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ABSTRACT2

Background: Up to 30-50% of selected patients with chronic heart failure do not respond to3
cardiac resynchronization therapy (CRT). Optimization of pacing lead placement in ventricles4
remains a challenge.5

Objective: We utilize a machine learning (ML) classifier to predict the position of an optimal left6
ventricular (LV) pacing site maximizing the probability of CRT response for a certain patient.7

Materials and Methods: Retrospective data from 57 patients with implanted CRT devices were8
utilized. Positive response to CRT was defined by a 10% improvement in the LV ejection fraction9
in a year after implantation. For each patient, a personalized model of ventricular activation and10
ECG was developed based on MRI and CT images. The total ventricular activation time, QRS11
duration and electrical dyssynchrony indices during intrinsic rhythm and biventricular (BiV) pacing12
with clinical pacing lead position (ref-LP) were computed and used in combination with clinical13
data to train the ML algorithm. We built a logistic regression classifier predicting CRT response14
with a high ROC AUC=0.84 and an average accuracy of 0.77. It generates a ML-score estimating15
the probability of CRT response. ML-scores were computed from model-driven features for16
varying LV pacing sites. Then Bayesian optimization was used to interpolate the ML-score over17
the available LV surface and an optimal LV lead position for BiV pacing that maximizes ML-score18
(ML-LP) was defined.19

Results: The optimal LV pacing site position increased the average ML-score by 17% in the20
patient cohort. Moreover, 11 out of 34 (20%) non-responders classified as true negative at ref-LP21
were re-classified as positive at ML-LP. In a patient group (n=14, 25% of the cohort) with LV pacing22
lead deployed in close proximity to the optimal position, the ratio of responders to non-responders23
was three times higher than in the entire cohort.24
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Conclusion: We have developed a new technique based on simulations and ML to define an25
optimal position for LV lead for BiV pacing maximizing the ML-score of CRT response on the26
available LV epicardial surface. This technique demonstrates a high potential for the improvement27
of CRT outcome with guided lead implantation.28

Keywords: Cardiac Resynchronization Therapy; Optimal design for pacing lead position; Machine learning; Cardiac modeling;29
Electrophysiology; Hybrid approach; Prediction; Heart Failure30

1 INTRODUCTION
In addition to being an optimal medical treatment, cardiac resynchronization therapy (CRT) is an effective31
therapy for patients with chronic heart failure (CHF). According to the current 2021 patient selection32
guidelines (1), CRT is recommended for selected CHF patients in sinus rhythm with a reduced left33
ventricular ejection fraction (LV EF) <=35% and a long QRS duration (QRSd>=130 mc) reflecting34
left bundle branch block (LBBB). CRT delivers biventricular (BiV) pacing to correct electromechanical35
dyssynchrony in order to increase cardiac output.36

Despite the well-documented CRT benefits for improving patient outcomes and reducing patient37
hospitalizations and mortality in the general population of CRT recipients, it still remains ineffective38
in 30-50% of cases depending on CRT response definition (2).39

The problem of CHF patient stratification for CRT implantation and optimization of the procedure40
and device setting up is addressed in a number of clinical trials and simulation studies and still calls41
for the community attention (3, 4, 5). Pacing lead configuration for CRT was shown to be an essential42
determinant of patient improvement (4, 6). Recently, quadripole and multipole left ventricle (LV) leads43
have become available, which allow an operator to test different LV pacing configurations and choose the44
most appropriate setting (7, 8, 9). In addition to BiV pacing, His-Purkinje conduction system pacing is also45
considered as an alternative or additional possibility for optimizing pacing effects (10, 11).46

Generally, there are two steps in CRT optimization that are being discussed. The first concerns the47
intra-operative guidance of LV lead implantation. In the standard procedure, a LV lead is introduced into48
the coronary sinus vein at an appropriate position by intra-operative X-ray imaging guidance based on49
empiric rules developed by practice but essentially dependent on the operator’s experience and skills. Much50
effort has been devoted to improving lead implantation. Several criteria of intra-procedural optimization51
have been proposed. Overall, clinical trials suggest avoiding the apical and anterior regions for lead52
positioning (4). In electrically guided implantation, the narrowing of QRS duration (QRSd) is used to53
predict the best electrical synchronization (12), but this approach has not shown credible evidence. New54
techniques of Body Surface ECG Mapping for non-invasive assessment of the ventricular activation are55
also being developed to improve electrical synchronization (13, 14). Novel cardiac imaging approaches56
demonstrate the benefits of pre-operational myocardial fibrosis and scar area assessment to avoid proximity57
to this area when implanting the LV lead (15, 16, 17). Frequently, the late activation time (LAT) area is58
considered as a target for LV lead implantation (18), assuming that pacing from this area provides more59
effective electrical synchronization.60

In mechanically guided implantation, the area of late mechanical activation derived from modern61
echocardiography imaging data was suggested as a target for LV lead placement (19). However, although62
a recent systematic study and a meta analysis of the randomized clinical studies using this approach63
confirmed improvements in the NYHA HF class in the patients, no improvements were found in the64
LV remodeling and ejection fraction (LV EF) (20). Recent studies using intra-operative evaluation of65
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hemodynamic features showed that an LV lead location maximizing both LV dP/dtmax and stroke work66
has potential for CRT response (21, 3, 8) improvement. Although great efforts have been made to improve67
LV lead implantation, none of the above approaches is included in the current guidelines for the procedure.68

The other, more feasible step of LV pacing optimization is post-procedural choice of active pacing sites69
among the two, four or multiple sites that are available depending on the LV lead configuration (22, 12, 23).70
Many clinicians consider QRSd shortening or a QRS area reduction as a criterion for pacing pole selection71
or used echocardiography to control LV EF improvement during device programming. In today’s practice,72
CRT devices are conventionally programmed to pace from the LV active pole with the longest electrical73
delay (QLV delay). This parameter is measured in the sinus rhythm as the time interval from the ECG74
Q wave onset to the moment when the electrical wave arrives at the pole of the LV sensing lead (24).75
Two ongoing trials are also investigating whether a QLV targeted approach is beneficial compared to76
standard LV lead implantation (DANISH-CRT NCT03280862, ENHANCE CRT NCT01983293). In some77
studies, interventricular delay (RV-LV delay), as measured by the difference in activation time between78
the right ventricular (RV) and LV leads in sinus rhythm or at RV pacing is also used to optimize LV lead79
placement (25, 26). Nevertheless, although the results of numerous clinical trials have demonstrated various80
potential ways of lead placement optimization, no image-based approach has yet been recommended to81
guide the implantation strategy in routine practice. This emphasizes the need for further validation of useful82
imaging-based approaches and the development of new CRT optimization strategies.83

Although it is generally accepted that the problem of CRT procedure optimization is essentially84
multifactorial, most of the approaches used to optimize ventricular lead placement have been based85
on some single features characterizing the resynchronization of the ventricular activation or contraction.86

Modern machine learning approaches open up new perspectives on the analysis of a variety of patient-87
specific data that can be obtained using current cardiac imaging techniques of different modality. Recently,88
the use of unsupervised ML analysis enabled researchers to elicit four phenotypes in a patient population89
showing different probabilities of improvement due to CRT (27). Using supervised ML algorithms, a ML90
calculator based on a minimal set of conventional preoperative clinical data was developed to predict LV91
EF improvement with a high accuracy of about 0.7, which was higher than what other classifiers were able92
to attain (28).93

Predictive models have been developed to estimate mortality or hospitalization risks from baseline94
clinical parameters (29, 30, 31), to assess improvements in LV EF based on baseline indices and analysis95
of medical records (32), and to stratify patients by an unsupervised learning approach implementing96
electrocardiography data (27, 33).97

In current modeling studies, detailed cardiac anatomical models are also used to identify significant98
features related to CRT improvement (34, 35). In a recent article by Rodero et al. (36), an optimal pacing99
design with quadripolar LV lead in terms of minimizing total ventricular activation time (TAT) as a measure100
of the electrical dyssynchrony in ventricles was analyzed using personalized electrical ventricular models.101
The authors compared the effects of single and multi-site pacing with personalized and population-based102
optimal lead designs in case of infarct absence. Finally, they concluded that a single optimal lead design is103
sufficient to obtain near-optimal results across most patients. Moreover, modeling predicts a decreased104
effect of pacing on TAT reduction due to postprocedural ventricular reverse remodeling, indicating the105
need to re-tailor optimal lead design in postoperative follow-up. The above study shows the potential of106
virtual clinical trials as a tool for exploring new pacing lead placement designs.107
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In another recent study, Lee and co-authors (37) showed that simulations from personalized computational108
cardiac models and image based measured mechanical indices are predictive of an optimal LV lead109
placement for a positive acute hemodynamic response (37). Using machine-learning (ML) techniques,110
these authors showed that the combination of the RV-LV electrical delay and mechanical regional time to111
peak contraction can predict a positive response with an accuracy of about 70%.112

In our recent proof-of-concept study, we utilized a combination of retrospective clinical data in patients113
who had undergone CRT, personalized cardiac modeling and an ML approach in order to develop a new114
technique for predicting the response of conventional BiV pacing prior to the CRT procedure (38).115

We developed the ML classifier for CRT response based on a hybrid combination of clinical and model-116
derived data on ventricular geometry and electrical activation at both intrinsic LBBB pattern and BiV117
pacing (see Fig. 1 for a pipeline of ML-classifier development based on the hybrid data). A total of 7118
selected model-driven features of myocardial activation and clinical biomarkers are fed to the ML classifier119
for calculating a ML score which allows one to estimate the probability of a more than 10% LV EF120
improvement and thus to predict potential CRT responders or non-responders. The ML classifiers on the121
hybrid dataset outperformed classifiers built upon the clinical data, showing a higher accuracy over 0.8122
with sensitivity and specificity higher than 0.7. Moreover, the ML score showed a positive correlation with123
the percentage of LV EF improvement in our patient cohort, suggesting the possibility of a quantitative124
prediction of the CRT outcome.125

