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Abstract 18 

The serovars of Salmonella enterica display dramatic differences in pathogenesis and 19 

host preferences. We developed a process (patent pending) for grouping Salmonella isolates and 20 

serovars by their public health risk to provide better Salmonella control targets along the food 21 

chain. We collated a curated set of 12,337 S. enterica isolate genomes from human, beef, and 22 

bovine sources in the US. After annotating a virulence gene catalog for each isolate, we used 23 

unsupervised random forest methods to estimate the proximity (similarity) between isolates 24 

based upon the genomic presentation of putative virulence traits  We then grouped isolates 25 

(virulence clusters) using hierarchical clustering (Ward’s method), used non-parametric 26 

bootstrapping to assess cluster stability, and externally validated the virulence clusters against 27 

epidemiological virulence measures from FoodNet, the National Outbreak Reporting System 28 

(NORS), and US federal sampling of beef products. We identified five stable virulence clusters 29 

of S. enterica serovars. Cluster 1 (higher virulence) serovars yielded an annual incidence rate of 30 

domestically acquired sporadic cases roughly one and a half times higher than the other four 31 

clusters combined (Clusters 2-5, lower virulence). Compared to other clusters, cluster 1 also had 32 

a higher proportion of infections leading to hospitalization and was implicated in more 33 

foodborne and beef-associated outbreaks, despite being isolated at a similar frequency from beef 34 

products as other clusters. We also identified subpopulations within 11 serovars. Remarkably, we 35 

found S. Infantis and S. Typhimurium subpopulations that significantly differed in genome 36 

length and clinical case presentation. Further, we found that the presence of the pESI plasmid 37 

accounted for the genome length differences between the S. Infantis subpopulations. Our results 38 

demonstrate that S. enterica strains with the highest incidence of human infections share a 39 
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common virulence repertoire. This work could be used in combination with foodborne 40 

surveillance information to best target serovars of public health concern.  41 

 42 

Introduction 43 

Members of Salmonella enterica subspecies enterica are some of the most ubiquitous 44 

agents implicated in foodborne human illnesses. Despite being constituents of the same 45 

subspecies, members of S. enterica are not only commonly isolated from livestock but also 46 

amphibians [1] and wild birds [2]. The wide host range for S. enterica makes control of the 47 

pathogen exceedingly difficult due to the large number of potential reservoirs. Historically, 48 

strains of S. enterica have been grouped into units termed serovars based upon serological 49 

antigen presentation. While an initial list presented 44 S. enterica serovars in 1934 [3], today’s 50 

descriptions include over 2,500 serovars of S. enterica [4]. Nonetheless, in the US only 20 51 

serovars accounted for 69.2% of human S. enterica isolates collected in 2016 by the US Centers 52 

for Disease Control and Prevention’s (CDC) Laboratory-based Enteric Disease Surveillance 53 

(LEDS) program [5]. Furthermore, nearly 10% of S. enterica’s serovars may be polyphyletic or 54 

paraphyletic [6]. 55 

To establish infections in disparate hosts, S. enterica manipulates common immune 56 

functions of higher vertebrates. Indeed, the classic gastroenteritis associated with S. enterica 57 

infections is the result of the pathogen affecting the host’s innate immune system to generate 58 

inflammation, subsequently producing unique metabolic niches for S. enterica while killing its 59 

competitors for reduced substrates in the hindgut [7-9]. Such remarkable expropriation of the 60 

hosts immune functions is achieved by virulence genes (virulence factors), many of which are 61 

contained within chromosomal elements termed Salmonella Pathogenicity Islands (SPI) [10]. 62 
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Genes contained within SPI aid in host cell invasion, and subsequent survival and dissemination 63 

within and between Eukaryotic host cells [11,12]. However, serovars display differences in 64 

pathogenesis and host-preferences. For example, the human-restricted serovar S. enterica ser. 65 

Typhi (S. Typhi), the etiological agent of typhoid fever, does not typically cause submucosal 66 

inflammation and resultant diarrhea in infected patients as with classical salmonellosis, but 67 

instead elicits a systemic enteric fever characterized by initial immune evasion [13,14]. S. 68 

Dublin, a bovine adapted serovar, commonly generates systemic infections in humans and is 69 

isolated from blood samples in 61% of human clinical infections as compared to an average of 70 

5% for other S. enterica serovars in the US [15]. The general pathogenesis of S. enterica is not 71 

fully elucidated, and the virulence potential for individual serovars is poorly understood. 72 

Furthermore, most studies have focused upon S. Typhimurium as a model organism for all S. 73 

enterica virulence, [8,16-21] which could obfuscate differences between serovars. 74 

  Despite the tremendous virulence diversity within S. enterica, microbial criteria from the 75 

US Food Safety and Inspection Services (FSIS) on important sources of S. enterica such as beef 76 

and poultry meats target all serovars equally, based on prevalence. Further, traditional 77 

surveillance methods can take considerable time to identify emerging serovars of public health 78 

concern, thereby delaying food safety intervention implementation [22]. Understanding virulence 79 

differences between serovars and identifying emerging virulent serovars in a timely manner can 80 

inform more focused risk management strategies targeting serovars with an inordinate impact on 81 

public health while reducing food waste due to recalls.  82 

Previous studies have used genomics to identify serovar groups of public health concern. 83 

