
 

Development and validation of MedDRA Tagger: a tool for 
extraction and structuring medical information from clinical notes 
Marie Humbert-Droz1, Jessica Corley 2, Suzanne Tamang3, Olivier Gevaert1,3 

 
1Stanford Center for Biomedical Informatics Research, Department of Medicine, Stanford 

University, Stanford, CA 
2Meharry Medical College, Nashville, Tennessee 
3Department of Biomedical Data Science, Stanford University, Stanford, CA 

 

 

ABSTRACT 
 

Rapid and automated extraction of clinical information from patients’ notes is a desirable though 

difficult task. Natural language processing (NLP) and machine learning have great potential to 

automate and accelerate such applications, but developing such models can require a large amount 

of labeled clinical text, which can be a slow and laborious process. To address this gap, we propose 

the MedDRA tagger, a fast annotation tool that makes use of industrial level libraries such as 

spaCy, biomedical ontologies and weak supervision to annotate and extract clinical concepts at 

scale. The tool can be used to annotate clinical text and obtain labels for training machine learning 

models and further refine the clinical concept extraction performance, or to extract clinical 

concepts for observational study purposes. To demonstrate the usability and versatility of our tool, 

we present three different use cases: we use the tagger to determine patients with a primary brain 

cancer diagnosis, we show evidence of rising mental health symptoms at the population level and 

our last use case shows the evolution of COVID-19 symptomatology throughout three waves 

between February 2020 and October 2021. The validation of our tool showed good performance 

on both specific annotations from our development set (F1 score 0.81) and open source annotated 

data set (F1 score 0.79). We successfully demonstrate the versatility of our pipeline with three 

different use cases. Finally, we note that the modular nature of our tool allows for a straightforward 

adaptation to another biomedical ontology. We also show that our tool is independent of EHR 

system, and as such generalizable.  
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INTRODUCTION 

Rapid and automated extraction of clinical information from patients’ notes is a desirable though 

difficult task. Software and machine learning models that perform extraction of clinical concepts 

have been developed within the research community [1–4].  Although many are open source, they 

have be difficult to apply, due to the complexity of installation and require customization to a new 

corpus. Information such as signs and symptoms, disease severity or patient-reported outcomes 

are of particular interest as they can be subsequently used for phenotypic classification, clinical 

diagnosis, or clinical decision support [5–7]. 

 

Natural language processing (NLP) and machine learning have great potential to automate and 

accelerate such applications [8–11]. Developing such models requires large amount of labeled 

clinical text, which can be a particularly challenging task [10,12,13]. Shared resources for clinical 

NLP have been made available to the research community through initiatives such as MIMIC [14], 

National NLP Clinical Challenges (n2c2), ShARe/CLEF and SemEval. These resources help 

tremendously the development of machine learning systems for healthcare, though remain limited, 

especially when considering generalizability of models through multiple institutions. 

 

To address this gap, we propose the MedDRA tagger, a fast annotation tool that makes use of 

industrial level libraries like spaCy, biomedical ontologies and weak supervision to annotate and 

extract clinical concepts at scale. The tool can be used to annotate clinical text and obtain labels 

for training machine learning models and further refine the clinical concept extraction 

performance, or to extract clinical concepts for observational study purposes. Our tool uses the 

Medical Dictionary for Regulatory Activities (MedDRA) [15] terminology as basis for annotation. 

MedDRA has been developed to encode and describe adverse drug events (ADE) and as such it 

contains an extensive description and hierarchy of signs and symptoms. It has been used to develop 

automatic ADE detection systems with varying levels of performance [16–21]. The simple 

organization of terms around system organ classes and a wide variety of lower-level terms makes 

MedDRA a great candidate to extract such information from clinical text. 

