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Institut national d’études démographiques (INED), Aubervilliers

December 12, 2022

Abstract

The Covid-19 pandemic did not affect sub-national regions in a uniform way. Knowledge
of the impact of the pandemic on mortality at the local level is therefore an important
issue for better assessing its burden. Vital statistics are now available for an increasing
number of countries for 2020 and 2021, and allow the calculation of sub-national ex-
cess mortality. However, this calculation faces two important methodological challenges:
(1) it requires appropriate mortality projection models; (2) small populations implies
important uncertainty in the estimates, commonly neglected. We address both issues
by adopting a method to forecast mortality at sub-national level and by incorporating
uncertainty in the computation of mortality measures. We illustrate our approach to
French départements (NUTS 3, 95 geographical units) and produce estimates for 2020
and both sexes. Nonetheless, the proposed approach is so flexibility to allow estimation
of excess mortality during Covid-19 in most demographic scenarios as well as for past
pandemics.
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1 Introduction

Since the emergence of the disease, estimating mortality due to Covid-19 has been the object of

intense research, both to guide public policies aimed at controlling the circulation of the virus,

and to know the global burden of this pandemic in various countries. National health surveillance

agencies were first mobilized to provide weekly or even daily death tolls attributable to Covid-19,

and thus establish a rapid indicator of the impact of the pandemic [1; 2]. However, differences in

data definitions among countries, time-varying collection methods, delays in reporting and diverse

coverage by place of death are known issues that hinder health surveillance systems to be employed

for a reliable assessment of the pandemic [3; 4].

Over the months, the regular systems of official statistics have provided information that com-

plements and/or corrects data provided by surveillance systems, including deaths by age from all

causes. These data are the basis for the construction excess mortality measures as alternative

method for assessing the burden of the pandemic. Defined as “the difference between the number

of deaths (from any cause) that occur during the pandemic and the number of deaths that would

have occurred in the absence of the pandemic” [5, p. 85], excess mortality can also be computed

on other indicators like life expectancy and standardized death rates. Measures of excess mortality

have been considered the gold standard to estimate the impact of Covid-19 [6; 7] and they have been

extensively adopted in the past years. Whereas some of them used pre-pandemic years as baseline

mortality in the absence of Covid-19 [8; 9], others have accounted for mortality changes over time

[10; 11; 12; 13; 14].

However all of these studies estimate excess mortality at the national level. This perspective

generally hides large regional differences that ought to be taken into account to better inform policy

makers. Hence, in recent months, many papers have attempted to estimate excess mortality at a

regional level. For some of these studies, excess mortality was the difference between 2020 or 2021

regional mortality levels and pre-pandemic mortality. In this group we have [15] for Brazil, [16] and

[17] for Italy, [18] for Mexico, [19] for Portugal, [20] for Spain, [21] for Sweden, [22] for Switzerland

and [23] for the United States. More thoughtful accounting of the temporal change in mortality

via forecasting techniques have been also proposed for estimating excess mortality at regional level.

Whereas different countries have been analyzed by [24], country-specific studies have been presented

using different methods and aiming to different purposes: [25] for Belgium, [26] for Ecuador, [27]

for England and Wales, [28] and [29] for Italy, [30] for Latvia, [31] for Thailand and [32] for United

States.

While the value of producing excess mortality measures at a fine geographic scale seems clear and

timely, the methodological challenges to estimate them are numerous, and essentially related to the

presence of small populations that naturally display high stochastic variation in death counts. On

the one hand in this situation possible interpretations of regional differences are necessarily limited.

On the other, robust, flexible and fast methods for forecasting mortality levels in the theoretical

absence of a pandemic as well as for computing uncertainty around estimates become crucial.

In this study, we propose a novel approach to estimate subnational excess mortality in times of

pandemic aiming to cope with all these issues in a unified and clear-cut framework. In details, we use

CP -splines [33] to project mortality, since this approach exhibits two relevant features when dealing

with small area mortality analysis: a large flexibility in modelling diverse demographic scenarios

comes along with robustness with respect variation due to small populations at risk. Concerning
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reliable measures of uncertainty around estimates for the numerous subpopulations at hands, we

present a fully analytic procedure with enormous advantages from computational cost and time

perspective.

To illustrate this approach, we compute excess mortality in 2020 for the 95 Metropolitan French

départements, the finest geographical level (NUTS 3) of the classification used by Eurostat. De-

spite specific outcomes from France, this paper aims to provide a general framework for computing

excess mortality and associated uncertainty at subnational level. Given this purpose, R routines

[34] are publicly available to replicate our methodology in other countries, and in different his-

torical contexts. See the open source framework repository on this link https://osf.io/zt2c8/

?view_only=16ff2a7384c04659bdc39c6a223f2403 [Currently the link is made anonymous for peer

review].