Karanth et al. analyzed a limited number of genomes and serovars originating from humans, 84 

poultry, and swine to characterize virulent serovars [23]. This analysis had the benefit of using 85 
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the entire genome of Salmonella to group isolates by disease presentation; however, the 86 

computational resources required prevent its application to a large number of isolates. In another 87 

study, researchers used single nucleotide polymorphism (SNP) clusters and S. Saintpaul as a 88 

model to identify virulent isolates [24]. Although using high-resolution genomic methods 89 

identified SNP clusters associated with a high proportion of human clinical isolates, S. Saintpaul 90 

may not be the best serovar model due to its polyphyletic nature [25]. The objective of this study 91 

was to develop a computationally efficient genomic approach to group Salmonella serovars by 92 

virulence biomarkers in isolates from humans, beef, and bovine animals and define the human 93 

health risk of the resulting clusters using epidemiological data. We chose beef as a model 94 

foodstuff since US federal monitoring of Salmonella in beef is well-established, nationally 95 

representative, and beef remains an important vehicle for S. enterica. Beef production in the US 96 

is more decentralized than poultry and pork production [26] and we hypothesize that this 97 

decentralization may present unique genomic populations arising from geographic separation as 98 

previously observed in S. enterica serovars [27,28]. Furthermore, S. enterica in beef products is 99 

understudied compared to other vehicles such as eggs, poultry, and pork meat. 100 

 101 

Materials and methods 102 

We developed an information pipeline (patent pending) using  virulence factors as 103 

markers and epidemiological data as validation to group serovars by their risk to human health . 104 

After compiling a curated set of S. enterica genomes (n=12,337) from human, bovine, and beef 105 

sources, we applied an unsupervised random forest and hierarchical clustering approach to group 106 

isolates based upon genomic virulence trait presentation and validated the groups against 107 
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epidemiological measures including clinical presentation from sequenced isolates collected by 108 

the FoodNet active surveillance network (29).  109 

Contig assembly selection and quality criteria 110 

We compiled S. enterica assemblies from bovine-associated isolates from three primary 111 

sources: 1. BioProject PRJNA242847 (FSIS HACCP samples, accessed 7/13/2021), 2. 112 

BioProject PRJNA292666 (FSIS NARMS isolates, accessed 7/13/2021), and 3. BioProject 113 

PRJNA292661 (FDA NARMS isolates, accessed 8/25/2021). We collected isolates from sources 114 

specified as bovine-associated or beef origin from the metadata for the above BioProjects.  115 

We retrieved S. enterica isolates from human clinical cases from BioProject 116 

PRJNA230403 (CDC PulseNet, accessed 9/13/2021) and identified sporadic, domestically 117 

acquired, non-attributed S. enterica isolates from the FoodNet active surveillance network [29]. 118 

We did not include outbreak cases from FoodNet since they are not attributed to a particular 119 

source in that dataset. Instead, we used the National Outbreak Reporting System (NORS) dataset, 120 

a passive system for reporting enteric disease outbreaks in the US, to identify additional human 121 

isolates that originated from beef-attributed outbreaks. We initially defined beef attribution based 122 

on the Interagency Food Safety Analytics Collaboration (IFSAC) classification. As IFSAC-123 

defined beef-associated salmonellosis outbreaks for which clinical isolates were sequenced are 124 

limited, we widened the definition of potentially beef-associated illness to include outbreaks 125 

which listed beef as an identified contaminated ingredient. We based this inclusion on whether 126 

the list of foods or ingredients per outbreak included beef, even if other possible ingredients 127 

could not be ruled out to definitively assign an IFSAC classification. The following text strings 128 

were used to identify beef-associated outbreaks: "beef", "burger", "steak", "carne", "kitfo", "ox 129 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 4, 2023. ; https://doi.org/10.1101/2022.12.13.22283417doi: medRxiv preprint 

https://doi.org/10.1101/2022.12.13.22283417
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

tongue", "short-rib", "prime rib", "barbacoa".  If the IFSAC classification attributed an outbreak 130 

to other foods, we did not designate it as a beef-associated outbreak.   131 

We removed isolates from the data set if: 1) No pre-computed assembly was available on 132 

NCBI, 2) SKESA v. 2.2 was not used to construct the assembly, 3) The number of contigs 133 

representing the assembly was greater than 300, and 4) The contig n50 was less than 25,000 bp. 134 

After initial parsing for isolation sources and assembly quality, we included serovars with 50 or 135 

more isolates in the analysis. In total, the final analysis set includes 12,337 assemblies and 136 

represents 37 serovars.  137 

In silico serovar prediction 138 

We used Salmonella in silico Typing Resource (SISTR) [30] with default options to 139 

assign putative serovars to each assembly. 1,077 assemblies failed the quality control step within 140 

the SISTR software with the same error message “FAIL: Wzx/Wzy genes missing…”, but all 141 

330 / 330 genes for the core genome multilocus sequence typing (cgMLST) scheme used within 142 

the software were present within these assemblies. We retained assemblies failing QC with the 143 

aforementioned error message and that contained all 330 cgMLST loci for the analysis while 144 

excluding any assemblies which failed the quality control step and did not have all cgMLST 145 

genes. S1 table provides the SISTR serotyping results for each assembly.  146 

Virulence gene annotation 147 

We collated a custom database of putative virulence factors associated with Salmonella, 148 

Escherichia, Shigella, and Yersinia from the virulence factor database (VFDB) (accessed 149 

9/13/2021) [31] and putative virulence factors associated with Salmonella, Escherichia, and 150 

Shigella from PATRIC (accessed 9/13/2021) [32]. Next, we combined amino acid sequences of 151 

the open reading frames (ORF) with a reference proteome of Salmonella Typhimurium LT2 152 
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(https://www.uniprot.org/proteomes/UP000001014) and made the database non-redundant by 153 

clustering the open reading frames at 0.90 global identity using cd-hit [33]. We passed the 154 

resultant database to Prokka [34] using the “--proteins” option to specify the database as the 155 

primary annotation database in the software pipeline. We then parsed gene annotations from the 156 

VFDB and PATRIC non-redundant database from the resultant Prokka annotation tables. 157 

