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Abstract 17 

The serovars of Salmonella enterica display dramatic differences in pathogenesis and 18 

host preferences. Grouping Salmonella isolates and serovars by their public health risk can 19 

provide better Salmonella control targets along the food chain. We collated a curated set of 20 

12,337 S. enterica isolate genomes from human, beef, and bovine sources in the US. After 21 

annotating a virulence gene catalog for each isolate, we used unsupervised random forest 22 

methods to estimate the proximity (similarity) between isolates based upon the genomic 23 

presentation of putative virulence traits  We then grouped isolates (virulence clusters) using 24 

hierarchical clustering (Ward’s method), used non-parametric bootstrapping to assess cluster 25 

stability, and externally validated the virulence clusters against epidemiological virulence 26 

measures from FoodNet, the National Outbreak Reporting System (NORS), and US federal 27 

sampling of beef products. We identified five stable virulence clusters of S. enterica serovars. 28 

Cluster 1 serovars yielded an annual incidence rate of domestically acquired sporadic cases 29 

roughly one and a half times higher than the other four clusters combined. Compared to other 30 

clusters, cluster 1 also had a higher proportion of infections leading to hospitalization and was 31 

implicated in more foodborne and beef-associated outbreaks, despite being isolated at a similar 32 

frequency from beef products as other clusters. We also identified subpopulations within 11 33 

serovars. Remarkably, we found S. Infantis and S. Typhimurium subpopulations that 34 

significantly differed in genome length and clinical case presentation. Further, we found that the 35 

presence of the pESI plasmid accounted for the genome length differences between the S. 36 

Infantis subpopulations. Our results demonstrate that S. enterica strains with the highest 37 

incidence of human infections share a common virulence repertoire. This work could be used in 38 
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combination with foodborne surveillance information to best target serovars of public health 39 

concern.  40 

Introduction 41 

Members of Salmonella enterica subspecies enterica are some of the most ubiquitous 42 

agents implicated in foodborne human illnesses. Despite being constituents of the same 43 

subspecies, members of S. enterica are not only commonly isolated from livestock but also 44 

amphibians [1] and wild birds [2]. The wide host range for S. enterica makes control of the 45 

pathogen exceedingly difficult due to the large number of potential reservoirs. Historically, 46 

strains of S. enterica have been grouped into units termed serovars based upon serological 47 

antigen presentation. While an initial list presented 44 S. enterica serovars in 1934 [3], today’s 48 

descriptions include over 2,500 serovars of S. enterica [4]. Nonetheless, in the US only 20 49 

serovars accounted for 69.2% of human S. enterica isolates collected in 2016 by the US Centers 50 

for Disease Control and Prevention’s (CDC) Laboratory-based Enteric Disease Surveillance 51 

(LEDS) program [5]. Furthermore, nearly 10% of S. enterica’s serovars may be polyphyletic or 52 

paraphyletic [6]. 53 

To establish infections in disparate hosts, S. enterica manipulates common immune 54 

functions of higher vertebrates. Indeed, the classic gastroenteritis associated with S. enterica 55 

infections is the result of the pathogen affecting the host’s innate immune system to generate 56 

inflammation, subsequently producing unique metabolic niches for S. enterica while killing its 57 

competitors for reduced substrates in the hindgut [7-9]. Such remarkable expropriation of the 58 

hosts immune functions is achieved by virulence genes, many of which are contained within 59 

chromosomal elements termed Salmonella Pathogenicity Islands (SPI) [10]. Genes contained 60 

within SPI aid in host cell invasion, and subsequent survival and dissemination within and 61 
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between Eukaryotic host cells [11,12]. However, serovars display differences in pathogenesis 62 

and host-preferences. For example, the human-restricted serovar S. enterica ser. Typhi (S. 63 

Typhi), the etiological agent of typhoid fever, does not typically cause submucosal inflammation 64 

and resultant diarrhea in infected patients as with classical salmonellosis, but instead elicits a 65 

systemic enteric fever characterized by initial immune evasion [13,14]. S. Dublin, a bovine 66 

adapted serovar, commonly generates systemic infections in humans and is isolated from blood 67 

samples in 61% of human clinical infections as compared to an average of 5% for other S. 68 

enterica serovars in the US [15]. The general pathogenesis of S. enterica is not fully elucidated, 69 

and the virulence potential for individual serovars is poorly understood. Furthermore, most 70 

studies have focused upon S. Typhimurium as a model organism for all S. enterica virulence, 71 

[8,16-21] which could obfuscate differences between serovars. 72 

  Despite the tremendous virulence diversity within S. enterica, microbial criteria from the 73 

US Food Safety and Inspection Services (FSIS) on important sources of S. enterica such as beef 74 

and poultry meats target all serovars equally, based on prevalence. Further, traditional 75 

surveillance methods can take considerable time to identify emerging serovars of public health 76 

concern, thereby delaying food safety intervention implementation [22]. Understanding virulence 77 

differences between serovars and identifying emerging virulent serovars in a timely manner can 78 

be important for more focused risk management strategies targeting serovars with an inordinate 79 

impact on public health while reducing food waste due to recalls.  80 

Previous studies have used genomics to identify serovar groups of public health concern. 81 

Karanth et al. analyzed a limited number of genomes and serovars originating from humans, 82 

poultry, and swine to characterize virulent serovars [23]. This analysis had the benefit of using 83 

the entire genome of Salmonella to group isolates by disease presentation; however, the 84 
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computational resources required prevent its application to a large number of isolates. In another 85 

study, researchers used single nucleotide polymorphism (SNP) clusters and S. Saintpaul as a 86 

model to identify virulent isolates [24]. Although using high-resolution genomic methods 87 

identified SNP clusters associated with a high proportion of human clinical isolates, S. Saintpaul 88 

may not be the best serovar model due to its polyphyletic nature [25]. The objective of this study 89 

was to develop a computationally efficient genomic approach to group Salmonella serovars by 90 

their risk to human health, using virulence biomarkers in isolates from humans, beef, and bovine 91 

animals. We chose beef as a model foodstuff since US federal monitoring of Salmonella in beef 92 

is well-established, nationally representative, and beef remains an important vehicle for S. 93 

enterica. Beef production in the US is more decentralized than poultry and pork production [26] 94 

and we e hypothesize that this decentralization may present unique genomic populations arising 95 

from geographic separation as previously observed in S. enterica serovars [27,28]. Furthermore, 96 