As a hypothesis for the current work, we suggested that such ML classifier on hybrid data could be used126
to predict an optimal LV lead position for guiding lead implantation. The idea of the strategy is as follows127
(Fig. 2). A personalized ventricular model for a given CRT candidate is constructed using imaging data128
and is then used to calculate ML scores for various LV pacing sites located on the epicardial surface of129
different LV segments with the exception of carefully defined scarring regions. Then Gaussian process130
regression is applied to the ML score array for predicting the location of a pacing site at the LV surface that131
would maximize the ML score of CRT response for the patient. This location can be then used to target LV132
lead implantation.133

The effects of ML-based optimal LV lead position on ventricular activation outlined in this study are134
compared with other strategies for lead placement based on the LAT area and TAT minimization.135

2 METHODS
2.1 ML classifier of CRT response136

In the present study, we used the same pipeline to develop a supervised classifier of CRT response as137
previously described (38) (Fig. 1). The ML classifier was trained and tested on a hybrid dataset consisting138
of clinical data from patients who had undergone CRT and simulated data from personalized computational139
models of cardiac electrophysiology.140
2.1.1 Clinical data141

The study involved the clinical data from 57 CHF patients. All patients were on optimal drug treatment142
following CRT device implantation at Almazov National Medical Research Centre between August 2016143
and August 2019. The participants signed approved informed consent forms. The study protocol was144
approved by the Institutional Ethical Committee.145

The criteria for patient inclusion in the study and the complete list of clinical data used to perform146
feature importance analysis for machine learning classifier development are presented in the Supplementary147
Materials (sec. Clinical data description).148
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Patients were evaluated before CRT device implantation and during the follow-up period of 12 months149
after implantation. The baseline clinical data of the patient cohort are presented in Table S1.150

In addition to the standard protocol of patient evaluation for CRT implantation, we also acquired data151
from 12-lead ECG and echocardiography recordings prior and after device implantation. Moreover, we152
collected multichannel ECG with a special system (Amycard, EP Solutions SA). This tool helped to record153
a maximum of 224 unipolar ECG signals at various pacing configurations (intrinsic rhythm, RV or LV154
pacing, BiV pacing) during the follow-up in a year after CRT implantation. After recording multichannel155
ECG, we performed computer tomography (CT) to visualize the torso with applied electrodes and the heart.156
The series captured with a scanner (Somatom Definition 128, Siemens Healthcare, Germany) were imported157
into special Wave program version 2.14 (Amycard, EP Solutions SA) to reconstruct the 3-dimensional158
geometry of the torso and heart. Finally, epi/endo ventricle models were manually built with marked active159
poles of RV and LV leads deployed for BiV pacing simulations. Data from magnetic resonance imaging160
(MAGNETOM Trio A Tim 3 T, Siemens AG or INGENIA 1.5 T, Philips) with contrast (Gadovist or161
Magnevist) before CRT implantation were also used to detect scar/fibrosis area in the myocardium and to162
incorporate these data into a personalized ventricular myocardial model.163

Responders and non-responders. Patient data were annotated into responder and non-responder groups164
according to LV EF improvement by more than 10%. Table S2 shows clinical data in the groups, indicating165
significant differences in the echocardiography indices.166
2.1.2 Simulated data167

Ventricular anatomy models. Based on the segmentation of CT imaging data, finite element models168
were constructed for the torso, lungs and RV-LV ventricles for each of the 57 patients (Fig. 1 I. 1.) . A169
rule-based approach was used to simulate myocardial fibers architecture (39). MRI data on scarring and170
fibrosis areas in the myocardium were accounted for in the LV model using expert annotation of these areas171
within the 17-segment American Heart Association (AHA) model of LV (see (38) for more detail). The172
scar regions were simulated as non-conducting and non-excitable areas and the conductivity of fibrosis173
regions was decreased by 50%.174

Myocardial electrical activation models. As in the previous work (38), we used an Eikonal model (40)175
to calculate electrical activation times at each point on the ventricular mesh. Cardiac tissue was simulated176
as an anisotropic medium with conductivities resulting in an excitation velocity ratio of 4:1 along vs across177
the myocardial fibers. The Eikonal model is currently widely used; it allows one to simulate the evolution178
of the cardiac excitation wavefront (41, 42, 43, 44, 45).179

ECG calculation was performed using the Lead Field method proposed by Pezzuto et al. (42, 46). ECG180
signals were computed according to the standard 12-lead ECG definition and the lead-field approach181
allowed us to reduce calculation time more than 100x times.182

Model parameter personification. Each patient-specific model assumed a uniform conductivity in the183
myocardial tissue across the entire ventricles. Then an optimization problem was solved for each of these184
models to estimate the global conductivity parameter, and minimize discrepancy between simulated and185
clinically measured QRS complex durations from 12-lead ECGs recorded in the patient. We used the186
L-BFGS-B algorithm to handle optimization in the model and the method proposed in (47) for automatic187
QRS onset and offset detection.188

Pacing protocols. We simulated two pacing protocols – LBBB activation pattern and BiV pacing, and189
calculated model-derived features to be used for developing an ML classifier of CRT response.190
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To simulate the LBBB activation pattern, the RV endocardial surface was annotated and a Purkinje191
network was generated using the model proposed by Costabal et al. (48). The Purkinje system was isolated192
from the working myocardium and connected to it only at the ends of the Purkinje fibers. Activation started193
at the His node and spread throughout the conduction system with an excitation velocity of 3 mm/ms194
before approaching Purkinje-myocardial junction points. This activation map was then applied to initiate195
activation within the ventricular myocardium according to the Eikonal model.196

Furthermore, we used the simulated LBBB ventricular activation map to define the area of LAT in every197
patient model. This area was then used as one of the optimal LV pacing site positions, and the effects of198
this pacing optimization were compared against other designs (see next section below).199

For BiV pacing we used referent RV and LV pacing lead locations derived from CT images. A zero time200
delay was set between the RV and LV pacing sites as programmed in patients.201

For both the LBBB and BiV protocols, the global conductivity parameters were fitted to the 12-lead ECG202
data recorded from the patients.203

Simulated features used for developing ML-classifiers. Patient-specific models allowed us to identify204
several clinically important features affecting ventricular activation and the geometric properties of205
ventricles.206

The first group of model-derived indices was defined from the ventricular anatomy models based on207
CT and MRI data, coupled with electrophysiological model simulations. We estimated the volume of208
postinfarction scar and non-ischemic fibrosis and their size relative to the myocardial tissue volume (MTV).209
Knowing the exact location of RV and LV pacing leads, we measured the time delay in the activation of the210
LV electrode later than the RV electrode (RV-LV delay) in LBBB. We also calculated the physiological211
distances between the RV and LV pacing sites (RV-LV distance), and the distances from the LV lead to the212
scar area (Scar-LV distance) and to the area of LAT (LAT-LV distance) under intrinsic rhythm, by solving213
an isotropic Eikonal equation, to define the distance from a certain point on the ventricular surface to a214
specific area. The latter distances mimic ones that can be directly measured from CT and MRI images by a215
ruler.216

The second group of model-derived indices were calculated for LBBB and the BiV pattern of myocardial217
activation. We simulated activation maps and 12-lead ECG signals. Final calculations included the following218
biomarkers for both pacing modes: total ventricular 95% activation time (TAT95), computed as the time219
interval for 95% ventricular activation; maximum QRS complex duration; time delay between the total220
LV and RV activation time (ATRV LV ); relative difference between the mean activation time of the LV221
free wall and septum (mATSTLV = (LV latmean − STmean)/TAT , where LV latmean (ms) is the average222
activation time of the LV free wall, STmean is the average activation time of the septum, and TAT is the223
total ventricular activation time. Changes in indices at BiV pacing compared to LBBB in either absolute224
values or normalized to the LBBB values were also used for developing the ML classifier of CRT response.225

A summary of simulated data is presented in Tables S1, S2 in Supplementary materials.226
2.1.3 Machine learning model227

We built ML classifiers based on the hybrid dataset containing the clinical and model-derived indices228
described above. The complete list of the clinical and simulated features fed to ML algorithms is shown in229
Figure S3. To train ML classifiers, the dataset was labeled as responders and responders according to the230
definition of response to CRT as an increase of more than 10% in LV EF. (38).231
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At the preprocessing step, non-categorical data were normalized by substracting the mean and dividing232
by standard deviation. Highly correlated features were also removed from the dataset by threshold > 0.85.233
The next step was to select a set of most significant features for CRT response prediction. Feature selection234
was done using a Leave-One-Out cross-validation technique: for each patient, we formed a training dataset235
from which we excluded that patient’s features and then predicted the ML Score value for that patient.236

The logistic regression (LR) classification algorithm was trained on the hybrid dataset, and 7 most237
significant features with the highest LR weights were chosen as follows: 3 pre-operational clinical features:238
left ventricle ejection fraction before CRT (LV EF, %), body mass index (BMI, dimensionless), and end-239
diastolic diameter of LV (EDD, mm). Also, 4 model-derived features were taken into account: distance from240
LV pacing site to postinfarction scar area (Scar-LV distance, mm), total activation time 95% myocardium241
in the LBBB activation pattern (TAT95, ms), and inter-ventricular dyssynchrony indices in LBBB and at242
BiV pacing (ATRV LV,LBBB , ATRV LV,BiV , ms).243