 

Here, we present the MedDRA tagger and validate our tool in two ways: first, we evaluate our 

system on an external open-source dataset of linguistic annotations from a shared NLP task. These 

annotations are considered gold labels. Since the notes from this dataset come from MIMIC III, 

this step also assesses the generalizability of our tool to a different institution’s EMR. Second, we 

evaluate the performance of our system on set of randomly selected notes for three chosen 

psychiatric symptoms annotated by a subject matter expert. This second step allows for an 

extension of our validation to psychiatric disorders mentions, that are less present in the open-

source dataset. We also compared the performance of our tool with the performance of cTAKES 

on the same validation datasets, as industry reference 

 

Finally, to demonstrate the usability and versatility of our tool, we present three different 

applications: we use the MedDRA tagger to determine patients with a primary brain cancer 

diagnosis, we assess the prevalence of mental health symptoms at the population level and our last 

use case shows the evolution of COVID-19 symptomatology throughout three waves between 

February 2020 and October 2021. Our three applications demonstrate the versatility of MedDRA 

tagger with successful application in widely different areas, namely brain cancer, mental health 

and symptom surveillance. We were able to extract clinical concepts rapidly from millions of notes 
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without complicated installation setup. MedDRA tagger has been able to successfully process 

notes from different sources without EHR-specific preprocessing or fine-tuning, thus 

demonstrating its versatility and ease of use.  
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MATERIALS AND METHODS 

Dataset description 

This study was approved by the IRB under protocol 50033: “Machine Learning of Electronic 

Medical Records for Precision Medicine”. The main data source that was used to conduct our study 

is the Stanford STARR-OMOP dataset. STARR-OMOP is Stanford Electronic Health Record data 

from its two Hospitals in a Observational Medical Outcomes Partnership (OMOP) Common Data 

Model (CDM), with linked de-identified free-text patient notes, referred to as STARR-OMOP 

from now on. We also obtained notes from the Stanford Cancer Institute Research Database 

(SCIRDB) for the brain tumor use case. Finally, we used an open-source data set for part of our 

validation from the ShARe/CLEF 2014 challenge [22,23] 

 

We used two datasets for validation. First, the test set from the ShARe 2014 task 2 with gold 

standard annotation for disorders mentions (referred to as ShARe dataset throughout this 

manuscript). It contains 133 notes sampled from MIMIC-II [24]. Second, we randomly sampled 

525 mentions of selected psychiatric disorders symptoms from 341 notes spanning 327 patients 

from the STARR OMOP dataset. 

 

For the first use case, we used a cohort of 1,336 patients with a brain tumor diagnosis and at least 

one pathology report. Using the clinical data from SCIRDB, we selected only reports within 

approximately 60 days of diagnosis, leading to 718 patients and 1,309 reports to process with the 

MedDRA tagger. For the second use case, we used all the notes for all patients for the calendar 

year 2020 from the STARR-OMOP dataset for the analysis. To establish a baseline, we used an 

average of the 3 years prior (2017 – 2019). The analysis data contains 4,550,255 notes from 

575,199 patients and the baseline data contains an average of 4,125,779 notes for 600,209 patients 

per year (Table 1). Finally, for our third use case, we selected all patients with at least one 

encounter with a COVID-19 diagnosis from the snapshot of our database on November 4, 2021, 

yielding 31,047 patients with 563,299 notes. 

 
Table 1: Datasets description for the three use cases. 

Brain tumor patients 

Total number of patients     1,029 

Age       41(26) 

Female       487(47.3%) 

Male       542(52.7%) 

Total number of reports 
      

5,337 

Brain cancer Dx only       709 

Brain cancer and other       48 

Other cancer Dx       272 

2020 psychiatric symptoms monitoring 

Analysis data: 2020 Baseline data 

  2019 2018 2017 
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Total number of 
patients 

574,920 632,028 605,441 562,584 

Age 41(25) 42(25) 43(25) 43(25) 

Female 
320,607 
(55.77%) 

351,037 
(55.54 %) 

340,268 
(56.20 %) 

315,409 
(56.09 %) 

Male 
254,182 
(44.21%) 

280.878 
(44.44 %) 

265,078 
(43.78 %) 

246,831 
(43.90 %) 

Unknown 131(0.02%) 113 (0.02 %) 95 (0.16 %) 50 (0.09 %) 