S. enterica in beef products is understudied compared to other vehicles such as eggs, poultry, and 97 

pork meat. 98 

Materials and methods 99 

We used genetic virulence factors as markers to group serovars by their risk to human 100 

health. After compiling a curated set of S. enterica genomes (n=12,337) from human, bovine, 101 

and beef sources, we applied an unsupervised random forest and hierarchical clustering approach 102 

to group isolates based upon genomic virulence trait presentation and validated the groups 103 

against epidemiological measures including clinical presentation from sequenced isolates 104 

collected by the FoodNet active surveillance network (29).  105 
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Contig assembly selection and quality criteria 106 

We compiled S. enterica assemblies from bovine-associated isolates from three primary 107 

sources: 1. BioProject PRJNA242847 (FSIS HACCP samples, accessed 7/13/2021), 2. 108 

BioProject PRJNA292666 (FSIS NARMS isolates, accessed 7/13/2021), and 3. BioProject 109 

PRJNA292661 (FDA NARMS isolates, accessed 8/25/2021). We collected isolates from sources 110 

specified as bovine-associated or beef origin from the metadata for the above BioProjects.  111 

We retrieved S. enterica isolates from human clinical cases from BioProject 112 

PRJNA230403 (CDC PulseNet, accessed 9/13/2021) and identified sporadic, domestically 113 

acquired S. enterica isolates from the FoodNet active surveillance network [29]. We did not 114 

include outbreak cases from FoodNet since they are not attributed to a particular source in that 115 

dataset. Instead, we used the National Outbreak Reporting System (NORS) dataset, a passive 116 

system for reporting enteric disease outbreaks in the US, to identify beef-attributed outbreak 117 

isolates. We initially defined beef attribution based on the Interagency Food Safety Analytics 118 

Collaboration (IFSAC) classification. As beef-associated salmonellosis outbreaks for which 119 

clinical isolates were sequenced are limited, we widened the definition of potentially beef-120 

associated illness to include outbreaks which listed beef as an identified contaminated ingredient. 121 

We based this inclusion on whether the list of commodities and ingredients per outbreak 122 

included beef dishes, even if other possible ingredients could not be ruled out to definitively 123 

assign an IFSAC classification. The following text strings were used to identify beef-associated 124 

outbreaks: "beef", "burger", "steak", "carne", "kitfo", "ox tongue", "short-rib", "prime rib", 125 

"barbacoa".  If the IFSAC classification attributed an outbreak to other foods, we did not 126 

designate it as a beef-associated outbreak.   127 
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We removed isolates from the data set if: 1) No pre-computed assembly was available on 128 

NCBI, 2) SKESA v. 2.2 was not used to construct the assembly, 3) The number of contigs 129 

representing the assembly was greater than 300, and 4) The contig n50 was less than 25,000 bp. 130 

After initial parsing for isolation sources and assembly quality, we included serovars with 50 or 131 

more isolates in the analysis. In total, the final analysis set includes 12,337 assemblies and 132 

represents 37 serovars.  133 

In silico serovar prediction 134 

We used Salmonella in silico Typing Resource (SISTR) [30] with default options to 135 

assign putative serovars to each assembly. 1,077 assemblies failed the quality control step within 136 

the SISTR software with the same error message “FAIL: Wzx/Wzy genes missing…”, but all 137 

330 / 330 genes for the core genome multilocus sequence typing (cgMLST) scheme used within 138 

the software were present within these assemblies. We retained assemblies failing QC with the 139 

aforementioned error message and because they contained all 330 cgMLST loci for the analysis. 140 

S1 table provides full details of the SISTR serotyping results. We excluded from the analysis any 141 

assemblies which failed the quality control step and did not have all 330 cgMLST genes.  142 

Virulence gene annotation 143 

We collated a custom database of putative virulence factors from Salmonella, 144 

Escherichia, Shigella, and Yersinia from the virulence factor database (VFDB) (accessed 145 

9/13/2021) [31] and putative virulence factors from Salmonella, Escherichia, and Shigella from 146 

PATRIC (accessed 9/13/2021) [32]. Next, we combined amino acid sequences of the open 147 

reading frames (ORF) with a reference proteome of Salmonella Typhimurium LT2 148 

(https://www.uniprot.org/proteomes/UP000001014)  and made the database non-redundant by 149 

clustering the open reading frames at 0.90 global identity using cd-hit [33]. We passed the 150 
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resultant database to Prokka [34] using the “--proteins” option to specify the database as the 151 

primary annotation database in the software pipeline. We then parsed gene annotations from the 152 

VFDB and PATRIC non-redundant database from the resultant Prokka annotation tables. 153 

Additionally, to ensure consistent ORF predictions between assemblies, we trained a model  154 

using Prodigal [35] on the chromosome of the reference Salmonella Typhimurium LT2 assembly 155 

ASM694v2 (https://www.ncbi.nlm.nih.gov/assembly/GCF_000006945.2/) and passed the 156 

training file to Prokka using the command “--prodigaltf”.  157 

pESI plasmid identification 158 

The pESI plasmid is an emerging concern in some S. enterica serovars, namely S. 159 