Finally, these 7 features were used to train the final LR classification model. The features and244
corresponding logistic regression weights are listed in Supplementary Table S3. The LR classifier245
generates an ML-score based on the clinical and simulated features of the patient, which gives an estimate246
of the probability that the patient would respond positively to CRT. These ML-scores then were combined247
into one set to build a receiver operation characteristic (ROC) curve, and the area under the ROC curve248
(AUC) was calculated (Fig. S1 in Supplementary Materials). A threshold value of the ML-score=0.5 was249
adopted to predict either positive (ML-score≥0.5) or negative (ML-score<0.5) response to CRT in our250
patient cohort.251

2.2 Optimization of LV pacing site position based on the ML-score252

In step of the study, we used the final LR classifier to predict an optimal LV pacing lead position which253
maximizes the ML-score throughout the LV epicardial surface for each personalized model of the cohort254
(see Fig. 2 for the pipeline employed for searching an optimal LV lead position). Septal regions and scarring255
area were excluded from possible LV pacing site locations. First, we varied the position of the LV pacing256
site between the centers of LV AHA segments on the epicardial surface with the RV pacing site located at257
the clinical position derived from the CT scan.258

For each LV lead position (up to 12 positions, 10 per model on average), we computed the259
electrophysiological model and extracted model-derived features from the simulations and fed them260
into the LR classifier to generate the ML-score. At the end of this step, an initial distribution map of the261
ML-score on the LV epicardial surface was generated. The small number of points with defined ML-scores262
did not allow us to accurately predict the optimal LV pacing site with maximum ML-score. Therefore, we263
used a Bayesian optimization method to interpolate the ML-score on the entire LV surface accessible for264
pacing. This method involves building a regression model and its iterative refinement before converging at265
the optimal solution.266

Bayesian Optimization. Bayesian optimization is a derivative-free global optimization method that267
requires only a model evaluation function.268

The iterative process of ML-score interpolation was performed using Gaussian process regression (GP269
regression) model (49). We used the current ML-score set (an initial pre-calculated ML-score vector in the270
first iteration step) to train GP regression and to predict the ML-score at every point on the LV epicardial271
surface (at every node of the mesh). Then we calculated the so called acquisition function: L(µ, σ) = µ+2σ,272
where µ is an expected ML-score value predicted by GP regression and σ is a standard deviation of GP at273
this point (GP uncertainty value) (Fig. 2, step 2). After that, maximum L(µ, σ) was defined throughout the274
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LV nodes, and this position was further used to calculate the electrophysiological model at BiV pacing275
with this LV pacing site and to compute the corresponding ML-score according to the LR classifier fed276
with new simulated features.277

The Bayesian optimization method thus strikes a balance between finding points that allow one to refine278
the GP regression model (points with large uncertainty, i.e., large σ), and finding points where the value of279
the regression function is maximum (points with maximum µ).280

In the next iteration step, GP regression was re-trained with the addition of the data from the new point on281
the LV surface and the algorithm was repeated. The optimal solution was considered to be found if the last282
two iterations of the Bayesian optimization algorithm predicted the same point. Finally, we obtained an LV283
epicardial surface map of ML-score values, predicting areas of LV pacing with either positive (ML-score284
≥ 0.5) or negative (ML-score < 0.5) expectation of response to CRT and suggested the optimal position of285
LV pacing site maximizing the ML-score among all available LV surface positions. This map can guide LV286
lead placement during CRT implantation.287

288
2.3 Optimization of LV pacing site based on LAT area or TAT reduction289

In addition to the ML-score based optimization of pacing lead position in the personalized models, we290
also used LAT area defined in LBBB for LV pacing site location, as suggested in several clinical studies291
(50, 51). Another approach to LV pacing site optimization in our models was based on the minimization292
of TAT95, which is also considered as a target for LV lead positioning (52). The latter approach was293
implemented in our personalized models using an iterative procedure similar to the one we used for294
ML-score optimization. To this end, we generated an initial set of simulated TAT95 with BiV pacing295
under variation in the LV pacing site position between ventricular segments and further used Bayesian296
optimization of TAT95 over the available LV surface. As a result, we found an LV pacing site position with297
minimal TAT95 on the available LV surface in each personalized model of our cohort.298

The effects of each of the approaches to LV pacing site optimization were compared with the effects at299
the clinical LV lead position and with each other.300
2.4 Software301

Cardiac electrophysiology was simulated using an in-house software based on the FENICS library (for302
solving PDE problems) (53) and VTK (for working with meshes). The scikit-learn library was employed303
for the machine learning: classifier development, statistical modelling, feature selection, cross validation,304
and ROC-AUC calculation, and the Pyro (54) library for GP regression and Bayesian optimization.305

306
2.5 Statistics307

Detailed analysis was performed using the IBM SPSS Statistics 23.0.0.0 software package (USA). For308
qualitative data, the frequency and percentage of total patients in the cohort were calculated. Quantitative309
data are presented as mean ± standard deviation. Comparisons between two dependent groups were made310
using Wilcoxon’s test for quantitative data and McNemar’s test for qualitative data. Comparisons between311
dependent groups (ref-LP and opt-LPs vs LBBB; opt-LPs vs ref-LP) were made using nonparametric312
Friedman’s two-way ANOVA, followed by a pairwise comparison adjusted for multiple comparisons.313
Comparison between two independent groups (non-responders vs responders) was carried out using Mann-314
Whitney test for quantitative data and Pearson’s chi-square test for qualitative data. Feature dependence315
was assessed using Spearman rank correlation test. The critical level of statistical significance was taken316
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equal to 0.05.317
318

3 RESULTS
3.1 Hybrid dataset of clinical data before and after CRT device implantation and model319

simulations in LBBB and at BiV pacing320

Retrospective clinical and imaging data from 57 patients who had undergone CRT implantation were321
collected and analyzed. Each patient-specific RV and LV pacing lead positions as deployed during the322
implantation procedure were derived from the CT-scan and used further as a reference pacing lead position323
(ref-LP). RV electrodes were placed at a standard apical position in all the patients. Figure S2 shows the324
distribution of the referent LV pacing sites between the segments according to the 17 segment AHA LV325
model. It can be seen that in 50 (88 %) out of the 57 cases the LV lead was placed in the lateral wall, mostly326
in the mid- and basal segments. The LV lead was delivered to the inferior segment in only one case and to327
the anterior segments in 5 cases. In 2 participants, an apical LV lead position was observed.328

The location and transmurality of myocardial postinfarction scar and fibrosis were defined from MRI329
image description (see Methods for detail). Figure S2 shows the distribution of the segments with scar and330
fibrosis between the 17 AHA LV segments in the patient cohort. In 10 (18%) out of the 57 patients the331
segments with implanted LV electrodes were concordant.332

A population of personalized ventricular electrophysiology models was built for the patient cohort. The333
ref-LP was used to evaluate the effects of BiV pacing in the personalized models. A summary of the334
statistics for clinical data, CT/MRI derived data and model-driven biomarkers in the patient cohort is335
presented in Supplementary Materials S1.336

The entire patient cohort showed an average positive response to BiV pacing, revealing itself in a337
decrease of -23±14% in QRSd , a reduction in the end-diastolic and end-systolic volume (EDV and ESD,338
correspondingly) by -18±31 and -24±36%, and in LV EF improvement by 9±8% as compared with339
pre-implantation data. In consistency with the clinical data, average positive changes in the simulated340
features of myocardial activation in response to BiV pacing manifested themselves as a decrease in341
QRSd by -23±13%,in TAT95 by -32±17%, and in all computed indices of the inter- and intraventricular342
dyssynchrony by about 100% see Table 1.343

The hybrid dataset combining clinical and model-driven data in our patient cohort was then classified into344
responders (n=23/40%) and non-responders (n=34/60%) to CRT according to the LV EF improvement of345
more or less than 10% (referred to below as the EF10 criterion). The two groups demonstrated significant346
distinctions in several indices associated with CRT response. Table S2 in Supplementary Materials compares347
the clinical and model-derived variables of the groups.348

According to the classification criteria, the average LV EF improvement by 17±5% in the responders349
group is well above 3±5% for non-responders. The average reduction in EDV and ESV is about 5 times350
larger in responders. At the same time, in consistency with the clinical data, no difference in the relative351
decrease in both simulated TAT and QRSd at BiV pacing was found between the two sub-populations of352
models.353

Regarding the CT/MRI derived geometry indices, we found that in 2 (9%) responders and in 8 (24%)354
non-responders the segments with implanted LV electrodes were concordant with scar area. Accordingly,355
a shorter distance from the LV pacing site to the scar/fibrosis zone in the non-responders group (26±24356
mm in non-responders vs 39±22 mm in responders) was revealed, suggesting less effective pacing of the357
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normal tissue in non-responders. No other indices showed any significant difference between the groups358
(see Table S2 in Supplementary Materials).359
3.2 ML-classifier of CRT response built on a hybrid dataset360

As we showed in our previous study (38), none of the individual biomarkers in the intrinsic LBBB361
activation pattern derived from either clinical or CT/MRI data allowed us to classify the responders and362
non-responders groups with a sufficient accuracy. Similarly, none of the simulated electrophysiological363
biomarkers enabled us to distinguish between the groups both in the LBBB mode of activation and at364
BiV pacing (see Table S2 in Supplementary Materials) and, thus, consider them as individual classifying365
features.366

This prompted us to use a combination of the clinical data recorded prior to the operation and MRI/CT367
derived biomarkers together with simulated features from personalized models of ventricular excitation368
in the LBBB and BiV pacing activation modes to build an ML-classifier, which improved significantly369
the accuracy of CRT response predictions in our patient cohort. The features fed into the feature selection370
algorithms when developing CRT response classifiers are listed in Figure S3 in the Supplementary Materials371
in the descending order of feature importance.372