Total number of notes 4,550,255 4,574,474 4,127,626 3,675,238 

COVID-19 patients 

Total number of COVID 
patients       

31,047 

Age       42 (21) 

Female 
      

16,168 
(52.08%) 

Male 
      

14,877 
(47.92%) 

Unknown       2 (0.06%) 

Total number of notes       563,299 

 

Pipeline description 

To extract clinical information from patient notes, we have designed a hybrid tool, taking 

advantage of existing NLP libraries of industrial quality and medical ontologies to annotate all 

clinical concepts within MedDRA [15]. A selected number of modifiers (polarity, experiencer and 

temporality) is determined through a weak supervision approach [25]. 
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Figure 1 MedDRA Tagger pipeline, containing three modules: the annotation pipeline, the weak labeling pipeline, and the 
hierarchy module. 

 

The MedDRA tagger pipeline is composed of three modules: the annotation module, the weak 

supervision labeling module, and the hierarchy mapping module (Figure 1). 

Annotation module: to annotate all clinical concepts efficiently, we are taking advantage of the 

fast implementation of core NLP functions of spacy using a ScispaCy language model [26], as 

well as building a custom rule-based string matching tool. We use the MedDRA terminology and 

match the string to the lower-case attribute of the text tokens. Each term matched by the tool is 

assigned its MedDRA ID number as label for further analysis. 

Weak supervision module: each concept is extracted with a context window of n tokens before and 

after the concept to help determine the assertion status. A set of rule-based functions is written and 

applied to each extracted term and its context window using the efficiency of the Snorkel 

package[25]. Each term is labeled for polarity (PRESENT/ABSENT), experiencer 

(PATIENT/FAMILY) and temporality (PRESENT/HISTORICAL). For this project, we used 

previously implemented labeling functions [27] based on pattern recognition applied to a 20 tokens 

context window (10 tokens before and 10 tokens after the target term) to determine the negation, 

temporality and experiencer of the target symptom. We used the publicly available “CL-inical 

EVE-nt R-ecognizer” (CLEVER) base terminology [28] to match our context window with 

negative and hypothetical expressions (NEGEX), historical expressions (HX) and family mentions 

(FAM). If a mention is matched within the context window of a given term, it is labeled 

accordingly: ABSENT if NEGEX is matched, HISTORY if HX is matched and FAMILY if FAM 

is matched. Target symptoms that were positive, experienced by the patient and not part of the past 

medical history were labeled positive. Occurrences deviating from this pattern were labeled 

negative.  

 

Finally, each term is mapped to each level of the MedDRA hierarchy using the hierarchy mapping 

module to ease further analysis.  

 

Description of MedDRA 
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The Medical Dictionary for Regulatory Activities (MedDRA) is a medical terminology designed 

for the documentation and safety monitoring of adverse drugs events. The terminology contains 

an extensive description and hierarchy of signs and symptoms, classified by system organ class, 

which makes it a well-suited terminology for the extraction of clinical concepts from patients 

notes. The Lowest Level Terms (LLT) allows for multiple descriptions of the same concept, 

usually reflecting how the term is reported in practice. Each LLT can be grouped to a Preferred 

Term (PT), which collects semantically equivalent terms under the same concept.  

Related PTs are grouped together in the next level, the High-Level Terms (HLT) based on 

anatomy, pathology, physiology or function. HLTs map to Hight Level Group Terms (HLGT), 

which are grouped into 27 System Organ Classes (SOC), by etiology, manifestation site or 

purpose. This high level of granularity and grouping make the MedDRA terminology a well-suited 

tool for clinical concepts extraction with diverse applications. 

 

 

Validation of the MedDRA tagger 

Using a publicly available gold standard dataset (ShAReCLEF Task2 2014) 

To evaluate the performance of our tool, we have used the ShAReCLEF dataset from task 2 of the 

2014 challenge [22,23]. More specifically, we used the test set from this task since it contains gold 

standards for entity recognition of disorders concepts. It consists of 433 de-identified clinical 

reports sampled from the MIMIC II dataset [24] that have been annotated for disorders mentions. 