Infantis [36]. To confirm the presence of this plasmid, we complied an additional nucleotide 160 

database of 13 marker genes previously used to identify pESI plasmids in S. enterica contig 161 

assemblies from two sources [36,37]. We then conducted a nucleotide BLAST search against the 162 

database using the software Abricate [38] and defined positive hits as a percent identify of ≥ 95% 163 

and percent coverage of ≥ 95%. We presumed that an isolate contained the pESI plasmid if the 164 

contig assembly was positive for the pESI specific repA gene and contained at least five 165 

additional marker genes.  166 

Random forest model construction 167 

We used virulence gene annotations from the resultant Prokka outputs and constructed a 168 

count matrix of virulence genes. We excluded putative virulence loci with a prevalence of 169 

greater than 0.95 or which were not present in at least 10 (0.0008) assemblies. To generate row 170 

similarity (isolate relatedness), we fit an unsupervised random forest to the count matrix of 171 

virulence loci (assemblies x virulence factors) using the randomForest [39] package in R[40]. 172 
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The random forest model contained 50,000 trees and used 60 features (columns, virulence loci) 173 

at every split.  174 

Grouping isolates and assessing cluster stability  175 

 We converted the row-wise proximity matrix from the random forest model to a distance 176 

matrix (1 – similarity) and subjected it to agglomerative clustering using Ward’s method [41]. 177 

We conducted two analyses: 1) k = 5, used to group serovars by virulence and 2) k = 37, using 178 

the same number of clusters as serotypes in the data to identify possible subpopulations within 179 

serovars with different virulence gene catalogues. We defined cluster stability for both analyses 180 

as a Jaccard similarity of≥ 0.75 [42] for 10,000 non-parametric bootstrap samples. For the main 181 

serovar clustering analysis, we choose k=5 as it was the highest value for which all clusters were 182 

stable. The k=37 version of the analysis tested whether distribution of virulence factor 183 

combinations is more similar within each serotype than between serotypes and, therefore, 184 

whether serotype is a reasonable representation of these virulence differences.  We defined 185 

serovar subpopulations as serovars with at least two of these populations annotated into different 186 

clusters (k = 37 clustering) and with at least two of the populations representing greater than or 187 

equal to 0.20 of the total serovar population. Clustering and bootstrapping were performed using 188 

the clusterboot function from the fpc [43] package in R. 189 

Epidemiological indicators 190 

We estimated epidemiological indicators for both virulence clusters and serovars using 191 

sporadic and domestically acquired cases from 2016 – 2019. We excluded outbreak-associated 192 

cases to decrease bias due to outbreak size and removed travel-related cases to exclude 193 

foodstuffs from regions that may have different S. enterica population structures than the US and 194 

are not good indicators of US consumer exposure to S. enterica in food. We calculated the 195 
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proportion of positive samples for Salmonella, individual serovars, and each cluster in beef 196 

products from FSIS regulatory testing programs: MT43 (raw ground beef), MT60 197 

(manufacturing trimmings) and MT64 (Components other than Trim) for 2016 – 2019.  We 198 

modeled all proportions using Beta(s+0.5, n-s+0.5) (eqn. 1), with a Jeffery’s prior (Beta(0.5, 0.5) 199 

as a Bayesian conjugate to the Binomial distribution[44]. Table 1 lists parameters s and n used to 200 

model these proportions. We used 1M Monte Carlo simulations to estimate and compare 201 

posterior distributions using numerical integration, with a 99% confidence level for statistical 202 

significance. 203 

 204 

Table 1. Description of parameters used for calculation of epidemiological indicator 205 

estimations using Equation 1 206 

Model variable / Epidemiological 
indicator 

Parameter description 
s (numerator) n (denominator) 

Salmonella proportion positive in 
beef ���� 

����: number of FSIS samples 
positive for Salmonella 

����: number of FSIS samples 
taken 

Hospitalization proportion  ��: number of hospitalizations from 
cluster k (k=1…5) 

Ik : number of total infections in 
FoodNet from cluster k (k=1…5) 
 

 
Extraintestinal Infection proportion  ���: number of extraintestinal 

infection from cluster k (k=1…5) 
Mortality Proportion  	�: number of deaths from cluster 

k (k=1…5) 

Proportion of gene presence within 
respective cluster group �p�,�) 

��,�: number of isolates from 
cluster (k=Cluster 1 vs. clusters 2-
5) with gene g (g=1…182) 

�� number of isolates from cluster 
k (k=Cluster 1 vs. clusters 2-5) 

 207 

Incidence of domestically acquired sporadic cases 208 

We modeled the incidence of domestically acquired sporadic cases per 100k people per 209 

year (���� for serovar j in FoodNet state i using the Bayesian conjugate for a Poisson rate with 210 

Jeffrey’s prior Gamma(0.5, 0.00001)(44), hence �����	α� � 0.5, �β�t � 0.00001�(eqn. 2), 211 

where αij is the serovar case totals per state and βi is the FoodNet catchment area population for 212 

t=4 years. Sporadic cases are defined as illnesses which were not linked to a known outbreak.                 213 
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The catchment area of FoodNet is not evenly distributed between the 10 participating states, so 214 

the population-weighted mean serovar incidence (��� for the study period was ∑ λ��p�
��
��� , where 215 

���  is the FoodNet state-specific mean serovar incidence and p� is the state catchment proportion 216 

of total FoodNet population. Virulence cluster population-weighted average incidence, ��, is the 217 

sum of the clusters’ constituent serovars incidence rates for the study period (λ� � � ∑ λ�
��
��� ). 218 

Serovar proportion positive in beef 219 

  We determined the proportion of Salmonella positives 	�	� following eqn. 1, with s+ 220 

number of samples positive for Salmonella and n+ total number of samples from FSIS testing. 221 

We estimated the proportion of serovar j isolated from beef products (��) with a Dirichlet 222 

distribution, (Dir(aj) eqn. 3), where aj is the number of FSIS isolates from serovar j. We excluded 223 

serovars without any positive isolates in FSIS testing and retained all serovars from the testing 224 

program (including those not included in the analysis set).  225 

Serovar proportion positive ����
� was taken as the product of total Salmonella proportion 226 

positive 	�	� and the serovar proportion of the total Salmonella population from eqn. 3 (��). 227 