We used the hybrid dataset containing 57 data entries for every patient from our cohort. The supervised373
classifiers were trained using an EF10 criterion (∆EF>10%) of CRT response. In this article, we developed374
a Logistic Regression (LR) classifier using Leave-One-Out and five-fold cross-validation and 3 different375
feature selection methods inside the cross-validation loop to train the classifier. Seven most important376
features were selected for developing the final LR classifier used further below in this article (see Table S3377
for the LR independent variables and coefficients). The feature sub-set contains 3 pre-operational clinical378
features: LV EF, %, body mass index (BMI, dimensionless), end-diastolic LV diameter (EDD, mm); and 4379
model-driven features: distance from LV pacing site to scar area (Scar-LV distance, mm), total activation380
time of 95% of myocardium in the LBBB activation pattern (TAT95LBBB , ms), and inter-ventricular381
dyssynchrony indices in LBBB and at BiV pacing (ATRV LV,LBBB , ATRV LV,BiV , ms).382

The best supervised LR classifier we developed features a high ROC AUC of 0.84 with a total accuracy of383
77%, sensitivity of 65% and specificity of 85% (see the complete list of the classifier characteristics in Table384
S3 in Supplementary Materials). Based on the hybrid clinical and model data, the LR classifier calculates an385
ML-score of CRT response as an estimate of the probability of a higher than 10% LV EF improvement for386
a patient. The threshold ML-score classifying patient data into the responders or non-responders group was387
found to be 0.5. This value will be used hereafter to classify test data in various LV pacing configurations.388

The ML-score generated by the LR classifier allowed as to distinguish between the groups (0.64±0.30 vs389
0.25±0.22, p<0.01, see Table S2). Moreover, the ML-score correlates with post-operative improvement in390
the EF (r=0.57, p<0.001).391

These findings convinced us to use the ML-score from the LR classifier to evaluate the effects of392
pacing lead position on CRT response prediction and to suggest an ML-based strategy for lead placement393
optimization.394
3.3 Optimal pacing lead position based on the model simulations and ML prediction of CRT395

response396

In the previous section, we trained our LR classifier using post-operative CT data on precise clinical397
location of RV and LV lead pacing sites. However, when we use the classifier to compute an ML-score for398
selecting CRT candidate prior to the procedure, we do not know the exact lead location. In this section, we399
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describe a technique that uses ML classifier to define an optimal LV lead position (opt-LP) maximizing the400
ML-score of CRT response for a given patient.401

A general scheme of the technique for pacing site optimization based on ML-score is shown in Figure402
2. A personalized ventricular model for a given CRT candidate is constructed using imaging data and403
employed to calculate model-driven features in the LBBB activation pattern and at BiV pacing with various404
LV pacing sites located on the epicardial surface in the centers of LV segments. Septal segments are405
excluded from LV stimulation area tested as unavailable for the transvenous approach. Neither are scarring406
regions used for stimulation as non-excitable. The selected clinical data and model-driven features for407
every tested pacing configuration are then fed into the LR classifier we developed to compute ML-scores.408
At the next step, Gaussian regression is applied to the ML-score array on the LV surface for predicting409
the location of the pacing site that maximizes the ML-score of CRT response for the patient. If the best410
possible ML-score corresponding to the opt-LP is higher than the threshold value of 0.5, this patient is411
classified as a responder. In this case, the opt-LP could be used to guide targeted LV lead implantation.412

Hereinafter in the text, we refer to the BiV pacing configuration using the CT-derived spots of RV413
and LV lead tips as the reference lead positions (ref-LP) for each patient-specific model. The simulated414
characteristics of ventricular electrical activity for different opt-LP criteria are compared with model results415
for the original LBBB activation pattern, BiV pacing from ref-LP, and between each other.416
3.3.1 ML-score based optimal LV pacing site versus reference lead position417

Figure 3 shows three examples of optimal LV pacing sites in personalized ventricular models. Two-color418
maps of the ML-score value are shown on the LV epicardial surface of the personalized models and on419
the LV AHA segment schemes. Red shades show ML-scores>0.5 (see the color scale in the Figure) in420
desirable LV segments with pacing sites predicting a positive response to CRT. In contrast, shades of blue421
show ML-scores<0.5 in LV segments unwanted for LV pacing. Blue and red dots on the map show the422
locations of the clinical and optimal LV pacing sites, respectively.423

The left panel in Figure 3 demonstrates the ML-score map in a clinical responder (patient #2) with LV424
EF improvement of 12%, which is higher than 10%. Here, the referent and optimal pacing sites are located425
in adjacent LV segments and the maximum ML-score of 0.95 at ML-LP is slightly above the referent value426
of 0.94. So, this patient is predicted as a true positive for CRT response (ML-score>0.5) at both the ref-LP427
and ML-LP. It is interesting that the patient is predicted as positive to CRT with any available LV site428
located at the lateral wall. The LR prediction is in line with the great extent of LV EF improvement in this429
patient.430

The center panel in Figure 3 shows the ML-score map for a clinical non-responder (patient #1). Here,431
the ML-scores at both the referent and optimal LV pacing sites are blue colored (0.14 and 0.27 < 0.5,432
respectively). Moreover, the overall map of ML-scores on the entire available LV surface is blue colored,433
predicting a low possible response to CRT in this patient. Correspondingly, this patient has a large434
postinfarction scar spreading over half of the LV segments, and LV EF improvement in this patient is 7% ,435
which is less than 10%.436

The right panel in Figure 3 shows the ML-score map for a clinical non-responder (patient #7). The437
patient with an LV EF of 6% was classified by the LR predictive model as a true negative at the clinical LV438
pacing lead location (ML-score=0.38, see the referent pacing lead located in the blue color area on the439
ML-score map). At the same time, our algorithm predicts a narrow red area at the basal inferior segments440
where the patient is predicted as a positive for CRT response, particularly with the optimal ML-based LV441
lead position (ML-score=0.77, see optimal pacing site located in the red color area on the ML-score map).442
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Thus, our simulations suggest that this patient could possibly improve with the ML based optimal pacing443
lead placement (ML-LP).444

Figure 4 compares the distributions of the ML-scores for the reference and optimized LV pacing sites.445
The average ML-score for the ML-score based opt-LP (ML-LP) is higher as compared to that for ref-LP446
(0.58±0.30 vs 0.41±0.31, p<0.01). In particular, the ML-score is increased in 88% of the patients (51447
out of 57, 19 responders and 32 non-responders). Importantly, our model predicts a much higher increase448
(almost double) in ML-score for ML-LP in the non-responders group (see Table 2).449

In a majority of models (52 (91%) out of the 57 models), BiV pacing from ML-LP reduces considerably450
all simulated features characterizing ventricular activation as compared with the LBBB models. The average451
TAT (104 ± 26 ms) and QRSd (146 ± 27 ms) at ML-LP are significantly shorter (p<0.01) than those at452
LBBB activation (150 ± 26 and 189 ± 24, respectively). At the same time, no significant difference in453
average TAT and QRSd was found between ML-LP and ref-LP (Table 1).454

Both the inter- and intra-ventricular dyssynchrony indices in the LBBB activation pattern have positive455
average values reflecting significantly later activation of LV versus RV, and LV lateral wall versus septum456
(Table S5). Both indices reduce several times at ML-LP as compared with LBBB. However, no difference457
between ML-LP and ref-LP was found in the inter-ventricular dyssynchrony index ATRV LV , showing458
a delay in total activation between LV and RV. In contrast, the intra-ventricular dyssynchrony index459
mATSTLV , representing the difference in total activation time between the lateral LV wall and septal part460
of LV, is slightly higher for ML-LP. The average positive mATSTLV (0.09 ± 0.06) at ML-LP suggests later461
activation of the LV lateral wall as compared to the septum, while the negative index (-0.07 ± 0.10) at462
ref-LP reflects later activation of the septum.463
3.3.2 Optimal ML-score based LV lead position versus other optimized LV lead placement464

In this subsection, we compare the ML-LP results with other opt-LPs based on different criteria used to465
optimize lead placement in clinical studies.466

First, we defined the latest electrical activation time (LAT) area on the LV subepicardial surface in the467
LBBB activation pattern. Then, we used these LAT spots for LV pacing (referred to hereafter as LAT lead468
position, LAT-LP) in patient-specific models, calculated the ventricular electrical activation features and469
fed them together with clinical data into the LR classifier to predict ML-scores of CRT response under470
LAT-LP pacing for the patients.471

In addition, we defined a model feature based opt-LP minimizing a certain single model-derived feature472
characterizing ventricular activation. We tested opt-LP based on either minimal QRSd or TAT, or LV473
electrical dyssynchrony indices derived from model simulations. Here, we again used a similar Gaussian474
regression approach for predicting the optimal feature value on the LV surface as employed for ML-score475
optimization. Note that the same reference RV pacing site was used for each of the tested opt-LP, unless476
otherwise specified. We then compared the effects of optimized LV pacing positions between ML-LP,477
LAT-LP and minimum TAT based opt-LP (TAT-LP).478

A summary of the model-derived features characterizing ventricular activation and ML-scores generated479
by LR classifier of CRT response using model-derived features of different opt-LP is presented in Tables 1,480
2, S5 and S6. First of all, we compared ML-scores predicting the probability of LV EF improvement with481
different pacing lead configurations based on the model simulations.482

Figure 4 compares the distributions of ML-scores generated by the LR classifier of CRT response483
using the features simulated for different opt-LPs at BiV pacing. The only maximum ML-score based484
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optimization of LV pacing site predicted an increase in the average ML-score in our patient group as485
compared with ref-LP and other tested lead configurations (Table 2). Unexpectedly, no difference in the486
average ML-score was found between optimized LAT-LP, TAT-LP and ref-LP in the entire population. Each487
optimized LV lead position predicted a higher ML-score in the responders group versus non-responders.488
However, only ML-LP pacing caused an increase in ML-scores in each group, showing a much higher489
increase in the non-responder group ( Table 2).490