Each mention has been normalized to its corresponding UMLS CUI from the SNOMED CT 

Disorder semantic group and modifiers have also been identified. The following modifiers have 

been considered for each mention: temporal expression, negation indicator, and subject.  

 

After using our MedDRA tagger on the notes from the ShAReCLEF dataset, the extracted 

MedDRA terms were converted to their corresponding UMLS CUIs using the UMLS 

Metathesaurus [29]. We then selected only the terms within the Disorders semantic group for 

evaluation. Finally, we used the relations table to ensure each equivalent CUI was accounted for 

(using the following relations: [isa, same_as, mapped_to]). We then computed recall, precision 

and F1 for all concepts that were tagged POSITIVE, PATIENT and PRESENT by our tagger. 

 

Using manually annotated notes from STARR-OMOP 

The performance of the MedDRA pipeline is assessed at the mention level against manual review 

of 525 mentions from 341 notes. We evaluated for three psychiatric disorders concepts; anxiety, 

depression, and delirium. The mention evaluation was defined as follows: TP: mention is present 

in MedDRA output AND in annotation, TN: mention NOT present in MedDRA output AND NOT 

present in annotation, FP: mention present in MedDRA output and NOT present in annotation, and  

FN: mention NOT present in MedDRA output and present in annotation. Next, “Present” means a 

mention tagged POSITIVE, PRESENT, PATIENT and “NOT present” means any combination of 

label that differ from the definition of Present. The resulting precision, recall and F1 scores are 

computed at the mention level. 

 

Three diverse use cases of the MedDRA Tagger 

To demonstrate the variety of potential applications of our tool, we present three applications. 

First, we make use of the MedDRA hierarchy to determine which patients with a brain tumor have 

a primary brain cancer from pathology notes. Second, we make use of the fast note processing 
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power of our tool to tag all MedDRA concepts on all notes of STARR-OMOP dataset to highlight 

the sharp increase in psychiatric disorders during the first wave of the COVID-19 pandemic in 

spring 2020. Finally, we analyzed the terms extracted from the notes of COVID-19 patients 

throughout the pandemic to highlight the linguistic shift with the advancement of the crisis and the 

evolution of the waves of infection. 

 

Use case 1: brain tumor diagnosis 

We selected a cohort of 1,593 patients that were diagnosed with a brain tumor at Stanford with 

5,337 pathology reports. Since some patients had multiple pathology reports over several years, 

we processed the ones that were written within 60 days of diagnosis. We used diagnoses from the 

Stanford Cancer Institute Research Database as our ground truth. After processing 1,309 pathology 

notes with the tagger, we identified notes with positive mentions of brain cancer. To do so, we 

took advantage of the hierarchy mapping module of the tagger and selected terms that belonged to 

the high level group term “Nervous system neoplasms malignant and unspecified NEC” or 

“Nervous system neoplasms benign” to assign a positive label to the patient. 

 

Use case 2: monitoring of psychiatric symptoms in the Stanford hospital population during the 

COVID-19 pandemic 

We have analyzed all notes from all Stanford patients for the years 2017-20  20. A total of 

16,927,593 notes were processed with our MedDRA tagger to extract clinical concepts. Concepts 

labeled POSITIVE, PATIENT and PRESENT were selected for our analysis. Our analysis is 

threefold: First, all terms belonging to the psychiatric disorders SOC were selected using the 

hierarchy mapping module. We obtained the term count per patient and date and performed a 

seven-day moving average to plot the term counts over time. Term counts for the years 2017-2019 

were averaged to establish a baseline. Second, term counts were calculated at the PT level. The 

difference between the 2020 counts and the baseline counts was plotted with a seven-day moving 

average. Finally, the top 7 extracted terms (LLT) are shown together with the top 7 psychiatric 

diagnoses from the coded part of EHR. 