Additionally, to ensure consistent ORF predictions between assemblies, we trained a model 158 

using Prodigal [35] on the chromosome of the reference Salmonella Typhimurium LT2 assembly 159 

ASM694v2 (https://www.ncbi.nlm.nih.gov/assembly/GCF_000006945.2/) and passed the 160 

training file to Prokka using the command “--prodigaltf”.  161 

pESI plasmid identification 162 

The pESI plasmid is an emerging concern in some S. enterica serovars, namely S. 163 

Infantis [36]. To confirm the presence of this plasmid, we complied an additional nucleotide 164 

database of 13 marker genes previously used to identify pESI plasmids in S. enterica contig 165 

assemblies from two sources [36,37]. We then conducted a nucleotide BLAST search against the 166 

database using the software Abricate [38] and defined positive hits as a percent identify of ≥ 95% 167 

and percent coverage of ≥ 95%. We presumed that an isolate contained the pESI plasmid if the 168 

contig assembly was positive for the pESI specific repA gene and contained at least five 169 

additional marker genes.  170 

Random forest model construction 171 

We used virulence factor gene annotations from the resultant Prokka outputs and 172 

constructed a count matrix of virulence genes (assemblies x virulence factors). We excluded 173 

putative virulence factors present in more than 95% of assemblies or which were not present in at 174 

least 10 (0.08%) assemblies. To generate row similarity (isolate relatedness), we fit an 175 
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unsupervised random forest to the count matrix of virulence factors using the randomForest [39] 176 

package in R[40]. The random forest model contained 50,000 trees and used 60 features 177 

(columns, virulence factors) at every split.  178 

Grouping isolates and assessing cluster stability  179 

 We converted the row-wise proximity matrix from the random forest model to a distance 180 

matrix (1 – similarity) and subjected it to agglomerative clustering using Ward’s method [41]. 181 

We conducted two analyses: 1) k = 5, used to group serovars by putative virulence factor 182 

patterns and 2) k = 37, using the same number of clusters as serotypes in the data to identify 183 

possible subpopulations within serovars with different virulence factor catalogues. We defined 184 

cluster stability for both analyses as a Jaccard similarity of ≥ 0.75 [42] for 10,000 non-parametric 185 

bootstrap samples. For the main serovar clustering analysis, we choose k=5 as it was the highest 186 

value for which all clusters were stable. The k=37 version of the analysis tested whether 187 

distribution of virulence factor combinations is more similar within each serotype than between 188 

serotypes and, therefore, whether serotype is a reasonable representation of these virulence 189 

differences. We defined serovar subpopulations as serovars with at least two of these populations 190 

annotated into different clusters (k = 37 clustering) and with at least two of the populations 191 

representing greater than or equal to 0.20 of the total serovar population. Clustering and 192 

bootstrapping were performed using the clusterboot function from the fpc [43] package in R. 193 

Epidemiological indicators 194 

We estimated epidemiological indicators for both virulence clusters and serovars using 195 

sporadic and domestically acquired cases from FoodNet (2016 – 2019). We excluded outbreak-196 

associated cases to decrease bias due to outbreak size and removed travel-related cases to 197 

exclude foodstuffs from regions that may have different S. enterica population structures than the 198 
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US and are not good indicators of US consumer exposure to S. enterica in food. We calculated 199 

the proportion of positive samples for Salmonella, individual serovars, and each cluster in beef 200 

products from FSIS regulatory testing programs: MT43 (raw ground beef), MT60 201 

(manufacturing trimmings) and MT64 (Components other than trim) for 2016 – 2019.  We 202 

modeled all proportions using Beta(s+0.5, n-s+0.5) (eqn. 1), with a Jeffery’s prior (Beta(0.5, 0.5) 203 

as a Bayesian conjugate to the Binomial distribution[44]. Table 1 lists parameters s and n used to 204 

model these proportions. We used 1M Monte Carlo simulations to estimate and compare 205 

posterior distributions using numerical integration, with a 99% confidence level for statistical 206 

significance. 207 

 208 

Table 1. Description of parameters used for calculation of epidemiological indicator 209 

estimations using Equation 1 210 

Model variable / Epidemiological 
indicator 

Parameter description 
s (numerator) n (denominator) 

Salmonella proportion positive in 
beef ���� 

����: number of FSIS samples 
positive for Salmonella 

����: number of FSIS samples 
taken 

Hospitalization proportion  ��: number of hospitalizations from 
cluster k (k=1…5) 

Ik : number of total infections in 
FoodNet from cluster k (k=1…5) 
 

 
Extraintestinal Infection proportion  ���: number of extraintestinal 

infection from cluster k (k=1…5) 
Mortality Proportion  	�: number of deaths from cluster 

k (k=1…5) 

Proportion of gene presence within 
respective cluster group �p�,�) 

��,�: number of isolates from 
cluster (k=Cluster 1 vs. clusters 2-
5) with gene g (g=1…182) 

�� number of isolates from cluster 
k (k=Cluster 1 vs. clusters 2-5) 

 211 

Incidence of domestically acquired sporadic cases 212 

We modeled the incidence of domestically acquired sporadic cases per 100k people per 213 

year (���� for serovar j in FoodNet state i using the Bayesian conjugate for a Poisson rate with 214 

Jeffrey’s prior Gamma(0.5, 0.00001)(44), hence �����	α� � 0.5, �β�t � 0.00001�(eqn. 2), 215 

where αij is the serovar case totals per state and βi is the FoodNet catchment area population for 216 
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t=4 years. Sporadic cases are defined as illnesses which were not linked to a known outbreak.                 217 

The catchment area of FoodNet is not evenly distributed between the 10 participating states, so 218 

the population-weighted mean serovar incidence (��� for the study period was ∑ λ��p�
��
��� , where 219 