As defined above, the ML-score=0.5 is a threshold separating potential responders and non-responders491
according to our LR classifier trained on the ref-LP data. For each opt-LP, we found cases where our LR492
predictive model classified a patient into the opposite group as compared to ref-LP. In other words, we493
found patients who were classified as negative (potential non-responders) with ref-LP but re-classified as494
positive (potential responders) with opt-LP and vice versa. Figure 5 shows such transitions from the group495
of ML-score<0.5 to the group of ML-score>0.5 and back due to opt-LP pacing in the model. It can be seen496
that in the case of ML-LP pacing (left panel), there are only upwards transitions from the underside group497
of potential non-responders with an ML-score <0.5 for ref-LP to upside group of potential responders with498
an ML-score >0.5. There are 11 such transitions, which are shown in Table S7 in more detail. Here, 5499
responders classified by the LR classifier as false negative in ref-LP move upward into the positive group in500
ML-LP (see +5 in the top left cell coming up from the bottom left cell). Moreover, 6 non-responders truly501
classified as negative in ref-LP are re-classified as positive in ML-LP (see +6 in the top right cell coming502
up from the bottom right cell). In total, according to the LR classifier the ratio of positive to negative CRT503
responses with optimized ML-based pacing lead placement rose considerably to 31-to-26 (54-to-46%)504
versus 20-to-37 (35-to-65% ) in ref-LP.505

In contrast to ML-LP pacing, LAT-LP and TAT-LP pacing did not show such promising predictions (Fig.506
5, Table S7). There are far fewer positive transitions from negative to positive predictions (4 for LAT-LP507
and 3 for TAT-LP) with these opt-LP. Moreover, there is a number of reverse transitions from positive to508
negative prediction in opt-LP (3 for LAT-LP and 6 for TAT-LP), making one to anticipate an unlikely CRT509
response as compared to ref-LP. In total, the ratio of positive to negative predictions in our population for510
LAT-LP and TAT-LP is not improved as compared with that in ref-LP pacing (Table S7).511
3.3.3 Effects of different opt-LPs pacing on simulated features512

To explain the difference in the distributions of ML-scores depending on pacing lead configuration, we513
compared the model-derived features characterizing ventricular activation in different opt-LPs. While BiV514
pacing at every optimized LV lead position reduces ventricular dyssynchrony as compared to the LBBB515
activation pattern, only opt-LP minimizing LV TAT causes a significant reduction in the average TAT and516
QRSd in the entire population as compared to ref-LP, ML-LP, and LAT-LP (Table 1, Fig. 4). No difference517
in both TAT and QRSd was found between the latter three opt-LPs (Table 1). No correlation between518
TAT and LV EF improvement (r=-0.20, p=0.134) was found for ref-LP pacing. So, the shortest TAT could519
unlikely predict with confidence the best response in the patients.520

Similarly, there were no effects of pacing configuration on TAT and QRSd in the responders and521
non-responders groups except for TAT-LP, which shortened these features in each group. No significant522
difference between the groups was found independently of the BiV pacing configuration.523

The inter-ventricular dyssynchrony index ATRV LV reduced under BiV pacing by about 100%524
independently of LV pacing site optimization approach in the entire population, and no difference in525
change in the index was observed between the responder and non-responder groups (Table S5). Similarly,526
the intra-ventricular electrical dyssynchrony index mATSTLV significantly reduced under BiV pacing as527
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compared to the LBBB activation pattern, and there was not much difference in the index between the528
opt-LPs and between responders and non-responders.529

Thus, the peculiarities of these model features under different opt-LPs could not explain the differences530
in the ML-score we found.531

As described above, the distance from the LV pacing site to postinfarction scar area (Scar-LV distance)532
was selected as one of the significant model-driven features affecting LR classifier accuracy, and ML-score533
value. The average Scar-LV distance is significantly higher for ML-LP as compared to ref-LP, LAT-LP and534
TAT-LP, contributing to the higher ML-scores for this stimulation pattern. This conclusion is supported by535
the correlation (r=0.673, p=0.000) found between the improvement in the ML-score and the extension of536
the Scar-LV distance when switching the pacing lead configuration from ref-LP to ML-LP.537

Comparing the responder and non-responder groups, we observe that the distance from LV lead to scar is538
shorter for the non-responder group for ref-LP, while in ML-LP the distance is significantly increased in the539
non-responder group, blurring the difference between the groups (Table 2). This contributes to a stronger540
improvement of the ML-score in the non-responder group under ML-LP pacing. Finally, no correlation541
between maximal ML-score and the Scar-LV distance was found for ML-LP. In contrast to ML-LP, the542
Scar-LV distance reduced for LAT-LP as compared to ref-LP (Table 2). This could have been expected,543
since the electrical propagation should slow down closer to the scarring areas. Hence, the LAT area could544
be close to the scar. Unexpectedly, the Scar-LV distance reduced with TAT-LP as well, compared to ref-LP545
(Table 2).546

For both LAT-LP and TAT-LP, the reduction in Scar-LV distance is larger in the responders group so that547
the overall effect of such opt-LP on Scar-LV distance in the entire group is not significant.548

4 DISCUSSION
4.1 ML-score based optimal LV lead position549

In this study, we have developed an LR classifier of CRT response predicting a positive long-term LV550
EF improvement of more than 10%. This classifier is based on pre-operative clinical data in combination551
with simulated features from personalized ventricular anatomy and electrophysiology model computing552
ventricular activation in the LBBB pattern and under BiV pacing. The classifier was trained and tested553
on the data obtained from BiV pacing with reference RV and LV lead locations as that delivered in the554
clinic. The precise RV/LV pacing lead sites were determined from the post-operative CT scans and used in555
personalized ventricular models for BiV pacing. This was performed to exclude the effects of uncertainty556
in lead position on the ML prediction results. The classifier showed a great accuracy of more than 0.8557
with a sensitivity and specificity over 0.7. This was the first step in the validation of our new technique558
suggesting its high potential for CRT response prediction.559

In actual practice, such an ML classifier should be used before the procedure when the lead position560
is yet uncertain. Moreover, a good prognostic model should help to first decide whether a patient should561
be selected for CRT and, on top of that, help with procedure planning once the patient has been selected.562
The main advantage of using personalized computational models is the possibility of computing the563
characteristics of ventricular activation from any accessible pacing sites and to predict an optimal lead564
placement against certain optimization criteria prior to the procedure. ML classifier allows one to estimate565
a probability of CRT response for various opt-LPs and help with decision making.566

In this article, we propose a novel approach to using a ML classifier directly for choosing LV lead567
position on the LV surface. The patient assessment algorithm involves building a personalized ventricular568
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model, performing simulations in the LBBB activation mode and at multiple LV pacing site positions for569
BiV pacing. It then involves calculating the ML-score using the LR classifier based on clinical data and570
model-derived characteristics for each BiV pacing configuration, and finally, applying Gaussian regression571
with respect to the ML-score throughout the entire LV surface (Fig. 2). Thus, this approach provides a572
CRT operator with a surface ML-score map that predicts areas of LV pacing lead location with either573
positive (ML-score>0.5) or negative (ML-score<0.5) predictions of LV EF improvement. Moreover, this574
approach suggests a target position for optimal LV lead placement that maximizes the ML-score, predicting575
the highest possible probability of response to CRT (Fig. 2). If the optimal ML-score is high enough576
(higher than 0.5 in the case of our LR classifier), the patient could be considered a candidate for CRT. The577
ML-based optimal LV lead position (ML-LP) could serve as a target for lead implantation (see examples of578
ML-score maps in patient specific models in Figure 3).579

Existing lead optimization strategies are predominantly based on a single pre- or intra-operative feature580
(either e.g. LAT, or QRSd, or TAT, or LAT, or dP/dtmax, etc.). In contrast to these strategies, our ML-based581
lead optimization accounts for several significant features related to the CRT response. This approach582
includes realistic model-driven data on the size and location of the myocardial damage area, distance583
between the LV pacing site and the scarring area, and simulated features of ventricular activation at BiV584
pacing from certain LV pacing sites.585

In fact, we did know the response to CRT in our patients with just one reference pacing lead configuration586
(ref-LP). Therefore, we first compared the results of optimal BiV pacing design with those of ref-LP, and587
the ML-score predicted by our LR classifier was used as an estimate of the probability of CRT response588
depending on lead configuration.589

The most essential result of our study is that the maximal ML-score based opt-LP (ML-LP) provides the590
highest ML-score in our patient population among the pacing configurations we tested (Fig. 4, Table 2).591
This result was to be expected but was not obvious. Indeed, we were sure that variations in LV pacing site592
location throughout the available LV surface (with the exception of the septal segments and scarring area)593
would affect the ML-score essentially. The ML-score varied more than 10-fold across the LV surface, and594
the range was much broader in the non-responders group of patients. This allowed our algorithm to choose595
a maximal ML-score value for each patient, which exceeded the reference value by 17±14% in 89% of our596
patients. Moreover, in the non-responders group the maximal ML-score increased by 19% in 32 out of597
34 patients. This high potential of ML-based optimization of pacing lead placement is clearly visualized598
in Fig. 5. It shows a great number of transitions among the patients classified at ref-LP into the group of599
negative expectation for CRT response (ML-score < 0.5) to the group of positive expectation (ML-score >600
0.5) at ML-LP. It is especially promising that 6 true non-responders in ref-LP are predicted as positive for601
CRT response in ML-LP pacing.602
4.2 Validation of the optimal ML-LP approach603

Working with retrospective clinical data in the present study, we had no possibility to verify our predictions604
of optimal LV lead position with maximum ML-score in a prospective group of patients. That is why we605
chose to start working with clinical data having the referent LV pacing lead (ref-LP) deployed during the606
procedure close to the optimal position of the pacing site (ML-LP) predicted from our simulations. The607
proximity of the referent pacing site to an optimal position was defined as 25% of the shortest distance608
from the distribution of the distances in our population of 57 patients (lower quartile).609