 

Use case 3: detecting common symptoms of COVID19 patients 

We have selected all encounters with a diagnosis of COVID-19 and analyzed the corresponding 

notes using the MedDRA tagger and a TFIDF-based scoring system to highlight the most 

informative terms at a certain point in time. To identify important terms among patients within a 

certain timeframe, we used a scoring system based on term frequency-inverse document frequency 

(TFIDF). We modified the original definition of TFIDF in the following manner: for each term in 

the corpus, we compute a TFIDF, based on each month of data. For the considered month: 

 

𝑇𝐹(𝑡𝑒𝑟𝑚) =  
𝑝𝑎𝑡𝑖𝑒𝑛𝑡𝑠_𝑐𝑜𝑢𝑛𝑡_𝑚𝑜𝑛𝑡ℎ(𝑡𝑒𝑟𝑚)

𝑡𝑜𝑡𝑎𝑙_𝑝𝑎𝑡𝑖𝑒𝑛𝑡𝑠(𝑚𝑜𝑛𝑡ℎ)
 

 

𝐼𝐷𝐹(𝑡𝑒𝑟𝑚) = ln
𝑎𝑙𝑙_𝑝𝑎𝑡𝑖𝑒𝑛𝑡𝑠

𝑎𝑙𝑙_𝑝𝑎𝑡𝑖𝑒𝑛𝑡𝑠(𝑡𝑒𝑟𝑚)
 

 

 

We selected the top 6 ranked terms according to their modified-TFIDF scoring for three chosen 

months where infection rates were high in the STARR-OMOP database; June 2020, December 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 14, 2022. ; https://doi.org/10.1101/2022.12.14.22283470doi: medRxiv preprint 

https://doi.org/10.1101/2022.12.14.22283470
http://creativecommons.org/licenses/by-nc-nd/4.0/


2020 and August 2021 (Table 2). We then plotted the resulting score for each term throughout the 

time frame of our dataset (February 2020 – October 2021) to highlight trends in terms frequency 

according to each wave. We also added the visit counts associated to a COVID-19 diagnosis to the 

resulting graph to identify the different waves of infection. 

 
Table 2 Application 3 - Top terms selected for TFIDF analysis 

June 2020 December 2020 August 2021 

Diabetes Headache Chest pain 

Feverish Home isolation Confusion 

Loss of taste Immunocompromised Diarrhea 

Nausea Quarantine Home quarantine 

Sore throat Respiratory distress Hypertension 

 Shortness of breath Vaccination 
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RESULTS 

Validation using standard data set – ShAReCLEF task 2 2014 

 

To evaluate the performance of our tool, we used the ShARe dataset since it was annotated for all 

the disorders mentions present in discharge summaries from the MIMIC II dataset. Each mention 

was also normalized to standard vocabulary, making the comparison with our annotations 

straightforward. The resulting performance was a recall of 0.86, precision of 0.73 and F1 of 0.79. 

 

Validation using 341 notes from STARR-OMOP dataset with expert annotation 

 

The performance of the MedDRA tagger was then assessed against manual review of 525 mentions 

from 341 notes. We calculated the performance of our tool at the mention level for three psychiatric 

symptoms. Mentions were randomly selected from a set of 341 notes from the STARR-OMOP 

dataset. The resulting performance was a recall of 0.77, precision of 0.85 and F1 of 0.81 (Table 3).  

 

 
Table 3 Performance of the MedDRA tagger on 2 validation datasets 

Concept Number of 

mentions 

evaluated 

 Recall Precision F1 

Anxiety 223 MedDRA tagger 0.82 0.92 0.87 

  cTAKES 0.92 0.68 0.78 

Depression 132 MedDRA tagger 0.69 0.91 0.78 

  cTAKES 0.96 0.71 0.82 

Delirium 170 MedDRA tagger 0.79 0.97 0.87 

  cTAKES 0.89 0.69 0.78 

Total psychiatric 

mentions 

525 MedDRA tagger 0.77 0.85 0.81 

  cTAKES 0.93 0.56 0.70 

      

ShARe dataset 6,736 MedDRA tagger 0.86 0.73 0.79 

  cTAKES 1.0 0.18 0.29 

 

  

 

Application 1: Determination of primary site for cancer patients from pathology notes 

In order to automatically detect the primary cancer site for patients from their pathology notes, we 

processed all pathology reports from our cohort of patients with brain cancer. Using the primary 

site information from our clinical data base as gold standard, our tool showed a precision score of 

0.95, a recall score of 0.87 and an F1 score of 0.90. 