���  is the FoodNet state-specific mean serovar incidence and p� is the state catchment proportion 220 

of total FoodNet population. Virulence cluster population-weighted average incidence, ��, is the 221 

sum of the clusters’ constituent serovars incidence rates for the study period (λ� � � ∑ λ�
��
��� ). 222 

Serovar proportion positive in beef 223 

  We determined the proportion of Salmonella positives 	�	� following eqn. 1, with s+ 224 

number of samples positive for Salmonella and n+ total number of samples from FSIS testing. 225 

We estimated the proportion of serovar j isolated from beef products (��) with a Dirichlet 226 

distribution, (Dir(aj) eqn. 3), where aj is the number of FSIS isolates from serovar j. We excluded 227 

serovars without any positive isolates in FSIS testing and retained all serovars from the testing 228 

program (including those not included in the analysis set).  229 

Serovar proportion positive ����
� was taken as the product of total Salmonella proportion 230 

positive 	�	� and the serovar proportion of the total Salmonella population from eqn. 3 (��). 231 

Finally, we derived the cluster proportion positive �p
�
� as the summation of the cluster’s 232 

constituent serovars. 233 

Hospitalization, Extraintestinal Infection, and Mortality Proportions  234 

We determined the proportion of infections with a certain outcome (i.e., hospitalization, 235 

extraintestinal infections, and mortality) for each cluster k (k=1…5) and for cluster 1 vs the 236 

combinations of others.  We defined extraintestinal infections as having "URINE", "BLOOD", 237 
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"ORTHO", "ABSCESS", "OTHER STERILE SITE" and "CSF" isolation sources.  We modeled 238 

all the proportions using eqn. 1, with parameters described in Table 1.  239 

Differential gene carriage 240 

To identify virulence factors differential between clusters, we trained a supervised 241 

random forest model (ntree = 5,000, features to try at split = 13) to classify isolates into two 242 

groups: cluster 1 (higher virulence) and clusters 2-5 (lower virulence). We extracted variable 243 

importance from the random forest model and defined factor importance using the mean 244 

decrease of Gini impurity. As with other proportions, we used eqn. 1 to model the proportion of 245 

factor presence �p�,�� within respective cluster group (1 vs. 2-5) for each of the virulence factors 246 

used in the random forest. The relative frequency (RF) of a given factor was the resultant ratio of 247 

proportions of factor presence (RF � p
g
1

/p
g�2�5	

). To ease interpretation of differential genes, we 248 

categorized them into five broad virulence mechanism categories (Adhesion, Motility/Invasion, 249 

Survival/Host Persistence, Toxin and Virulence Factor Secretion) (Table S3) based on their 250 

virulence descriptions listed in the VFDB [31] and PATRIC [32] databases.  251 

Code and data availability 252 

Aggregated data and code used to generate figures for this study are available in our 253 

online repository: (link will be provided upon publication, Files shared with reviewers). FoodNet 254 

data is used with permission from the Centers for Disease Control and Prevention and although 255 

raw data may not be shared, code written from aggregated inputs is provided in our online 256 

repository. 257 

 258 
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 Results 259 

Genome assemblies analyzed 260 

The Pathogen Detection Network hosted by NCBI contains over 400,000 sequenced 261 

Salmonella isolates from various sources and contributors. From these, we extracted 53,849 262 

isolates from specific sampling programs. We further reduced to a final analysis set of 12,337 S. 263 

enterica assemblies comprised of 37 serovars representing human clinical cases in the US and 264 

bovine and beef associated isolates, (Fig 1). Approximately 55% (6,751) assemblies are from US 265 

human clinical infections with the remaining 45% (5,586) representing isolates from bovine 266 

animals and beef products. The metadata for the genomes analyzed is provided in S1 Table. 267 

Fig 1. Analysis set of genomes. Description of the S. enterica genome assemblies considered, 268 

and exclusion and inclusion criteria applied to generate the analysis set.  269 

Clustering serovars using isolate virulence gene catalogues  270 

To establish clusters of serovars, we identified virulence factors genes from each 271 

assembly and compiled them into a count matrix, trained an unsupervised random forest model 272 

to approximate similarity between isolate virulence factor catalogues (Fig 2), and subjected the 273 

resultant isolate similarity matrix to agglomerative clustering to identify clusters with subsequent 274 

non-parametric bootstrapping to validate cluster stability. 275 

 We identified five stable clusters of S. enterica isolates (Fig 3A), with the majority of 276 

serovar isolates residing within the same clusters (mean within serovar cluster proportion = 277 

0.96). (Fig 3B). However, S. Reading (cluster 1: n = 28 (0.47), cluster 3: n = 32 (0.53)), S. 278 

Saintpaul (cluster 3: n = 134 (0.66), cluster 1: n = 68 (0.34)), and S. I 1,4,[5],12:b:- (cluster 1: n = 279 

53 (0.66), cluster 3: n = 30 (0.34)) had at least 33% of total serovar isolates in two different 280 
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virulence clusters. The five virulence clusters are of uneven size (Fig 3C) with cluster 1 281 

containing almost 10 times more assemblies than cluster 2. We attempted to decrease the size of 282 

cluster 1 by introducing a sixth cluster. However, the sixth cluster was unstable (bootstrap 283 

Jaccard similarity = 0.515) and cluster 4 was split, not cluster 1, indicating that the variance 284 