There are 14 models in this suboptimal group (with a suboptimal referent LV lead position). The distance610
from the referent to the optimal LV pacing site position varies from 0 to 26 mm. In 8 models the optimal611

Frontiers 15

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 16, 2022. ; https://doi.org/10.1101/2022.12.14.22283450doi: medRxiv preprint 

https://doi.org/10.1101/2022.12.14.22283450
http://creativecommons.org/licenses/by-nc-nd/4.0/


Dokuchaev et al. ML-based optimization of LV pacing site in CRT

and referent LV sites are located in the same LV segment of the 17-segment AHA model, while in the612
other 6 models, - in neighboring segments. There are 9 responders and 5 non-responders in the suboptimal613
group. Our ML-classifier predicts 11 positive responses with an ML-score>0.5 for ML-LP and 3 negative614
responses with an ML-score<0.5. From the 11 individuals predicted as positive in ML-LP, 9 cases contain615
all true-positive responders, and 2 cases are false-negative non-responders. Considering data for the 2616
false-negative individuals more accurately, we found that patient #25 was predicted as positive for both617
ref-LP and ML-LP with rather a high ML-score of about 0.8. An optimal LV pacing site was predicted at618
the basal-anterior segment #7, while the referent location was in the neighboring mid-anterior segment619
#1. The patient was initially labeled as a non-responder according to the EF10 criterion because his LV EF620
showed an improvement of less than 10% at 2% only. However, his AHA HF functional class improved621
from 3 to 2, and other echocardiography indices used to evaluate CRT response indicated significant LV622
reverse remodeling in this patient, particularly a reduction both in EDV by -22% and in ESV by -25%.623
Thus, this patient would have been surely labeled as responder if other response criteria had been used. So,624
in this case the ML-score based positive prediction should be considered as true-positive in terms of CRT625
response. The second patient #45 was also labeled as a non-responder as his LV EF improvement was626
8%, which is less than 10% but close to this threshold. At the same time, this patient demonstrated also an627
improvement in the functional class from 3 to 2, and an essential reduction in EDV by -24% while ESV628
reduction of -3% was not as much pronounced. Based on the clinical data and simulations with ref-LP, the629
patient was classified as true negative with an ML-score of 0.39 (< 0.5). However, the maximum ML-score630
of 0.55 generated from the simulations at the optimal pacing site position predicts this patient as positive,631
although the ML-score is also close to the threshold. The optimal LV pacing site was suggested to be in the632
basal-anterolateral segment #6 which is the same as the referent position. Nevertheless, the optimal LV633
lead position was predicted to be 34 mm away from the scar, while the suboptimal referent position was 17634
mm closer to the scarring area. This close proximity would possibly not allow the patient to improve as635
much as could be expected from the optimal ML-LP.636

If we consider the 3 non-responders from the suboptimal group, each is classified as true-negative with637
both ref-LP and ML-LP (ML-score < 0.5), and the ML-score at the optimal lead position is not much638
different from the reference, suggesting a small chance of improvement. CRT should not possibly be639
recommended for these patients, as it would unlikely be effective.640

Thus, in the patient group with suboptimal reference LV lead position the ratio of patients with positive641
to negative prediction of CRT response is 11 (79%) to 3 (21%), which is much higher than that in the entire642
group of patients. The accuracy of the LR classifier in the group is also higher (85%). In addition, the643
ML-score based predictions of CRT response with optimal LV lead position are supported by the difference644
in the range of LV EF improvements in the positive and negative patients with a median of 14[11.20] for645
responders versus 2[1.10] for non-responders within the group with suboptimal BiV pacing.646

By contrast, in the 25% group of patients with a long distance between the reference and optimal pacing647
sites (higher quartile of the distance distribution in our population, ranging from 79 to 117 mm) the ratio648
of 3 responders to 11 non-responders is much lower than in the entire group. This also indicates that649
pacing lead placement away from the optimal position is associated with a highly likely negative prognosis650
of CRT response. Note that in a majority of non-responders from this group the pacing lead is placed651
close to the scarring area, which could fortunately be avoided in the case of optimal lead positioning. The652
general trend is that the closer the referent pacing site is to the scarring area, the farther away is the optimal653
pacing site from the reference position and from the scar. Moreover, even in this far-from-optimal group, 3654
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non-responders were classified as positive at the optimal pacing site position suggesting a chance for a655
better outcome against what empiric lead implantation provided.656

The above results evidence a high potential of our ML-score based optimal LV lead placement for657
stratifying CRT candidates and guiding lead implantation.658
4.3 Which LV lead position is better?659

To check the ML-score based optimization approach for other advantages, we compared ML-LP with660
the other two opt-LPs based on model-derived feature optimization. In the first approach the personalized661
models were computed for the LBBB activation pattern, and LAT area was derived from the simulated662
activation map on the LV surface. The LAT sites were then used as LAT-LP to pace LV in the models.663
This approach is similar to that automatically implemented in CRT device programming, particularly for664
quadripolar LV electrodes. The maximal Q-LV delay used for choosing the LV active pole reflects the665
latest activation time among the electrode tips/rings suggesting the most effective re-synchronization of the666
ventricular activation. We implemented our personalized models to calculate the interventricular RV-LV667
delay as a time interval between activation of the simulated LV and RV pacing sites in the LBBB pattern.668
This feature is often used instead of Q-LV, especially in case of RV pacing.669

Comparing the different lead optimization designs, the RV-LV delay was found to be expectedly longer670
for LAT-LP (147 ± 42 ms) as compared to ref-LP and optimized ML-LP, TAT-LP (103 ± 40, 96 ± 47, 80671
± 37, p<0.01, respectively). Meanwhile, no pairwise difference in the average RV-LV delay was found672
between the latter three pacing configurations. Moreover, we found no significant difference in the average673
RV-LV delay at ref-LP between the responder and non-responder groups in our patient population (see674
Table S6). Neither was there any correlation between the RV-LV delay and LV EF improvement (r=-0.14,675
p=0.314). The lack of correlation was also confirmed between the geometry distance from RV to LV pacing676
site and EF improvement. Furthermore, no statistically significant correlation was observed between the677
RV-LV delay and corresponding ML-score predicting the probability of EF improvement in a certain pacing678
lead configuration (r=0.02, p=0.904).679

There is no consensus on the role of RV-LV delay for optimal lead configuration. There are clinical680
studies showing RV-LV delay to be predictive of CRT response (18). In a recent simulation study (37)681
using personalized ventricular models, the authors showed the RV-LV delay as a significant simulated682
feature the value of which above 60% predicts solely an acute hemodynamic response to BiV pacing. In our683
investigation, the RV-LV delay did not demonstrate the ability to classify the patient cohort into responders684
and non-responders with applicable accuracy (ROCAUC=0.623, p=0.118). No significant difference in the685
LV EF improvement in the groups with an RV-LV delay of more or less than 60% (11±10% versus 8±7% ,686
p=0.085) was revealed in our cohort. The cause of the inconsistency could be an acute response to BiV687
pacing used to train the LR classifier based on the RV-LV delay in (37). By contrast, we used clinical data688
on long-term EF improvement in a year after the procedure where the impact of the RV-LV delay could689
have been less important. This hypothesis is supported by our recent data from clinical observations (55).690
We compared two groups of patients with quadripolar LV leads: one group featured an optimal choice691
of LV pacing pole with maximal RV-LV delay while in the other group the maximal RV-LV parameter692
could not be set for BiV pacing. We showed a faster improvement in the first group during the first 3-6693
months after implantation. Our finding in that study coincided with the simulation data from Lee et al.694
(37)). On the other hand, in that study we observed no difference in the LV EF improvement or ESV695
reduction in 12 months after operation between the groups. That finding is in agreement with our model696
predictions. In addition, our simulation data are in line with the results of a recent ENHANCE-CRT697
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study that showed no discernible difference between Q-LV delay optimized localization in comparison to698
conventional anatomical lead location in the long-term response of non-LBBB patients (56).699

Another tested opt-LP approach is minimum TAT based optimization of LV lead position (TAT-LP),700
which is frequently addressed in clinical and in-silico studies. TAT is often used as a measure of ventricular701
dyssynchrony and its reduction via BiV pacing or by other pacing settings is considered as a target for702
stimulation design (36, 52). Many clinical trials report the effects of pacing on TAT as an estimate of its703
quality. In clinical practice, direct assessment of both LAT and TAT is complicated and requires invasive704
electrophysiological mapping to be performed. Currently, noninvasive body surface ECG mapping is705
also used to solve a reverse problem of electrophysiology to assess the activation pattern in the ventricles706
(57, 58, 59). However, it still requires manipulations on patients and can be performed for CRT patients707
only after device implantation. By contrast, personalized cardiac models present another useful tool for708
noninvasive prediction of LAT in LBBB and TAT for various pacing configurations prior to the procedure.709

It is noteworthy that both simulated TAT and QRSd showed a significant reduction with each BiV pacing710
setting as compared to an inherent LBBB activation pattern (Table 1, Fig. 4). Comparing the three optimal711
pacing settings tested, we found essentially shorter mean values of TAT and QRSd for TAT-LP minimizing712
TAT across the LV pacing site on the surface of the LV. At the same time, neither TAT nor QRSd showed713
any significant pairwise intergroup difference between ML-LP, LAT-LP, and ref-LP.714