 

Application 2: Syndromic surveillance: the case for mental health symptoms extraction 

In order to highlight psychiatric effects of a global pandemic and make the case for inclusion of 

mental health symptoms in syndromic surveillance systems, we processed all the notes for the year 

2020 as well as the baseline with the MedDRA tagger to extract all clinical concepts from the 
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notes. Figure 2a shows concepts counts per patient and date with a seven day moving average for 

all concepts belonging to the psychiatric disorders system organ class. The mentions show a rapid 

increase starting in March 2020 at the beginning of the pandemic, reaching a peak in April 2020 

and returning to baseline in June 2020. The breakdown of the mentions counts at the preferred 

term level highlights that anxiety symptoms are the driver of this sharp increase (Figure 2b). 

Finally, a comparison of the top seven psychiatric mentions in the text with the top seven diagnosis 

codes from the encounter data shows a tenfold difference in frequency, reinforcing the initial 

hypothesis that mental health information is better documented in clinical notes than in the coded 

part of EHR (Figure 2c). 

 

 

 
Figure 2 Syndromic surveillance of mental health symptoms. a) Psychiatric disorders mentions counts normalized per patient and 
date with a 7-days moving average. b) Difference of mentions counts at the preferred term level (2020 – baseline) for a selection 
of terms – Anxiety, anxiety disorder, depression, depressed mood. c) Top 7 extracted mentions and top 7 psychiatric diagnosis 
codes. 

 

Table 4 Syndromic surveillance of mental health symptoms: Patient count for top psychiatric terms from diagnosis table and NLP 
extraction 

CONCEPT NB 
PATIENTS 

SOURCE 

ANXIETY DISORDER 22,993 DX 

MAJOR DEPRESSION, SINGLE EPISODE 19,504 DX 
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DEPRESSIVE DISORDER 12,031 DX 

GENERALIZED ANXIETY DISORDER 11,129 DX 

MODERATE RECURRENT MAJOR DEPRESSION 2,491 DX 

PANIC DISORDER WITHOUT AGORAPHOBIA 2,029 DX 

MODERATE MAJOR DEPRESSION, SINGLE EPISODE 1,171 DX 

DEPRESSION 147,305 NLP 

STRESS 123,122 NLP 

ANXIETY DISORDER 121,636 NLP 

FEELING DOWN 87,772 NLP 

VIOLENCE 47,736 NLP 

WORRY 35,142 NLP 

 
 

Application 3: Symptomatology of COVID patients – evolution of symptoms with different 

waves and dominant variants of COVID 

In the context of the pandemic, we also analyzed common symptoms among patients to highlight 

trends associated with each wave of infection. We selected six top terms identified during each 

wave of the COVID pandemic within Stanford’s patients between February 2020 and October 

2021. Top terms for June 2020, December 2020 and August 2021 were chosen and their respective 

TFIDF score for each month is plotted on Figure 3. For reference, the visits with a COVID-19 

diagnosis are also displayed on the figure. 
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Figure 3 Symptomatology of COVID-19 patients: TFIDF scores of terms selected throughout the pandemic  

 

Terms identified from the first wave of infections are mostly common symptoms that could be 

attributed to many infectious diseases. Their score remains consistent throughout the whole 

considered period, except for loss of taste, which is specific to COVID-19, that sharply rises with 

the first wave. The second wave shows the appearance of terms that were new at the beginning of 

the pandemic, but became associated with the pandemic by the end of 2020, like home isolation 

and quarantine. The rise in use of the immunocompromise term was also detected by the MedDRA 

tagger, as it has been shown that immunocompromised people are at higher risk of COVID-19 

infections and severe outcomes [30–33]. Finally, terms of the third wave reflect the emergence of 

vaccines, with vaccination the term with the highest TFIDF score. Home quarantine is also a very 

important term. Finally, the third wave shows the appearance of neurological function terms like 

confusion, which are also prevalent among COVID-19 infections but were identified later on. 
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DISCUSSION 

 

We developed and evaluated a novel pipeline for extracting clinical concepts from medical notes 

leveraging the MedDRA terminology. The pipeline showed good performance on both strategies 

for validation. Finally, we demonstrated the usability of the tool on three different use cases.  