Finally, we derived the cluster proportion positive �p
�
� as the summation of the cluster’s 228 

constituent serovars. 229 

Hospitalization, Extraintestinal Infection, and Mortality Proportions  230 

We determined the proportion of infections with a certain outcome (i.e., hospitalization, 231 

extraintestinal infections, and mortality) for each cluster k (k=1…5) and for cluster 1 vs the 232 

combinations of others.  We defined extraintestinal infections as having "URINE", "BLOOD", 233 

"ORTHO", "ABSCESS", "OTHER STERILE SITE" and "CSF" isolation sources.  We modeled 234 

all the proportions using eqn. 1, with parameters described in Table 1.  235 
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Differential gene carriage 236 

To identify genes differential between cluster 1 and combined clusters 2-5, we trained a 237 

supervised random forest model (ntree = 5,000, features to try at split = 13) to classify isolates 238 

into two groups: cluster 1 and clusters 2-5. We extracted variable importance from the random 239 

forest model and defied gene importance using the mean decrease of Gini impurity. As with 240 

other proportions, we used eqn. 1 to model the proportion of gene presence �p�,�� within 241 

respective cluster group (1 vs. 2-5) for each of the virulence genes used in the random forest. The 242 

relative frequency (RF) of a given gene was the resultant ratio of proportions of gene presence 243 

(RF � p
g
1

/p
g�2�5	

).  244 

Code and data availability 245 

Aggregated data and code written for this analysis are available in our online repository: 246 

link will be provided upon publication (private links shared with editor and reviewer). FoodNet 247 

data is used with permission from the Centers for Disease Control and Prevention and although 248 

raw data may not be shared, code written from aggregated inputs is provided in our online 249 

repository. 250 

 Results 251 

Genome assemblies analyzed 252 

The Pathogen Detection Network hosted by NCBI contains over 400,000 sequenced 253 

Salmonella isolates from various sources and contributors. From these, we extracted 53,849 254 

isolates from specific sampling programs, further reduced to a final analysis set to establish an 255 

analysis set of 12,337 S. enterica assemblies of human clinical cases in the US and bovine and 256 
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beef associated isolates, representing 37 major serovars (Fig 1). Approximately 55% (6,751) 257 

assemblies are from US human clinical infections with the remaining 45% (5,586) representing 258 

isolates from bovine animals and beef products. The metadata for the genomes analyzed is 259 

provided in S2 Table. 260 

Fig 1. Analysis set of genomes. Description of the S. enterica genome assemblies considered, 261 

and exclusion and inclusion criteria applied to generate the analysis set.  262 

Clustering serovars using isolate virulence gene catalogues  263 

To establish clusters of serovars, we identified virulence genes from each assembly and 264 

compiled them into a count matrix, trained an unsupervised random forest model to approximate 265 

similarity between isolate virulence gene catalogues (Fig 2), and subjected the resultant isolate 266 

similarity matrix to agglomerative clustering to identify clusters with subsequent non-parametric 267 

bootstrapping to validate cluster stability. 268 

 We identified five stable clusters of S. enterica isolates (Fig 3A), with the majority of 269 

serovar isolates resident within the same clusters (mean within serovar cluster proportion = 270 

0.96). (Fig 3B). However, S. Reading (cluster 1: n = 28 (0.47), cluster 3: n = 32 (0.53)), S. 271 

Saintpaul (cluster 3: n = 134 (0.66), cluster 1: n = 68 (0.34)), and S. I 1,4,[5],12:b:- (cluster 1: n = 272 

53 (0.66), cluster 3: n = 30 (0.34)) had at least 33% of total serovar isolates in two different 273 

virulence clusters. The five virulence clusters are of uneven size (Fig 3C) with cluster 1 274 

containing almost 10 times more assemblies than cluster 2. We attempted to decrease the size of 275 

cluster 1 by introducing a sixth cluster. However, the sixth cluster was unstable (bootstrap 276 

Jaccard similarity = 0.515) and cluster 4 was split, not cluster 1, indicating that the variance 277 

(Ward’s method used to cluster) within cluster 1 is less than that of cluster 4 despite its much 278 

larger size (S1 Fig). Interestingly, cluster 2 is comprised of only S. Javiana and the cluster 279 
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homogeny of S. Javiana was preserved with the addition of the sixth cluster (S1 Fig). Assembly 280 

cluster designations are provided in Table S3. 281 

Fig 2. Conceptual model of virulence cluster development. First, we downloaded contig 282 

assemblies and quality controlled for fragmentation followed by the identification of virulence 283 

genes. We then fit an unsupervised random forest model to the isolate level virulence gene 284 

catalogues to approximate relatedness. We converted the resultant similarity matrix to a distance 285 

matrix (1 – similarity) and clustered using Ward’s method. We identified five stable clusters and 286 

validated using non-parametric bootstrapping.  287 

Fig 3. Description of the five virulence clusters. (A) Dendrogram depicting the hierarchical 288 

relationship between 12,337 S. enterica genome assemblies based upon virulence gene carriage 289 

with the five virulence clusters superimposed on top. (B) Heatmap of serovar proportion within 290 

each of the five respective virulence clusters. Rows are clustered using Ward’s method. (C) 291 