Analyzing our clinical data, we found no correlation between LV EF improvement and either absolute715
QRSd at BiV pacing or its change relative to the value at sinus rhythm (-0.14<r<0, p>0.318). Consequently,716
no correlation was found between simulated absolute values of TAT or QRSd at BiV pacing or their relative717
change against the LBBB pattern (∆TAT, ∆QRSd) and ML-score (0<r<0.18, p>0.321, not shown). Similar718
results were obtained for inter- and intra-ventricular dyssynchrony indices, which highly reduced by about719
100% at every BiV pacing setting against LBBB activation mode, but did not change to any considerable720
degree in the optimal pacing configuration as compared to the ref-LP (Table S5).721

Our simulation results are consistent with the simulation results published in a recent article (37). Lee722
et al. also did not find that changes either in QRSd or in the bulk (10–90%) ventricular activation time723
(risetime), or in the time of LV activation at BiV pacing in comparison to RV pacing were predictive of a724
more than 10% acute hemodynamic response to BiV pacing.725

Much more unexpectedly, our ML-LP pacing predicts higher ML-scores as compared to the other two726
optimal pacing lead configurations LAT-LP and TAT-LP. Moreover, the average ML-scores for LAT-LP and727
TAT-LP do not differ from that for ref-LP and between each other (Fig. 4, Table 2). A similar tendency can728
be seen in the responders and non-responders groups. Surprisingly, in several models LAT-LP and TAT-LP729
pacing even caused a decrease in the ML-score and in transition from the group of positive to negative730
CRT response prediction (Fig. 5).731

Thus, neither the longest RV-LV delay for LAT-LP nor the narrowest TAT and QRSd for TAT-LP account732
for an essential difference in the ML-scores versus ref-LP and between each other. In contrast, ML-LP733
provides higher ML-scores despite higher mean TAT and QRSd values compared to TAT-LP or shorter734
RV-LV delay compared to LAT-LP. This result suggests that a uniparametric strategy (based on either TAT735
or LAT) for targeting LV lead placement cannot guarantee the best possible effect of pacing in terms of736
CRT response prognosis.737

4.4 On the regional distribution of optimal LV lead position738

Several clinical trials recommend avoiding apical and anterior regions for LV pacing, where possible739
(4). Figure S2 compares the distribution of segments with LV pacing sites depending on LV optimization740
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approach. It can bee seen that in ref-LP the lateral segments with LV pacing sites are more frequent (50 out741
of the 57 cases) in our population.742

In LAT-LP, the segment distribution is very similar to the 52 cases of LV pacing lead located in the lateral743
wall, but inferior lateral segments are more frequent than anterior lateral ones as compared to the ref-LP744
pacing sites. On the contrary, in TAT-LP pacing, lateral segments are less frequent (16 cases), while in the745
majority of 21 cases (16 non-responders and 5 responders), LV pacing sites are located in anterior segments746
against 5 cases (3 non-responders and 2 responders) for ref-LP. Thus, the prognosis of the number of747
potentially negative patients (all of them are true non-responders in ref-LP) paced from anterior segments748
is significantly increased at minimum TAT optimization as compared to ref-LP, suggesting worse CRT749
response expectations in the entire population.750

In ML-based optimization, lateral segments are more frequent (36 cases) as well as in ref-LP, but both751
anterior (11 cases) and inferior (10 cases) segments are also representative in terms of the maximum ML-752
score. Analyzing the 11 cases with chosen optimal anterior segments for ML-LP, we found 4 responderss753
which were predicted as true positive (ML-score > 0.5) at ML-LP, and their referent lead position was close754
to the optimal one (in the same or neighboring segments with a small distance from the optimal to referent755
site). The rest 7 non-responders were still predicted as negative at ML-LP (ML-score > 0.5), despite an756
increase in their ML-score at the optimal pacing site as compared to the referent lead position. Thus, in757
these cases even an optimal lead configuration with the highest possible ML-score is very much unlikely758
to improve CRT response in the patients. So, our model predictions are in line with clinical observations759
showing a small fraction of anterior segments among positive responses even for optimal lead positions.760
4.5 On the role of scarring area for optimal LV lead position761

In our study, the extent of LV myocardial damage (both absolute and relative to the surviving myocardium762
volume) was not selected as one of the most important features by the ML feature selection algorithms763
and thus was not included as an independent variable in our predictive LR classifier. At the same time,764
distance from LV pacing site to scarring area (Scar-LV distance) was selected as the third most important765
feature for CRT response prediction. It was selected by every feature selection algorithm we tested from766
the total hybrid dataset analyzed, and was used as one of the 7 most significant input variables for building767
the predictive LR model (see Fig. S3). This distance is the only model-driven feature that distinguishes768
responders from non-responders in our population at the referent LV lead position (see Table 2), although,769
no correlation was found between Scar-LV distance and LV EF improvement (r=0.18, p=0.211).770

At the same time, we discovered a low positive correlation between ML score and Scar-LV distance at771
the referent lead position suggesting that it has a role to play in the integrative estimate of CRT response772
prediction (r=0.419, p=0.000). As a support for this hypothesis, we revealed strong positive correlations773
between the change in ML-score and the change in Scar-LV distance for the optimal LV lead position774
against the referent one (r=0.673 for ML-LP; 0.855 for LAT-LP; and 0.881 at TAT-LP; p<0.01). Here, the775
absence of difference in average ML-score between LAT-LP, TAT-LP and ref-LP was consistent with no776
difference in Scar-LV distance between the pacing settings. By contrast, the higher Scar-LV distances were777
associated with the maximum ML-scores in our patients (57 ± 21 mm in ML-LP versus 32 ± 24 mm in778
ref-LP, Table. 2).779

Our findings are consistent with the results of clinical studies which assessed the significance of780
postinfarction scar size for CRT response. Marsan and co-authors (60) performed MRI for CRT candidates781
to derive LV mechanical dyssynchrony and the extent of scar tissue to predict CRT response. Higher LV782
dyssynchronies were strongly associated with echocardiographic response to CRT, while the total extent of783
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scar correlates with non-response. Importantly, a univariable logistic regression analysis showed that the784
presence of a match between the LV lead position and a transmural scar was also significantly associated785
with non-response to CRT. The location of scar in the posterolateral region of the LV, which is empirically786
thought to be a target site for LV lead implantation, was associated with lower response rates following787
CRT (17). Pezel and co-authors (16), found no difference in the presence and extent of scar between788
CRT responders and non-responders. However, in non-responders, the LV lead was more often over an789
akinetic/dyskinetic area suggesting the presence of tissue lesions, a fibrotic area, or an area with myocardial790
thickness < 6 mm. By contrast, the extent of scar core and gray zone was automatically quantified using791
cardiac MRI analysis (15) and the highest percentage of CRT response was observed in patients with low792
focal scar values and high QRS area before operation. Such area was calculated using vector-cardiography.793
Lee and co-authors used LV wall thickness <5 mm as an anatomical index for scar, and this feature was not794
shown to be predictive of an acute hemodynamic response to pacing (37). However, in every patient from795
their cohort the LV had a wall thickness > 5 mm throughout. So, the lack of MRI information regarding796
scarring in the cardiac tissue was mentioned as one of the limitations of the data they used. In our models797
we accounted for such data and showed that this is essential for model predictions.798
4.6 On the great potential of using personalized ventricular models for CRT response799

prediction800

In recent simulation studies, personalized cardiac models were used to reveal model-derived features801
correlating with CRT response (61, 62, 63, 64, 65). In two recent papers, model simulations were802
demonstrated to be predictive of the LV pacing site optimization (36, 37). In our present study, we803
have developed an ML-based technique, using both clinical and simulated features. This technique provides804
an LV surface map predicting areas of positive and negative response and indicating the best possible place805
for LV lead guidance with a very high probability of CRT response.806

Further prospective analysis of indices suggested by simulation studies could enable the clinicians to807
test acute responses at fewer pacing sites (if any) intra-operatively and during follow up. Thus, it will808
provide some benefits like reducing time, costs and risks to patients and enhancing the chances of a positive809
outcome. The results of simulation studies demonstrate the potential of virtual clinical trials as a tool for810
exploring new approaches for pacing lead placement optimization .811

5 LIMITATIONS
There are several limitations in our study. First, the ventricular geometry in our personalized models was812
derived from CT images obtained after CRT device implantation, not before it. Despite the supposed813
difference in the ventricular geometry our simulated ECGs in the LBBB mode have a high correlation814
with pre-operative clinical ECGs (r=0.84, p<0.05), thus demonstrating the effect of ventricular geometry815
as being secondary. Second, the CRT response definition we used was based on an LV EF improvement816
that has a low-to-moderate correlation with ventricular reverse remodeling in our patient cohort. It has817
been recently shown in a simulation study by Rodero and co-authors (36) that cardiac reverse remodeling818
after CRT implantation can reduce the effect of ventricular pacing. According to this hypothesis, if819
our predictions classify a patient as positive with post-operative ventricular geometry, it is all the more820
reasonable to expect to see this participant as positive with preoperative geometry. However, more false821
negative predictions could be expected, and an additional prospective study with pre-operative ventricular822
geometry will have to be performed to prove our approach.823

Next, we have shown a high importance of the distance from the LV pacing site to the myocardial824
damage area in ML predictions of optimal LV pacing position. In this study, we simulated LV scarring825
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area based on the labeling of damaged LV segments performed by the expert that analyzed the MRI scans.826
A more accurate segmentation of the raw MRI data should be used to compare model predictions with a827
different accuracy of scarring area simulation. We think more objective information on the scar and fibrosis828
morphology may improve the predictive models of CRT response as well as optimal pacing site location.829

In this proof-of-concept study, we used our ML-based approach to optimize BiV pacing configuration.830
Currently, there are data emerging on the different pacing modality enhancing effects of pacing in a831
certain patient depending on the ischemic or non-ischemic origin of CHF, LBBB or non-LBBB activation,832
the levels of conduction system block, etc. New techniques for His-Purkinje and/or conduction system833
pacing, selective LV, RV or BiV, or multipole pacing, epicardial versus endocardial pacing and their834
possible combinations together with AV and VV delay optimization for the optimal ventricular fusion835
create a challenge for the best choice. Only computational modeling provides a tool to test every possible836
combination and suggest ones that help to optimize patient outcome. The technology we have developed is837
capable of solving such complex problems.838