 

The mention-level performance of our tool is comparable to popular software like cTAKES. 

However, our tool differs from cTAKES in software design, scope and functionality. There is no 

installation necessary beyond the required python libraries to run the scripts. By making use of 

industrial-level libraries, the processing of notes is fast and computationally inexpensive. For 

example, the processing of the 2020 data in use case 2 (>4.5 million documents) took only 50h 

using 32 CPUs. The output is straightforward and easy to process in downstream analytic 

applications. On the contrary, more complex tools, even though offering more information about 

entities, co-reference functionality and additional information such as relationships, can be 

difficult for a researcher to install, slower to process each document, and the output needs further 

processing to analyze the extracted mentions. 

 

The analysis of false positives shows that some improvements could be made with the negation 

labeling functions. Indeed, when the concept of interest is within a list of negated conditions, as is 

often the case in clinical notes, the negation may be located outside of the context window. 

Increasing this window may improve the false positive rate.  

 

MedDRA has been developed to facilitate sharing of regulatory information for medical products 

pre- and post-market. Its rich vocabulary allows for precise reporting of adverse reaction in the 

context of pharmacovigilance. Past work using MedDRA and NLP methods for information 

extraction have focused on adverse drug event (ADE) recognition. For example, Zorzi et al. 

developed a NLP pipeline for processing notes and linking them to MedDRA in Italian language 

for automatic detection of ADE [17–19]. They used an annotated dataset of 4,500 ADE from an 

Italian pharmacovigilance data warehouse. Their system showed a performance of 65-69% recall 

and 61-70% precision. Wang et al. evaluated the performance of four systems for the recognition 

of symptomatic adverse events and normalized them to MedDRA from patient-authored text. The 

best system for strict matching shoed a F1 score of 0.56 [34]. Ly et al. [20] used NLP methods and 

MedDRA to annotate drug product labeling. They evaluated three NLP systems for adverse events 

extraction and mapping to MedDRA preferred text. Precision ranged from 64%-77%, recall from 

64%-83% and F1 from 67%-79%. Though the task is different, it is worth noting that our MedDRA 

tagger outperforms all these systems for the mention recognition. 

 

Because of the rich vocabulary describing signs and symptoms, we believe MedDRA is well suited 

for tasks beyond adverse drug event recognition. Indeed, on a more general task of extracting 

disorders mentions in clinical notes, our tool showed great performance, with recall of 86%, 

precision of 73% and F1 score of 79% on a standard dataset. To our knowledge, our system is the 

first tool that makes use of MedDRA for such wider purpose. Furthermore, we demonstrate an 

extensive range of applicability and the validation using two datasets from separate institutions 

shows great generalizability. The tool is easy to use and does not require installation beyond the 

required python libraries to run the scripts. Finally, the simple and modular pipeline based on 

SpaCy allows for straightforward extensions to other ontologies or even multiple languages 
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CONCLUSION 

 

Throughout this paper, we present the development and validation of a simple yet efficient NLP 

tool for extraction of clinical concepts from text. We show the versatility of our tool with three use 

case examples, ranging from brain cancer to infectious diseases, demonstrating that its use is not 

restricted to a specific disease area. We have chosen to use MedDRA for its rich low level terms 

that more likely to be used in clinical practice. We note that the modular nature of our tool allows 

for a straightforward adaptation to another biomedical ontology. We also show that our tool is 

independent of EHR system, and as such generalizable.  
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