Characteristics of the five virulence clusters: cluster stability - Jaccard similarity of 10,000 non-292 

parametric bootstraps, Number of Genomes - depicting the number of S. enterica genomes 293 

constituent in each cluster, and number of serovars (within cluster serovar proportion > 0.5) in 294 

each cluster. 295 

General epidemiological characteristics of virulence clusters 296 

To investigate if the genomic virulence clusters correspond to clinical case presentation, 297 

we computed basic epidemiological characteristics per cluster for 2016-2019 as proxies for 298 

virulence phenotypes: proportion positive in beef products, number of outbreaks,  incidence of 299 

domestically acquired sporadic cases per 100k people per year, hospitalization proportion given 300 

infection, extraintestinal infection proportion given infection, and mortality proportion given 301 

infection. We computed the results by virulence cluster (S4 Table) and by serovar (S5 Table). 302 
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Not every S. enterica captured during surveillance programs in the US is subjected to 303 

sequencing, therefore we attributed cases from a given serovar to the cluster to which the highest 304 

proportion of serovar isolate was assigned (e.g., 98.5% of S. Typhimurium isolates were resident 305 

in cluster 1, therefore all cases of S. Typhimurium in the datasets were allocated to cluster 1). 306 

Cluster 1 serovars have the highest incidence rate of domestically-acquired sporadic cases (5.9 307 

cases per 100k population per year, 99% CrI: 5.77 – 6.06) (Fig 4A), approximately 1.5x higher 308 

than that of clusters 2-5 combined during 2016 – 2019 (incidence rate ratio: 1.5, 99% CrI: 1.44 – 309 

1.55). Moreover, infections from serovars in cluster 1 had a higher proportion of hospitalizations 310 

than serovars in cluster 2 (relative frequency (RF): 1.10, 99% CrI: 1.002 – 1.200), cluster 4 (RF: 311 

1.15, 99% CrI: 1.029 – 1.296), and cluster 5 (RF: 1.17, 99% CrI: 1.058 – 1.288) (Fig 4BThe 312 

cluster 1 proportion positive in beef products was less than half of clusters 3-5 (proportion 313 

positive ratio: 0.44, 99% CrI: 0.366 – 0.528) (Fig 4C). However, cluster 1 serovars were 314 

implicated in the highest proportion of total foodborne outbreaks and beef associated outbreaks 315 

in the US from 2016 – 2019 (Fig 4D),generating approximately 2.5x more beef associated 316 

outbreaks (20 vs. 8) than clusters 3-5 combined (There were no cluster 2 isolates  found in beef 317 

sampling or in beef associated outbreaks). Additionally, cluster 1 serovars were involved in 318 

approximately 1.47x more foodborne outbreaks than clusters 2-5 combined from 2016 - 2019 319 

(285 vs. 194).  320 

 321 

Fig 4. Epidemiological indicators of the five virulence clusters for the study period 2016-322 

2019. (A)  Incidence of domestically acquired sporadic cases per 100k population per year by 323 

virulence cluster. (B) Proportion of clinical infections resulting in hospitalization by virulence 324 

cluster. (C) Proportion positive estimates in FSIS testing of US beef products. No isolates from 325 
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cluster 2 (comprised solely of S. Javiana) were retrieved from 2016 – 2019. (D) Proportion of 326 

total US foodborne and beef-associated outbreaks attributed to serovars in the analysis set. 327 

 328 

Differential Carriage of Virulence Loci Between Cluster 1 and 329 

Clusters 2-5 330 

Cluster 1 serovars yielded the largest number of foodborne outbreaks and the highest 331 

incidence rate of domestically acquired sporadic cases. Additionally, a clear bifurcation exists 332 

between cluster 1 and clusters 2-5 (Fig 3A). Therefore, we sought to identify virulence genes 333 

differentially present between clusters 1 and clusters 2-5. We estimated the proportion of gene 334 

presence for the top 20 most differential genes, as determined by Gini impurity, in cluster 1 and 335 

clusters 2-5 combined and derived their RF (Table 2). The top two genes (f17d-D, and f17d-C) 336 

which best differentiated cluster 1 from the others (highest mean decrease of Gini impurity) were 337 

found in much lower proportion in cluster 1 (f17d-D, RF: 0.07, 99% CrI: 0.057 – 0.075)( f17d-C, 338 

RF: 0.043, 99% CrI: 0.036 – 0.051) (Table 2). The full list of RF for each virulence gene tested, 339 

mean decrease of Gini impurity, and gene metadata are provided in S6 Table.  340 

 341 

Table 2. Importance and relative frequency of select virulence loci between cluster 1 and 342 

clusters 2-5.  343 

Gene 
Mean Decrease 
Gini Impurity 

Relative Frequency 
(Cluster 1 / Clusters 2-5) 

Lower 
Bound 
(0.005) 

Upper 
Bound 
(0.995) 

f17d-D 504.64 0.0657 0.05743 0.07459 

f17d-C 455.07 0.0432 0.03618 0.05085 

rfbI 405.35 4.3706 4.12059 4.64112 

rfbG 394.86 4.3704 4.12070 4.64015 

rfbH 336.41 4.3579 4.10740 4.62863 

csaB 279.77 0.0013 0.00032 0.00323 
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cfaA 266.06 0.0011 0.00021 0.00285 

lpfE 211.35 3.1146 2.97288 3.26624 

faeD 209.61 0.0004 0.00001 0.00162 

csbC 207.19 0.0033 0.00145 0.00608 

lpfD 205.67 3.1131 2.97157 3.26366 

faeE 204.28 0.0004 0.00001 0.00166 

sseI/srfH 202.37 12.5251 11.06216 14.21786 

lpfA 179.38 3.1130 2.97120 3.26442 

lpfC 173.75 3.0919 2.95155 3.24155 

lpfB 161.87 3.0812 2.94158 3.22994 

rfbC 140.29 2.7218 2.60974 2.84109 

faeC 112.30 0.0004 0.00001 0.00186 

rfbD 109.33 2.3555 2.26954 2.44697 

rfbP 104.21 2.3741 2.28674 2.46708 
 344 

Table 2 legend. The top 20 most differential virulence genes between cluster 1 and clusters 2-5 345 

as identified by a supervised random forest model. Genes are arranged in descending order of 346 

mean decrease of Gini impurity. RF of gene carriage is the proportion of gene presence in for 347 

cluster 1 divided by that in clusters 2-5 combined.    348 

Within serovar virulence subpopulations 349 

Horizontal gene transfer molds virulence gene carriage, especially within SPI [45,46]. 350 