(Ward’s method used to cluster) within cluster 1 is less than that of cluster 4 despite its much 285 

larger size (S1 Fig). Interestingly, cluster 2 is comprised of only S. Javiana and the cluster 286 

homogeny of S. Javiana was preserved with the addition of the sixth cluster (S1 Fig). Serovar 287 

cluster designations are provided in Table S2. 288 

Fig 2. Conceptual model of virulence cluster development. First, we downloaded contig 289 

assemblies and quality controlled for fragmentation followed by the identification of virulence 290 

factors. We then fit an unsupervised random forest model to the isolate level virulence factors 291 

catalogues to approximate relatedness. We converted the resultant similarity matrix to a distance 292 

matrix (1 – similarity) and clustered using Ward’s method. We identified five stable clusters and 293 

validated using non-parametric bootstrapping.  294 

Fig 3. Description of the five virulence clusters. (A) Dendrogram depicting the hierarchical 295 

relationship between 12,337 S. enterica genome assemblies based upon virulence factor gene 296 

carriage with the five virulence clusters superimposed on top. (B) Heatmap of serovar proportion 297 

within each of the five respective virulence clusters. Rows are clustered using Ward’s method. 298 

(C) Characteristics of the five virulence clusters: cluster stability - Jaccard similarity of 10,000 299 

non-parametric bootstraps, Number of Genomes - depicting the number of S. enterica genomes 300 

constituent in each cluster, and number of serovars (within cluster serovar proportion > 0.5) in 301 

each cluster. 302 
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General epidemiological characteristics of virulence clusters 303 

To investigate if the genomic virulence clusters correspond to clinical case presentation, 304 

we computed basic epidemiological characteristics per cluster for 2016-2019 as proxies for 305 

virulence phenotypes: proportion positive in beef products, number of outbreaks, incidence of 306 

domestically acquired sporadic cases per 100k people per year, hospitalization proportion given 307 

infection, extraintestinal infection proportion given infection, and mortality proportion given 308 

infection. We computed the results by virulence cluster (S4 Table). and by serovar. Not every S. 309 

enterica captured during surveillance programs in the US is subjected to sequencing, therefore 310 

we attributed cases from a given serovar to the cluster to which the highest proportion of serovar 311 

isolate was assigned (e.g., 98.5% of S. Typhimurium isolates were resident in cluster 1, therefore 312 

all cases of S. Typhimurium in the datasets were allocated to cluster 1). Cluster 1 serovars have 313 

the highest incidence rate of domestically-acquired sporadic cases (5.9 cases per 100k population 314 

per year, 99% CrI: 5.77 – 6.06) (Fig 4A), approximately 1.5x higher than that of clusters 2-5 315 

combined during 2016 – 2019 (incidence rate ratio: 1.5, 99% CrI: 1.44 – 1.55). Moreover, 316 

infections from serovars in cluster 1 had a higher proportion of hospitalizations than serovars in 317 

cluster 2 (relative frequency (RF): 1.10, 99% CrI: 1.002 – 1.200), cluster 4 (RF: 1.15, 99% CrI: 318 

1.029 – 1.296), and cluster 5 (RF: 1.17, 99% CrI: 1.058 – 1.288) (Fig 4B).The cluster 1 319 

proportion positive in beef products was less than half of clusters 3-5 (proportion positive ratio: 320 

0.44, 99% CrI: 0.366 – 0.528) (Fig 4C). However, cluster 1 serovars were implicated in the 321 

highest proportion of total foodborne outbreaks and beef associated outbreaks in the US from 322 

2016 – 2019 (Fig 4D), generating approximately 2.5x more beef associated outbreaks (20 vs. 8) 323 

than clusters 3-5 combined (There were no cluster 2 (i.e., S. Javiana) isolates found in beef 324 

sampling or in beef associated outbreaks). Additionally, higher virulence serovars were involved 325 
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in approximately 1.47x more foodborne outbreaks than clusters 2-5 combined from 2016 - 2019 326 

(285 vs. 194).  327 

 328 

Fig 4. Epidemiological indicators of the five virulence clusters for the study period 2016-329 

2019. (A)  Incidence of domestically acquired sporadic cases per 100k population per year by 330 

virulence cluster. (B) Proportion of clinical infections resulting in hospitalization by virulence 331 

cluster. (C) Proportion positive estimates in FSIS testing of US beef products. No isolates from 332 

cluster 2 (comprised solely of S. Javiana) were retrieved from 2016 – 2019. (D) Proportion of 333 

total US foodborne and beef-associated outbreaks attributed to serovars in the analysis set. 334 

 335 

Differential carriage of virulence factors between clusters 336 

In addition to the clear difference in epidemiological characteristics, a clear bifurcation 337 

exists between cluster 1 and clusters 2-5 (Fig 3A). We sought to identify virulence mechanism 338 

categories driving this differentiation by visually exploring the abundance (number of isolates 339 

carrying at least one copy of the virulence gene), frequency (RF), and clustering influence (mean 340 

Gini impurity) of the 182 virulence genes used in our analysis (Fig 5). The top two quadrants of 341 

the figure include the virulence factors that provided the most separation between clusters 342 

(highest mean Gini impurity), and the virulence factors on the two right quadrants were more 343 

common in the higher virulence group than in the lower virulence group (higher RF). 344 

Consequently, the upper-right quadrant includes factors that best distinguish the higher virulence 345 

cluster and were most frequent in the higher virulence group. Interestingly, factors involved in 346 

adhesion were the most important differentiators between clusters, while also being present in 347 

both virulence groups. Expectedly, more abundant genes generally provided higher 348 
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differentiation, as some genes were very rare (e.g., 11 isolates contained the ompF gene), while 349 

others, such as the ratB gene, were found in up to 95% of isolates, as dictated by our gene 350 

exclusion criteria. Besides adhesion, other influential genes were involved in survival/host 351 

persistence, and motility/invasion, whereas genes manifesting toxin production provided less 352 

differentiation between virulence groups (Fig 5). The full list of virulence factors s considered in 353 

the analysis and gene metadata are provided in Table S3, while genes present in each isolate 354 

(n=68) are presented in Table S5.  355 

 356 

Fig 5. Abundance, relative frequency, and influence of 182 virulence factors used to classify 357 