In the present study, CRT response prediction involved simulated characteristics of ventricular activation839
and ECG derived from electrophysiological models. However, the synchronization of ventricular contraction840
and subsequent improvement in the mechanical performance of the ventricles is the main goal of the therapy.841
Recent studies have shown the predictive power of the mechanical indices that could be measured from842
CT or echocardiography images and accounted for in the predictive models of optimal pacing designs843
(37). Moreover, electromechanical models of cardiac activity (such as reported by (65, 64, 62, 63) and844
being developed by our team) could help perform direct simulations of LV EF, dP/dtmax changes and845
other mechanical biomarkers of CRT response which can further improve ML based optimization of CRT846
procedure.847

Last but not least, in this study we had a limited data sample from 57 patients. However, to the best of848
our knowledge, this is the largest model population used in simulation studies. Our predictive classifiers849
based on hybrid clinical data from and computational models have demonstrated high performance with850
accuracies higher than those achieved with classifiers developed on the basis of clinical data from a851
thousand of patients. Still, a prospective study using our technique is needed to validate the approach and852
confirm its usefulness for patient stratification and optimal lead guidance.853

6 CONCLUSIONS
We have developed a new technique combing personalized heart modeling and supervised ML to predict854
optimal LV pacing lead position in CHF candidates for CRT. We suggest an optimal LV pacing site based855
on ML-scores from an LR classifier of positive CRT response (LV EF improvement > 10%). In a patient856
group with suboptimal LV lead position deployed in close proximity to predicted optimal pacing site with857
maximal ML-score, the number of positive responses is two times higher than negative responses. We858
showed the distance from the LV pacing site to scarring area to be an important feature for predicting859
optimal lead location.860

This novel approach has great potential clinical implications for patient care improvement. With an861
ML classifier on hybrid data created and thoroughly validated, the range of generated ML scores at any862
pacing site throughout the accessible LV surface would classify this patient as a potential responder or863
non-responder to the therapy, thus supporting individual selection for CRT. At the same time, the best864
pacing site location predicted from model simulations and corresponding ML scores could be used for865
guiding lead deployment during the CRT procedure and optimizing the outcome for the patient.866
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FIGURE CAPTIONS

Figure 1. Schematic outline of the ML model development. I. Building and calculation of a personalized
electrophysiological ventricular model: 1. Processing of the CT imaging data. 2. Segmentation of the
finite element meshes of the torso, lungs and ventricles; 2*. Personalization of the ventricular model: A.
Rule-based generation of myocardial fibers. B. Assignment of the scar/fibrosis area in the ventricles (shown
in back) and computing of the ventricular activation map at the baseline LBBB pattern and BiV pacing with
clinical lead position. 3. Calculation of ECG signals from the ventricular activation map. II. Development
of a supervised machine learning classifier: creation of a dataset contacting combination of the clinical
data and simulated features from the electrophysiological model from each of the 57 patients labeled into
responders and non-responders, supervised training of a ML classifier and calculation of ML-scores of
CRT response.
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Figure 2. Schematic outline of an algorithm for finding the optimal LV pacing site position on the
epicardial LV surface of a personalized ventricular model. The pipeline includes three major steps: 1.
Precalculation of the ventricular activation maps from the personalized model at BiV pacing from the
centers of available segments of the AHA LV model with the exception of the septal and postinfarction scar
segments (marked as dark gray at the AHA LV scheme on the left panel). 2. Iterative Bayesian Optimization
procedure to interpolate ML-scores on the LV surface, which includes: computation of simulated features
which in combination with patient clinical data are fed to the LR classifier for creation of an initial array of
the ML-scores for interpolation on the LV surface. Gaussian Process (GP) regression model trained on the
current ML-score array for estimating a GP acquisition function L(µ, σ) and predicting ML-score values on
the entire available LV surface (see two color maps on the LV surface with shades of red for ML-score>0.5
and shades of blue for ML-score<0.5); finding a target point candidate, in which the maximum ML-score
of the acquisition function is approached; calculation of a new ventricular activation map and simulated
features at BiV pacing with the LV site located at the current candidate point. The simulated features in the
next iteration step are fed again to the LR classifier to generate the ML-score which is then added to the
ML-score array for retraining the GP regression for further interpolation of Ml-score on the LV surface. 3.
If two iterations of the algorithm predict the same candidate point, the algorithm is considered to converge
and the last point with maximal ML-score value provides an optimal LV pacing site. Resulting ML-score
map is shown on the LV surface of the personalized LV model and on the LV AHA segment scheme.
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Figure 3. Examples of optimal LV pacing sites in personalized ventricular models. Two color maps of
the ML-value are shown on the LV surface of personalized models and on the LV AHA segment schemes.
Dark gray at the AHA LV scheme marks segments containing postinfarction scar, which are excluded
from pacing. Shades of red show ML-scores>0.5 and shades of blue show ML-scores<0.5. Blue and red
dots show locations of the clinical and optimal LV pacing sites. From left to right are shown examples of
the ML-score map in the clinical responder (patient #2), non-responder (patient #1), and non-responder
(true negative at the ref-LP) predicted as positive to CRT response at the optimal ML-based lead position
(patient #7).

Frontiers 29

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 16, 2022. ; https://doi.org/10.1101/2022.12.14.22283450doi: medRxiv preprint 

https://doi.org/10.1101/2022.12.14.22283450
http://creativecommons.org/licenses/by-nc-nd/4.0/


Dokuchaev et al. ML-based optimization of LV pacing site in CRT

Figure 4. Dependence of CRT response characteristics on the LV pacing lead position. Top panel: ML-
score at baseline LBBB activation and at different LV pacing lead positions. Bottom panel: TAT at LBBB
and different LV pacing sites. Comparison of dependent groups was performed using the Friedman’s test,
followed by a pairwise comparison adjusted for multiple comparison.
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Figure 5. Transitions from negative to positive prediction of CRT response and reverse transitions when
switching from ref-LP to opt-LP . Top: ML-LP; Middle: LAT-LP; Bottom: TAT-LP.
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Table 1. Statistics of simulated total activation time 95% (TAT95) and QRSd at baseline LBBB activation and BiV pacing with different LV
lead positions in the total patient cohort and groups of responders and non-responders.
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TAT95, ms

LBBB 150±26 151±21 149±29
ref-LP 100±20* -50±26 98±14* -53±20 102±23* -47±29
ML-LP 104±26* -46±30 4±13 101±15* -50±19 3±6 106±32* -43±36 4±16
LAT-LP 100±21 -50±28 0±8 98±15* -53±21 0±6 102±24* -47±31 0±9
TAT-LP 91 ±18*$& -59±27$& -10±7& 89±13*$& -62±20$& -9±6& 92±21*$& -57±31$& -10±7&

QRSd, ms

LBBB 189±24 191±20 188±27
ref-LP 144±20* -45±25 142±15* -49±20 145±23* -42±28
ML-LP 146±27* -43±29 2±14 143±15* -47±20 2±6 148±33* -40±34 2±17
LAT-LP 143±21* -46±26 -1±9 141±15* -50±20 -1±7 145±25* -43±30 -1±10
TAT-LP 134±19*$& -55±25$& -10±7& 133±14*$& -58±20$& -9±7& 134±22*$& -53±28$& -11±8&

Mean±SD
* - p<0.05, * - p<0.01 opt-LP vs LBBB. $ - p<0.05, $ - p<0.01 opt-LP vs ref-LP . & - p<0.05, & - p<0.01 opt-LP vs ML-LP . Comparison of
dependent groups was performed using Friedman’s test, followed by a pairwise comparison adjusted for multiple comparisons.
# - p<0.05, # - p<0.01 Responders vs Non-responders. Comparison between two independent groups was carried out using Mann-Whitney test.
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Table 2. Statistics of the ML-score and distance from LV pacing site to the scar area (Scar-LV distance) at different pacing Lv lead positions in
the total patient cohort and groups of responders and non-responders

Simulated
feature

Total Cohort (n=57) Responders (n=23) Non-responders (n=34)
Value Increment

(opt-LP –ref-LP) Value Increment
(opt-LP – ref-LP) Value Increment

(opt-LP – ref-LP)

ML-score
ref-LP 0.41±0.31 0.64±0.3 0.25±0.22##

ML-LP 0.58±0.3$ 0.17±0.14 0.78±0.22$ 0.14±0.13 0.45±0.27$## 0.19±0.14
LAT-LP 0.38±0.33& -0.02±0.13& 0.59±0.34& -0.05±0.12& 0.24±0.24&## -0.01±0.14&

TAT-LP 0.37±0.3& -0.04±0.16& 0.54±0.3& -0.10±0.16& 0.26±0.25&## 0.01±0.15&#

Scar-LV distance, mm
refLP 32±24 39±22 26±24#

ML-LP 57±21$ 26±20 59±20$ 20±17 56±21$ 30±22
LAT-LP 24±27& -8±24& 27±27& -12±18& 22±27& -4±27&

TAT-LP 19±19& -13±27& 16±18∗& -23±27& 20±20& -6±26&#

Mean±SD
* - p<0.05, * - p<0.01 opt-LP vs LBBB. $ - p<0.05, $ - p<0.01 opt-LP vs ref-LP . & - p<0.05, & - p<0.01 opt-LP vs ML-LP . Comparison of
dependent groups was performed using Friedman’s test, followed by a pairwise comparison adjusted for multiple comparisons.
# - p<0.05, # - p<0.01 Responders vs Non-responders. Comparison between two independent groups was carried out using Mann-Whitney test.
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