript, and critically reviewed and revised the manuscript.		
	Drs Alejandra Duarte, Gabriela Salamone, Florencia Sabbione and BSc Matias Pereson designed the data collection instruments, collected samples and data, carried out the initial analyses, and critically reviewed and revised the manuscript.		
	Dr Roberto Chuit performed statistical analysis, critically reviewed and revised the manuscript.		
	All authors approved the final manuscript as submitted and agree to be accountable for all aspects of the work.		
58			
59			
60			
61			
62			
63			
64			
65			
66			
67			
68			
69			
70			
71			
72			
73			

74 ABSTRACT

75

76	Vaccination against COVID-19 has mitigated the impact of SARS-CoV-2 infection, decreasing	
77	the probability of progression to severe disease and death in vaccinated people.	
78	Parallel to the development and administration of COVID-19 vaccines, the immune response	
79	induced by the different vaccine platforms has been investigated, mainly, in the adult population.	
80	However, since the approval of the vaccines for use in pediatric individuals was a posteriori,	
81	vaccination began later in this population. This, added to the difficulty in obtaining blood	
82	samples from pediatric individuals, has led to less knowledge about the humoral immune	
83	response following vaccination in children.	
84	In this work, we analyzed the humoral response induced by vaccination in children through a	
85	non-invasive approach such as the measurement of specific salivary antibodies. Our results	
86	showed a high prevalence of specific salivary antibodies (81%), with the highest levels of	
87	antibodies being observed in those children who had three doses, a greater number of exposures	
88	and a shorter interval time between the last exposure to SARS-CoV-2 antigens and saliva	
89	collection. These results agree with those reported for the systemic humoral immune response in	
90	vaccinated adults, suggesting the administration of booster doses in children to maintain high	
91	antibody levels.	
92	Therefore, determination of salivary antibodies against SARS-CoV-2 could be a non-invasive	
93	tool for disease surveillance, vaccination follow-up and to assist vaccination strategies against	
94	COVID-19.	
95		

96

97 INTRODUCTION

98

99	Systemic humoral response following COVID-19 vaccination has been widely studied, while
100	less attention had received salivary response. Reports showed specific salivary antibodies after
101	vaccination with COVID-19 mRNA vaccines, which correlated with serum neutralization and
102	indicated seroconversion. ^{1, 2} However, most studies were conducted in adults with few studies
103	about immune response following vaccination in children. ³⁻⁵
104	In this study, we aimed to analyze the humoral response following vaccination in children,
105	through a non-invasive approach like the measurement of specific salivary antibodies.
106	
107	
108	METHODS
109	
110	Since March 2022, children younger than 18 years were recruited to analyze prevalence of
111	salivary anti-SARS-CoV-2 IgG antibodies. IgG anti-spike antibody concentrations, in binding
112	antibody units (BAU) per mL (BAU/mL), were determined by ELISA. ⁶ Statistical analyzes were
113	performed with GraphPad Prism software. Geometric mean concentrations (GMC) of antibody
114	levels with 95% confidence intervals (95% CI) were calculated. Antibody levels between groups
115	were compared with Mann-Whitney test and between paired samples with Paired t test. Multiple
116	linear regression was performed to analyze variables associated with antibody levels. Statistical
117	significance was defined as a 2-tailed $p < 0.05$. Supplemental information includes other
118	experimental methods. This study was approved by the Academia Nacional de Medicina Ethics

119 Committee. Written informed consent was obtained from parents.

RESULTS

122	Saliva samples were collected from 89 children (Median age: 10 (4–17); 47/89 (52%): male)
123	including unvaccinated (n=1), with one (n=2), two (n=52) and three (n=34) vaccine doses (Table
124	1). Fourteen subjects had a confirmed past SARS-CoV-2 infection, 39 were household contacts
125	and 36 were unexposed subjects. Median time between last exposure to SARS-CoV-2 antigens
126	(through vaccination, infection or exposure) and saliva collection was 77 (21-270) days.
127	Prevalence of SARS-CoV-2 spike-specific IgG antibodies in total samples was 81% (72/89),
128	73% (38/52) in children with two vaccine doses and 97% (33/34) in those with three doses.
129	Higher antibody concentrations were observed in subjects receiving three doses compared to
130	those receiving two (GMC: 834.0 IU/ml, 95% CI: 456.6-1523 vs GMC: 32.7 IU/ml, 95% CI:
131	17.0–63.1; $p < 0.0001$) (Figure 1A), showing highest levels those with heterologous third doses,
132	who received two doses of Sinopharm vaccine and mRNA vaccines as third doses (GMC: 1997
133	IU/ml, 95% CI: 878.6–4538; $p < 0.01$). Antibody concentrations increased with a greater number
134	of exposures (through vaccination, infection or exposure) (Figure 1B). Subjects with a longer
135	interval time between last exposure and saliva collection had lower antibody concentrations than
136	those with a shorter interval time (GMC: 28.4 IU/ml, 95% CI: 12.9-62.6 vs GMC: 301.3 IU/ml,
137	95% CI: 147.9–613.8; $p < 0.0001$) (Figure 1C). During follow-up, eight children who had two
138	doses became infected (n=2) or were household contacts (n=6), showing an increase in antibody
139	concentrations after exposure ($p < 0.01$) (Figure 1D). Number of vaccine doses (β 1: 2314, 95%)
140	CI: 1093-3536; <i>p</i> < 0.001) and symptomatic exposure (β2: 1355, 95% CI: 340.4–2369; <i>p</i> < 0.01),
141	were associated with antibody levels in a multivariable linear regression analysis ($p < 0.0001$).
142	