We hypothesized that horizontal gene transfer may lead to virulence subpopulations that could 351 

be identified using random forest methods otherwise missed in more traditional alignment-based 352 

phylogeny methods. To test this hypothesis, we increased the number of clusters to correspond to 353 

the number of serovars (k = 37). If no virulence subpopulations are present (within serovar 354 

variance is less than between serovar variance), each of the 37 clusters should contain a majority 355 

of one serovar (see methods). However, we found 11 serovars with virulence subpopulations 356 

(Table 3). The full list of subpopulation designations is provided in S7 Table. To test if virulence 357 

subpopulations may correspond to phenotypic differences in case presentation, we computed the 358 

proportion of clinical infections resulting in extraintestinal infections for each serovar 359 
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subpopulation for sequenced strains with case presentation in the FoodNet surveillance system. 360 

Two serovars yielded significant differences in invasiveness between serovar subpopulations. S. 361 

Infantis split into two subpopulations (subpopulation 18: n = 145, subpopulation 20: n = 243) as 362 

shown in Fig 5A. The genome assembly size for subpopulation 18 isolates was significantly 363 

longer (4.98 Mb vs. 4.68 Mb, p-value < 2.2E-16, Mann-Whitney U test) (Fig 5B) than isolates 364 

from subpopulation 20. Of the 388 S. Infantis genome assemblies in the analysis set, 242 had 365 

associated clinical presentation data from FoodNet split evenly between the two subpopulations 366 

(n = 121, n = 121). Isolates from subpopulation 18 were more than twice as likely to result in 367 

extraintestinal clinical infections than isolates from subpopulation 20 (RF: 2.06, 99% CrI: 1.122 368 

– 3.778) (Fig 5C). There was an association between subpopulation 18 isolates and older patients 369 

(median age 56.1 years) when compared to subpopulation 20 isolates (median age 36.4 years) (p-370 

value: 5.00E-6, Mann-Whitney U test) (Fig 5D). 371 

We hypothesized that the approximately 300kb difference between the assembly lengths 372 

of the S. Infantis subpopulations may be due to the presence of the pESI plasmid previously 373 

identified in S. Infantis(36). After checking all isolates for the presence of this plasmid,144 out of 374 

145 S. Infantis isolates annotated to subpopulation 18 and 0 out of 243 isolates from 375 

subpopulation 20 were putatively positive for pESI plasmids. Only one isolate, a S. Muenchen, 376 

was putatively positive for the pESI plasmid outside of the S. Infantis 18 subpopulation.   377 

Two subpopulations represented approximately 85% of the total S. Typhimurium 378 

population in the analysis set, which we analyzed further (Fig 6A). Similar to the S. Infantis 379 

subpopulations, the two subpopulations yielded significantly different genome assembly lengths 380 

(subpopulation 2: 4.90 Mb, subpopulation 18: 4.85 Mb, p-value < 2.2E-16, Mann-Whitney U 381 

test) (Fig 6B). However, the assembly difference of approximately 5kb between the S. 382 
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Typhimurium subpopulations is far less dramatic than the approximately 300kb difference 383 

observed between S. Infantis subpopulations. 668 of the 937 S. Typhimurium isolates in 384 

subpopulations 2 (n = 359) and 16 (n = 309) have clinical case presentation data. Subpopulation 385 

2 isolates presented as double the extraintestinal infections than subpopulation 16 isolates (RF 386 

2.11, 99% CrI: 1.109 – 4.016) (Fig 6C). In contrast with the S. Infantis subpopulations, the age of 387 

patients was not significantly different between the two subpopulations (p-value 0.97, Mann-388 

Whitney U test) (Fig 6D).  389 

 390 

Fig 5. Description of two S. Infantis virulence subpopulations. (A) Dendrogram highlighting 391 

the locations of the two S. Infantis virulence subpopulations within the greater population of 392 

12,337 S. enterica isolates. (B) Histograms of the assembly lengths for the respective 393 

subpopulations. (C) Proportion of extraintestinal infections among illnesses caused by the two 394 

subpopulations (FoodNet data). (D) Boxplots of the distribution of patient age in infections 395 

caused by the two subpopulations (FoodNet data). 396 

Fig 6. Description of two S. Typhimurium virulence subpopulations. (A) Dendrogram 397 

highlighting the locations of the two S. Typhimurium virulence subpopulations within the greater 398 

population of 12,337 S. enterica isolates. (B) Histograms of the assembly lengths for the 399 

respective subpopulations. (C) Proportion of extraintestinal infections among illnesses caused by 400 

the two subpopulations (FoodNet data). (D) Boxplots of the distribution of patient age in 401 

infections caused by the two subpopulations (FoodNet data). 402 

 403 

Table 3. Within serovar virulence subpopulations.  404 

    Subpopulation A Subpopulation B 
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Serovar Total Serovar 
Count 

Subpopulation 
ID 

Genome 
Count 

Proportion of 
Total Serovar 

Population 
Subpopulation 

ID 
Genome 
Count 

Proportion of 
Total Serovar 

Population 
I 1,4,[5],12:b:- 83 30 30 0.36 29 52 0.63 
I 1,4,[5],12:i:- 530 9 294 0.55 2 163 0.31 
Infantis 388 20 243 0.63 18 145 0.37 
Kentucky 169 32 89 0.53 21 80 0.47 
Montevideo 1341 14 503 0.38 11 838 0.62 
Muenchen 392 12 133 0.34 6 195 0.50 
Newport 1751 6 427 0.24 1 926 0.53 
Oranienburg 137 14 32 0.23 11 103 0.75 
Reading 60 37 28 0.47 29 28 0.47 
Saintpaul 202 29 53 0.26 27 134 0.66 
Typhimurium 1106 16 477 0.43 2 460 0.42 
 405 