12,337 S. enterica genomes from human, beef, and bovine sources into two virulence 358 

groups. Points represent the square root mean decrease Gini impurity and natural log relative 359 

frequency (Cluster 1/Cluster 2-5) of each virulence factor, with diameter proportional to the 360 

number of isolates (min: 11, max: 11,653) carrying at least one copy of the virulence gene. Color 361 

designates virulence mechanism categories, as derived from the VFDB [31] and PATRIC [32] 362 

databases. Vertical dashed line represents equal frequency of virulence factors between the 363 

clusters, while points to the right of this line represent factors more frequently found in cluster 1. 364 

Points above the horizontal dashed line (square root of the mean decrease Gini impurity=12.5) 365 

represent virulence factors that were more influential differentiators in classifying isolates.  366 

 367 

Within serovar virulence subpopulations 368 

Horizontal gene transfer molds virulence gene carriage, especially within SPI [45,46]. 369 

We hypothesized that horizontal gene transfer may lead to virulence subpopulations that could 370 

be identified using random forest methods otherwise missed in more traditional alignment-based 371 
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phylogeny methods. To test this hypothesis, we increased the number of clusters to correspond to 372 

the number of serovars (k = 37). If no virulence subpopulations are present (within serovar 373 

variance is less than between serovar variance), each of the 37 clusters should contain a majority 374 

of one serovar (see methods). However, we found 11 serovars with virulence subpopulations 375 

(Table 2). The full list of subpopulation designations is provided in S6 Table. To test if virulence 376 

subpopulations may correspond to phenotypic differences in case presentation, we computed the 377 

proportion of clinical infections resulting in extraintestinal infections for each serovar 378 

subpopulation for sequenced strains with case presentation in the FoodNet surveillance system. 379 

Two serovars yielded significant differences in invasiveness between serovar subpopulations. S. 380 

Infantis split into two subpopulations (subpopulation 18: n = 145, subpopulation 20: n = 243) as 381 

shown in Fig 6A. The genome assembly size for subpopulation 18 isolates was significantly 382 

longer (4.98 Mb vs. 4.68 Mb, p-value < 2.2E-16, Mann-Whitney U test) (Fig 6B) than isolates 383 

from subpopulation 20. Of the 388 S. Infantis genome assemblies in the analysis set, 242 had 384 

associated clinical presentation data from FoodNet split evenly between the two subpopulations 385 

(n = 121, n = 121). Isolates from subpopulation 18 were more than twice as likely to result in 386 

extraintestinal clinical infections than isolates from subpopulation 20 (RF: 2.06, 99% CrI: 1.122 387 

– 3.778) (Fig 6C). There was an association between subpopulation 18 isolates and older patients 388 

(median age 56.1 years) when compared to subpopulation 20 isolates (median age 36.4 years) (p-389 

value: 5.00E-6, Mann-Whitney U test) (Fig 6D). 390 

We hypothesized that the approximately 300kb difference between the assembly lengths 391 

of the S. Infantis subpopulations may be due to the presence of the pESI plasmid previously 392 

identified in S. Infantis(36). After checking all isolates for the presence of this plasmid,144 out of 393 

145 S. Infantis isolates annotated to subpopulation 18 and 0 out of 243 isolates from 394 
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subpopulation 20 were putatively positive for pESI plasmids. Only one isolate, a S. Muenchen, 395 

was putatively positive for the pESI plasmid outside of the S. Infantis 18 subpopulation.   396 

Two subpopulations represented approximately 85% of the total S. Typhimurium 397 

population in the analysis set, which we analyzed further (Fig 7A). Similar to the S. Infantis 398 

subpopulations, the two subpopulations yielded significantly different genome assembly lengths 399 

(subpopulation 2: 4.90 Mb, subpopulation 16: 4.85 Mb, p-value < 2.2E-16, Mann-Whitney U 400 

test) (Fig 7B). However, the assembly difference of approximately 5kb between the S. 401 

Typhimurium subpopulations is far less dramatic than the approximately 300kb difference 402 

observed between S. Infantis subpopulations. 668 of the 937 S. Typhimurium isolates in 403 

subpopulations 2 (n = 359) and 16 (n = 309) have clinical case presentation data. Subpopulation 404 

2 isolates presented as double the extraintestinal infections than subpopulation 16 isolates (RF 405 

2.11, 99% CrI: 1.109 – 4.016) (Fig 7C). In contrast with the S. Infantis subpopulations, the age of 406 

patients was not significantly different between the two subpopulations (p-value 0.97, Mann-407 

Whitney U test) (Fig 7D).  408 

 409 

Fig 6. Description of two S. Infantis virulence subpopulations. (A) Dendrogram highlighting 410 

the locations of the two S. Infantis virulence subpopulations within the greater population of 411 

12,337 S. enterica isolates. (B) Histograms of the assembly lengths for the respective 412 

subpopulations. (C) Proportion of extraintestinal infections among illnesses caused by the two 413 

subpopulations (FoodNet data). (D) Boxplots of the distribution of patient age in infections 414 

caused by the two subpopulations (FoodNet data). 415 

Fig 7. Description of two S. Typhimurium virulence subpopulations. (A) Dendrogram 416 

highlighting the locations of the two S. Typhimurium virulence subpopulations within the greater 417 
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population of 12,337 S. enterica isolates. (B) Histograms of the assembly lengths for the 418 

respective subpopulations. (C) Proportion of extraintestinal infections among illnesses caused by 419 

the two subpopulations (FoodNet data). (D) Boxplots of the distribution of patient age in 420 