DISCUSSION

145	Vaccination progressed more quickly in adults, leading to less knowledge about the immune	
146	response following vaccination in children. In this study, we observed a high salivary antibody	
147	prevalence (81%), detecting antibodies even in children whose last contact with SARS-CoV-2	
148	antigens had been 270 days before sample collection. However, higher antibody levels were	
149	observed in children who had: three doses, a greater number of exposures and a shorter interval	
150	time between last antigens exposure and saliva collection. These results agree with those	
151	reported for the systemic humoral response in vaccinated adults, suggesting booster doses in	
152	children to maintain high antibody levels.	
153	Limitations include lack of information on neutralizing and specific IgA antibody responses.	
154	Though, we did not have saliva-blood sample pairs for all individuals, our preliminary results in	
155	vaccinated adults show a positive correlation between specific salivary and blood antibodies.	
156	Determination of salivary antibodies against SARS-CoV-2 could be a non-invasive tool for	
157	disease surveillance, vaccination follow-up and to assist vaccination strategies against COVID-	
158	19.	

Acknowledgments

The authors thank all the children enrolled in this study and their parents for their participation and collaboration. Some aspects of this work could not have been fulfilled without the generous contribution of the IIHEMA, IIE and Academia Nacional de Medicina who provide financial support to our ongoing research.

References

- Ketas TJ, Chaturbhuj D, Portillo VMC, et al. Antibody responses to SARS-CoV-2 mRNA vaccines are detectable in saliva. *Pathog Immun*. 2021;6(1):116-134. doi: 10.20411/pai.v6i1.441.
- 2. Healy K, Pin E, Chen P, et al. Salivary IgG to SARS-CoV-2 indicates seroconversion and correlates to serum neutralization in mRNA-vaccinated immunocompromised individuals. *Med* (*N Y*). 2022;3(2):137-153.e3. doi: 10.1016/j.medj.2022.01.001.
- 3. Walter EB, Talaat KR, Sabharwal C, et al. Evaluation of the BNT162b2 Covid-19 vaccine in children 5 to 11 years of age. *N Engl J Med*. 2022;386(1):35-46. doi: 10.1056/NEJMoa2116298.
- Frenck RW Jr, Klein NP, Kitchin N, et al. Safety, immunogenicity, and efficacy of the BNT162b2 Covid-19 vaccine in adolescents. *N Engl J Med.* 2021;385(3):239-250. doi: 10.1056/NEJMoa2107456.
- 5. Xia S, Zhang Y, Wang Y, et al. Safety and immunogenicity of an inactivated COVID-19 vaccine, BBIBP-CorV, in people younger than 18 years: a randomised, double-blind, controlled, phase 1/2 trial. *Lancet Infect Dis.* 2022;22(2):196-208. doi: 10.1016/S1473-3099(21)00462-X.
- 6. Badano MN, Sabbione F, Keitelman I, et al. Humoral response to the BBIBP-CorV vaccine over time in healthcare workers with or without exposure to SARS-CoV-2. *Mol Immunol*. 2022;143:94-99. doi: 10.1016/j.molimm.2022.01.009.

Table 1. Characteristics of the study children

	Total subjects (n=89)
General characteristics	
Age, median (range), y	10 (4–17)
Sex	
Female, No. (%)	42/89 (48)
Male, No. (%)	47/89 (52)
Exposure to SARS-CoV-2	
Unexposed, No. (%)	36/89 (40)
Confirmed past SARS-CoV-2 infection, No. (%)	14/89 (16)
Household contacts, No. (%)	39/89 (44)
Exposed children with COVID-19 compatible symptoms, No. (%)	30/53 (57)
Vaccine schedules	
Unvaccinated, No. (%)	1/89 (1)
One dose	
BBIBP-CorV, No. (%)	2/89 (2)
Two doses	
BBIBP-CorV x 2, No. (%)	46/89 (52)
BNT162b2 mRNA x 2, No. (%)	5/89 (6)
mRNA-1273 x 2, No. (%)	1/89 (1)
Three doses	
BNT162b2 mRNA x 3, No. (%)	17/89 (19)
BNT162b2 mRNA x 2 + mRNA-1273 x 1, No. (%)	4/89 (4)
BBIBP-CorV x 2 + BNT162b2 mRNA x1, No. (%)	11/89 (12)
BBIBP-CorV x 2 + mRNA-1273 x 1, No. (%)	2/89 (2)
Time between most recent antigen exposure and sample collection, median (range), days	77 (21–270)

BBIBP-CorV (Sinopharm); BNT162b2 mRNA (Pfizer-BioNTech); mRNA-1273 (Moderna).

Figure legends

Figure 1. Salivary anti-SARS-CoV-2 antibodies were compared between children whit two or three vaccine doses (A), different number of exposures (B), different time between last exposure and sample collection (C), before and after exposure in children with two doses (D). Assay detection limit (dotted lines) and GMC with 95% CI are shown.