Table 3 legend: Serovars found to contain at least two subpopulations, each representing greater 406 

than 0.20 of the total serovar population. Subpopulations were identified by increasing the 407 

number of clusters to match the number of serovars (k = 37). Provided is the subpopulation ID’s, 408 

the number of genomes resident within each subcluster, and the proportion of the total 409 

population the subcluster represents. Note, that the subpopulations may not represent the total 410 

combined population of the serovar in the analysis set.  411 

 412 

Discussion 413 

The pathogenesis of S. enterica is not completely understood. Furthermore, how different 414 

serovars generate distinct disease pathologies is not well-defined either. To better understand 415 

how serovars group together based on virulence gene carriage, we used an unsupervised random 416 

forest, which allowed for rapid identification of serovars of public health concern. Compared to 417 
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methods used in previous studies [23,24], this scalable genomic approach allowed us to generate 418 

a measure of relatedness for a large number of S. enterica isolates in a computationally efficient 419 

manner and group them using established hierarchical clustering methods [41]. While we 420 

considered other clustering methods such as logistic principal component analysis and k-means 421 

clustering, we chose the unsupervised random forest approach because it is more robust to 422 

outliers, non-parametric, and aggregates results from many models rather than basing inference 423 

on a single, “best” model. Our method cannot be read as a traditional phylogeny of evolutionary 424 

process but rather as a snapshot of the current virulence potential of more than 12,000 isolates 425 

retrieved from humans, bovine animals, and beef products.  We did not employ a traditional 426 

phylogeny as such classical alignment methods (core genome alignment, read mapping to a 427 

reference assembly, etc.) are computationally intensive given the number of samples we 428 

analyzed. Additionally, for this analysis, we were less interested in the evolutionary development 429 

of virulence, but rather in the current state of potential virulence that consumers are exposed to 430 

through beef products.  431 

We contend that this method is pertinent to virulence loci found with SPI as the regions 432 

are subject to horizontal gene transfer [45,46]. Common methods to differentiate serovars 433 

typically rely on the alignment of core genes or single nucleotide polymorphisms (SNP) 434 

identified against reference assemblies [6,24,47,48]. These methods must rely on post hoc 435 

analysis to determine if two evolutionary similar strains have acquired virulence genes which 436 

may correspond to differences in case presentation as witnessed in S. Infantis and S. 437 

Typhimurium. Demarcating isolates by the presence/absence of virulence genes identified a 438 

cluster of serovars (cluster 1) that accounts for a large proportion of sporadic cases and beef-439 

associated and total foodborne outbreaks compared to the other clusters combined. The higher 440 
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occurrence of beef-associated outbreaks occurs despite a much lower frequency of isolation from 441 

regulatory beef samples relative to serovars from the other clusters combined. Our method, in 442 

combination with quantitative risk assessment techniques could be used to account for the 443 

relative exposure to serovars (e.g., via different food consumption) and the resultant probability 444 

of disease.  445 

FoodNet isolates are the basis of the incidence calculation, and the dataset does not 446 

provide source attribution. Therefore, it is probable that serovars from the sporadic human 447 

clinical data set are from multiple exposure sources (poultry, beef, vegetables, etc.). However, 448 

even with the expected wide source range of S. enterica isolates, most serovars resided in one of 449 

the five major virulence clusters (including beef and bovine isolates) suggesting that basal 450 

virulence gene carriage is conserved within serovars across sources.  451 

 Cluster 1 serovars generate more human infections than serovars in the other clusters. 452 

Our supervised random forest model identified virulence genes involved in attachment to host 453 

cells or outer membrane structure as the most differential genes between cluster 1 and 2-5 (as 454 

measured by mean decrease Gini impurity). The F17 fimbriae genes f17-C and f17-D, coli 455 

surface antigen operon (csa) and the fae fimbria operon were absent from cluster 1. All three 456 

operons originated from Escherichia virulence databases. Use of only putative Salmonella 457 

virulence factors from PATRIC [32] and the Virulence Factor Database [31] would not have 458 

annotated the open reading frames highlighting the need for expanding the putative virulence 459 

factors of S. enterica outside of the genera to members of Enterobacteriaceae. However, we 460 

found two operons, lpf (long polar fimbriae) and rfb, in significantly higher proportions in cluster 461 

1 than clusters 2-5.  The higher proportion of lpf genes is notable as the operon has been 462 

associated with S. enterica binding the Peyer's patches, namely the M-cells found within the 463 
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lymphoid organs. [49,50]. This may potentiate the higher infectivity of cluster 1 serovars as 464 

recent work with the Type Three Secretion systems (T3SS) of S. enterica (involved with the 465 

introduction of effector proteins to the cytoplasm of host cells) suggest that the structure does not 466 

penetrate the cytoplasmic membrane like a syringe, but requires tension and adopts a “tent-pole” 467 

like structure [51]. If tension is required for the function of the T3SS, enhanced binding to M-468 

cells mediated by the lpf operon may be one reason cluster 1 has a higher incidence rate of 469 

domestically acquired sporadic cases. The lpf operon has not only been implicated in S. enterica 470 

infections; strains of Escherichia coli O157:H7 with mutations in the lpf operon show decreased 471 

attachment and colonization in both in vitro [52] and in vivo [53] models again show the 472 

interplay of virulence mechanisms between Enterobacteriaceae. The roles of rfb genes are not as 473 

well investigated as the lpf operon but appear to be involved in the biosynthesis of the O-antigen 474 

and lipopolysaccharide structuring. A recent report suggests that the full complement of rfb 475 

genes leads to higher virulence in experimentally infected chickens [54]. 476 

 Examining virulence gene catalogues not only identified large, serovar level clusters but 477 

also, by altering the cluster number (k value), virulence subpopulations within serovars. With the 478 

current method, it cannot be ascertained whether the virulence subpopulations represent 479 

polyphyletic clades within serovars as it cannot be interpretated as a phylogeny. However, by 480 

applying a top-down approach, the presence of increased virulence capacity can be readily 481 

identified. The two subpopulations of S. Infantis present over a two-fold difference in probability 482 

of extraintestinal infections. S. Infantis has been rapidly increasing in incidence in Israel and 483 

previous studies suggest that the addition of a virulence megaplasmid pESI could be responsible 484 