infections caused by the two subpopulations (FoodNet data). 421 

 422 

Table 2. Within serovar virulence subpopulations.  423 

    Subpopulation A Subpopulation B 

Serovar Total Serovar 
Count 

Subpopulation 
ID 

Genome 
Count 

Proportion of 
Total Serovar 

Population 
Subpopulation 

ID 
Genome 
Count 

Proportion of 
Total Serovar 

Population 
I 1,4,[5],12:b:- 83 30 30 0.36 29 52 0.63 
I 1,4,[5],12:i:- 530 9 294 0.55 2 163 0.31 
Infantis 388 20 243 0.63 18 145 0.37 
Kentucky 169 32 89 0.53 21 80 0.47 
Montevideo 1341 14 503 0.38 11 838 0.62 
Muenchen 392 12 133 0.34 6 195 0.50 
Newport 1751 6 427 0.24 1 926 0.53 
Oranienburg 137 14 32 0.23 11 103 0.75 
Reading 60 37 28 0.47 29 28 0.47 
Saintpaul 202 29 53 0.26 27 134 0.66 
Typhimurium 1106 16 477 0.43 2 460 0.42 
 424 

Table 2 legend: Serovars found to contain at least two subpopulations, each representing greater 425 

than 0.20 of the total serovar population. Subpopulations were identified by increasing the 426 

number of clusters to match the number of serovars (k = 37). Provided is the subpopulation ID’s, 427 

the number of genomes resident within each subcluster, and the proportion of the total 428 

population the subcluster represents. Note, that the subpopulations may not represent the total 429 

combined population of the serovar in the analysis set.  430 

 431 
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Discussion 432 

The pathogenesis of S. enterica is only partially understood, and how different serovars 433 

generate distinct disease pathologies is also not well-defined. To better understand how serovars 434 

group together based on virulence factor gene carriage, we describe a novel methodology that 435 

allowed for rapid identification of serovars of public health concern. Compared to methods used 436 

in previous studies [23,24], this scalable genomic approach allowed us to generate a measure of 437 

relatedness for a large number of S. enterica isolates in a computationally efficient manner and 438 

group them using established hierarchical clustering methods [41]. While we considered other 439 

clustering methods such as logistic principal component analysis and k-means clustering, we 440 

chose the unsupervised random forest approach because it is more robust to outliers, non-441 

parametric, and aggregates results from many models rather than basing inference on a single, 442 

“best” model. Our method cannot be read as a traditional phylogeny of evolutionary process but 443 

rather as a snapshot of the current virulence potential of more than 12,000 isolates retrieved from 444 

humans, bovine animals, and beef products.  We did not employ a traditional phylogeny because 445 

we were chiefly interested in the current state of potential virulence that consumers are exposed 446 

to through beef products, rather than in the evolutionary development of such virulence. As such, 447 

we wanted to capture the largest possible number of isolates in a computationally-efficient 448 

manner.  449 

We contend that this method is pertinent to virulence loci found with SPI as the regions 450 

are subject to horizontal gene transfer [45,46]. Common methods to differentiate serovars 451 

typically rely on the alignment of core genes or single nucleotide polymorphisms (SNP) 452 

identified against reference assemblies [6,24,47,48]. These methods must rely on post hoc 453 

analysis to determine if two evolutionary similar strains have acquired virulence factor genes 454 
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which may correspond to differences in case presentation as witnessed in S. Infantis and S. 455 

Typhimurium. Demarcating isolates by the presence/absence of virulence factors identified a 456 

cluster of higher virulence serovars that accounts for a large proportion of sporadic cases, beef-457 

associated, and total foodborne outbreaks compared to the lower virulence cluster. The higher 458 

occurrence of beef-associated outbreaks occurs despite a much lower frequency of isolation from 459 

regulatory beef samples relative to serovars from the other clusters combined. Our method, in 460 

combination with quantitative risk assessment techniques could be used to account for the 461 

relative exposure to serovars (e.g., via different food consumption) and the resultant probability 462 

of disease.  463 

FoodNet isolates are the basis of the salmonellosis incidence calculation, and the dataset 464 

does not provide source attribution. Therefore, serovars from the sporadic human clinical data 465 

likely result from multiple exposure sources (poultry, beef, vegetables, etc.). Despite this 466 

potentially diverse source of S. enterica isolates, most serovars resided in one of the five major 467 

clusters (including beef and bovine isolates) suggesting that basal virulence factor gene carriage 468 

is conserved within serovars across sources.  469 

 Interestingly, our method identified a group of virulence factors involved in attachment to 470 

host cells or outer membrane structure as the most differential genes between virulence groups 471 

(Fig 5). Further, many of these adhesion operons originated from Enterobacteriaceae other than 472 

Salmonella. Use of only putative Salmonella virulence factors from PATRIC [32] and the 473 

Virulence Factor Database [31] would not have annotated the open reading frames highlighting 474 

the need for expanding the putative virulence factors of S. enterica outside of the genera to 475 

members of Enterobacteriaceae. In contrast, we found two differentiating operons, lpf (long polar 476 

fimbriae) and rfb, from different virulence categories in significantly higher proportions in 477 
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cluster 1. The higher proportion of lpf genes, which fall into the adhesion virulence category, is 478 

notable as the operon has been associated with S. enterica binding the Peyer's patches, namely 479 

the M-cells found within the lymphoid organs [49,50]. This may potentiate the higher infectivity 480 

of cluster 1 serovars as recent work with the Type Three Secretion systems (T3SS) of S. enterica 481 

(involved with the introduction of effector proteins to the cytoplasm of host cells) suggest that 482 

the structure does not penetrate the cytoplasmic membrane like a syringe, but requires tension 483 

and adopts a “tent-pole” like structure [51]. If tension is required for the function of the T3SS, 484 

enhanced binding to M-cells mediated by the lpf operon may be one reason cluster 1 has a higher 485 

incidence rate of domestically acquired sporadic cases. The lpf operon has not only been 486 

implicated in S. enterica infections; strains of Escherichia coli O157:H7 with mutations in the lpf 487 

operon show decreased attachment and colonization in both in vitro [52] and in vivo [53] models 488 

again show the interplay of virulence mechanisms between Enterobacteriaceae. The roles of rfb 489 

genes, which were primarily classified in the survival/host persistence virulence category, are not 490 

as well investigated as the lpf operon but appear to be involved in the biosynthesis of the O-491 

antigen and lipopolysaccharide structuring. A recent report suggests that the full complement of 492 

rfb genes leads to higher virulence in experimentally infected chickens [54]. 493 

 Examining virulence gene catalogues not only identified large, serovar level clusters but 494 

also, by altering the cluster number (k value), virulence subpopulations within serovars. With the 495 

current method, it cannot be ascertained whether the virulence subpopulations represent 496 

polyphyletic clades within serovars as it cannot be interpretated as a phylogeny. However, by 497 

applying a top-down approach, the presence of increased virulence capacity can be readily 498 

identified. The two subpopulations of S. Infantis present over a two-fold difference in probability 499 

of extraintestinal infections. S. Infantis has been rapidly increasing in incidence in Israel and 500 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 4, 2023. ; https://doi.org/10.1101/2022.12.13.22283417doi: medRxiv preprint 

https://doi.org/10.1101/2022.12.13.22283417
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

previous studies suggest that the addition of a virulence megaplasmid pESI could be responsible 501 

[55]. The mean difference between the two subpopulations was approximately 300kb, similar in 502 

length to the pESI plasmid (280 kb), and querying S. Infantis isolates against a database of 503 

marker genes revealed that isolates in the subpopulation with longer assemblies are putatively 504 

positive for pESI presence. In addition, the pESI plasmid carries genes necessary for the 505 

synthesis of yersiniabactin [55], a siderophore dependent iron uptake system commonly observed 506 

in Yersinia pestis. The eight genes comprising the ybt operon are resident in every strain of the 507 

higher invasive cluster of S. Infantis, and only two out of 243 isolates from the lower invasive 508 

cluster contain the operon. Iron is an essential nutrient for S. enterica replication during systemic 509 

infections [56]. A previous study suggests that co-infections of Malaria and S. enterica leads to 510 

more systemic infections as excess iron is released upon the lysis of red blood cells, liberating 511 

the metal for use by S. enterica [57]. Increased iron availability, due to the addition of 512 

yersiniabactin, may be one factor for the almost double rate of extraintestinal infections of S. 513 

Infantis cluster 18 compared to S. Infantis infections without this plasmid.  514 

 The methods employed here cannot identify virulence changes due to sequence variations 515 

within virulence loci. Variants of the macA and macB genes in African strains of S. 516 

Typhimurium sequence-type 313 may have higher invasiveness in human patients and increased 517 

survival against challenge with antimicrobial peptides [58]. Others have identified virulence gene 518 

alleles that may correspond to pathogenicity differences [59]. The method employed identifies 519 

virulence genes against a non-redundant database using BLASTP, so alleles with variation less 520 

than 10% sequence identity will be collapsed into the same gene annotation. Furthermore, we did 521 

not consider pseudogene formation of virulence genes. Previous work suggests that pseudogenes 522 

in S. enterica genomes do not follow neutral evolution (random genetic drift, as in many 523 
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Eukaryotes) but are readily lost from the chromosome [60]. However, pseudogene formation of 524 

the sseI/srfH secreted effector protein leads to hyperdissementation of ST313 S. Typhimurium in 525 

experimentally infected mice [61]. The role of pseudogene formation and the pathogenesis needs 526 

more study, and the addition of pseudogene information could further improve virulence 527 

classifications. Additionally, we chose to focus our analysis on human, bovine, and beef isolates 528 

from the US. It is probable given the diversity of S. enterica that all virulence patterns and 529 

serovar subpopulations are not represented in this work.  530 

S. enterica is a diverse pathogen. Yet, most risk assessments and food safety regulations 531 

informed by these assessments only separate Typhoidal Salmonellosis and non-Typhoidal 532 

Salmonellosis, treating serovars as a homogenous unit [62-64]. Our results suggest that strains 533 

with the highest incidence of domestically acquired sporadic cases and outbreaks of human 534 

infections share a common virulence repertoire. Control and surveillance programs devoting 535 

more resources to clinically relevant serovars might result in increased public health gains, but 536 

such interventions must be evaluated using quantitative risk assessment methods.  537 

Furthermore, serovar virulence cannot be considered homogenous in all cases as 538 

observed with S. Infantis and S. Typhimurium. Although attributing virulence to specific genes 539 

was beyond the scope of this study, our analysis could inform further research to identify 540 

Salmonella genes associated with severe illness.  541 
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Supporting information 734 

S1 Fig. Addition of a sixth virulence cluster. (A) Dendrogram depicting the hierarchical 735 

relationship between 12,337 S. enterica genome assemblies based upon virulence factor gene 736 

carriage with six virulence clusters superimposed on top. (B) Heatmap of serovar proportion 737 

within each of the six respective virulence clusters. Rows are clustered using Ward’s method. (C) 738 

Characteristics of the six virulence clusters: cluster stability - Jaccard similarity of 10,000 non-739 

parametric bootstraps, Number of Genomes - depicting the number of S. enterica genomes 740 

constituent in each cluster, and number of serovars (within cluster serovar proportion > 0.5) in 741 

each cluster. 742 

 743 

S1 Table. Metadata for the analysis set of genomes and SISTR serovar prediction. Metadata 744 

for the contig assemblies used in the analysis including results of the in silico serovar prediction 745 

for the analysis set genomes from the SISTR software.  746 
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