[55]. The mean difference between the two subpopulations was approximately 300kb, similar in 485 

length to the pESI plasmid (280 kb), and querying S. Infantis isolates against a database of 486 
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marker genes revealed that isolates in the subpopulation with longer assemblies are putatively 487 

positive for pESI presence. In addition, the pESI plasmid carries genes necessary for the 488 

synthesis of yersiniabactin [55], a siderophore dependent iron uptake system commonly observed 489 

in Yersinia pestis. The eight genes comprising the ybt operon are resident in every strain of the 490 

higher invasive cluster of S. Infantis, and only two out of 243 isolates from the lower invasive 491 

cluster contain the operon. Iron is an essential nutrient for S. enterica replication during systemic 492 

infections [56]. A previous study suggests that co-infections of Malaria and S. enterica leads to 493 

more systemic infections as excess iron is released upon the lysis of red blood cells, liberating 494 

the metal for use by S. enterica [57]. Increased iron availability, due to the addition of 495 

yersiniabactin, may be one factor for the almost double rate of extraintestinal infections of S. 496 

Infantis cluster 18 compared to S. Infantis infections without this plasmid.  497 

 The methods employed here cannot identify virulence changes due to sequence variations 498 

within virulence loci. Variants of the macA and macB genes in African strains of S. 499 

Typhimurium sequence-type 313 may have higher invasiveness in human patients and increased 500 

survival against challenge with antimicrobial peptides [58]. Others have identified virulence gene 501 

alleles that may correspond to pathogenicity differences [59]. The method employed identifies 502 

virulence genes against a non-redundant database using BLASTP, so alleles with variation less 503 

than 10% sequence identity will be collapsed into the same gene annotation. Furthermore, we did 504 

not consider pseudogene formation of virulence genes. Previous work suggests that pseudogenes 505 

in S. enterica genomes do not follow neutral evolution (random genetic drift, as in many 506 

Eukaryotes) but are readily lost from the chromosome [60]. However, pseudogene formation of 507 

the sseI/srfH secreted effector protein (higher carriage in cluster 1, Table 2) leads to 508 

hyperdissementation of ST313 S. Typhimurium in experimentally infected mice [61]. The role of 509 
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pseudogene formation and the pathogenesis needs more study, and the addition of pseudogene 510 

information could further improve virulence classifications. Additionally, we chose to focus our 511 

analysis on human, bovine, and beef isolates from the US. It is probable given the diversity of S. 512 

enterica that all virulence patterns and serovar subpopulations are not represented in this work.  513 

S. enterica is a diverse pathogen. Yet, most risk assessments and food safety regulations 514 

informed by these assessments only separate Typhoidal Salmonellosis and non-Typhoidal 515 

Salmonellosis, treating serovars as a homogenous unit [62-64]. However, our results suggests 516 

that strains with the highest incidence of domestically acquired sporadic cases and outbreaks of 517 

human infections share a common virulence repertoire. Control and surveillance programs 518 

should devote resources to identifying and eliminating the major reservoirs of clinically relevant 519 

serovars. Furthermore, serovar virulence cannot be considered homogenous in all cases as 520 

observed with S. Infantis and S. Typhimurium. Although attributing virulence to specific genes 521 

was beyond the scope of this study, our analysis could inform further research to identify 522 

Salmonella genes associated with severe illness.  523 
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Supporting information 716 

S1 Fig. Addition of a sixth virulence cluster. (A) Dendrogram depicting the hierarchical 717 

relationship between 12,337 S. enterica genome assemblies based upon virulence gene carriage 718 

with six virulence clusters superimposed on top. (B) Heatmap of serovar proportion within each 719 

of the six respective virulence clusters. Rows are clustered using Ward’s method. (C) 720 

Characteristics of the six virulence clusters: cluster stability - Jaccard similarity of 10,000 non-721 

parametric bootstraps, Number of Genomes - depicting the number of S. enterica genomes 722 

constituent in each cluster, and number of serovars (within cluster serovar proportion > 0.5) in 723 

each cluster. 724 
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S1 Table. Output of SISTR serovar prediction. Full results of the in silico serovar prediction 726 

for the analysis set genomes from the SISTR software.  727 
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S2 Table. Metadata for the analysis set of genomes. Detailed metadata for the contig 729 

assemblies used in the analysis including BioSample, BioProject, and SRA accession numbers.  730 
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S3 Table. Isolate virulence cluster designations.  Virulence cluster designations (k = 5) for the 732 

12,337 contig assemblies in the analysis set including putative serovar designation.  733 
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S4 Table. Epidemiological indicators computed for each virulence cluster. Estimates of: 735 

incidence of domestically acquired sporadic cases per 100k people per year, hospitalization 736 

proportion given infection, proportion positive in FSIS testing of US beef products (MT43, 737 

MT60, MT64), extraintestinal proportion given infection, and mortality proportion given 738 
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S5 Table.  Epidemiological indicators computed for each serovar. Estimates of: incidence of 741 

domestically acquired sporadic cases per 100k people per year, hospitalization proportion given 742 

infection, proportion positive in FSIS testing of US beef products, extraintestinal proportion 743 

given infection, and mortality proportion given infection. 744 
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designations (k = 37) for the 12,337 contig assemblies in the analysis set. 751 
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