2 Methods

In this section we give an overview of the methodological aspects behind the computation of excess

mortality. Specifically, we measure excess mortality accounting for both historical mortality trends

and specific age-pattern in each subnational population. For ease of presentation, we focus on

2020. However, without loss of generality, computation of excess mortality in successive years can

be obtained by extending the forecast horizon presented below. Moreover, we compute associated

uncertainty in a simple, albeit rigorous, procedure. This allows us to separate main sources of

variation before assessing any possible mortality shock in small areas.

For a given subpopulation and sex, we have D = (dij) and E = (eij), m × n matrices of deaths

and exposures. Number of deaths dij at age i in year j are assumed to be realizations from a Poisson

distribution with mean µij eij [35], where µij is commonly named force of mortality. In order to

compute a theoretical level that would have occurred in the absence of the pandemic, we model

observed mortality for n1 pre-pandemic years and forecast µij for 2020. Among a large number of

approaches, we adopt a CP -spline model for forecasting mortality in 2020 [33]. This method allows

us to simultaneously estimate and forecast mortality within a regression setting with enormous

advantages in the computation of uncertainty measures. Let arrange the complete matrices as a

column vector, that is, d = vec(D) and e = vec(E). Mortality over all ages and years can thus be

expressed as the exponential of a linear combination of B-splines basis and coefficients:

µ = exp (Bα) , (1)

whereB a two-dimensional model matrix that combines B-splines over age and years. The associated

coefficients α are penalized to enforce smoothness over both dimensions in order to lie future 2020

mortality within trends estimated from pre-pandemic years. More details can be found in (author?)

[33].

An important issue when forecasting mortality is the choice of the most appropriate period to

apply the forecasting model. Instead of taking all available data or a common starting year for all

regions, we optimize the time-window used for each of them. In practice, we apply CP -splines with

a rolling starting year up to 2010, forecast 2019, and measure the distance between observed and

forecast 2019 mortality. Working in a Poisson setting, we opt to measure distance by Deviance [36,

p. 34]. The starting year with lowest Deviance value was selected for the final analysis.
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A measure of excess mortality for 2020 is defined as the difference between the value of a de-

mographic indicator in a theoretical baseline mortality level and the value for the same indicator

obtained from the observed mortality. Whereas the former is obtained by CP -splines and it is solely

dependent on the estimated coefficients α in (1), observed death rates m2020 = d2020/e2020 are the

bases for computing actual level of mortality in the pandemic year.

Besides their estimated values, both observed and forecast values for any mortality measure em-

body levels of uncertainty that need to be accounted before drawing any conclusions about their

change. This consideration is particularly relevant in subnational analyses when relatively small

populations at risk are examined. Instead of time-consuming simulation and bootstrap procedures,

we develop an analytic construction of the variance associated to both observed and forecast mor-

tality indicators by delta method. With this approach, we identify and disentangle the amount

of uncertainty due to either estimated baseline mortality (hereafter “forecast uncertainty”) or to

observed mortality level in 2020 (hereafter “Poisson uncertainty”).

This general framework can be easily adapted to compute excess mortality using a large number

of demographic indicators. In the Supplementary Materials A, we provide derivations to obtain these

estimates and their associated uncertainty for life expectancy at any given age x, age-standardized

death rates (SDRs) and plain death toll.

3 Data and applications

For illustrative purposes, we present excess mortality measures by losses/gains in life expectancy at

age 60 (e60) in 2020 for 95 départements of Metropolitan France, which correspond to the third level

of the Nomenclature of Units for Territorial Statistics (NUTS) used by Eurostat. French Human

Mortality Database [37] provides annual deaths (D) and population at 1st January by single age

at death (with an open age interval 95+), sex, and département for each year between 1970 and

2020. We define exposures (E) as the mean of populations at 1st January for two consecutive years.

For comparison, we gather populations and deaths to obtain data for 22 bigger régions (NUTS 2

level). Outcomes for this larger geographical level as well as for both sexes are provided in the

Supplementary Materials B.

Figure 1 presents losses in male e60 for a single subpopulation, Territoire de Belfort. This

département was not chosen randomly: strongly affected by the pandemic, it is a relatively small

area (about 70,000 men in 2020) and therefore may show more variability in mortality due to smaller

sample size.

The upper panels of Figure 1 reveals how forecast includes uncertainty around estimates. Whereas

observed life expectancy at age 60 in 2020 was 21.41 years, our projected value lies between 22.95

and 23.45 years. Consequently, a loss in e60 is estimated between approximately 1.5 and 2 years. For

comparison, Figure 1 presents what we labelled as the naive estimate of excess mortality, commonly

used in many recent studies: mortality level from the 5 pre-pandemic years is used as the theoretical

baseline level without pandemic. Ignoring decreasing trends in mortality, this approach biases excess

mortality estimate downward: loss in e60 is here only 1.4 years.

The lower part of Figure 1 presents the Poisson uncertainty which is associated to the observed

mortality level in 2020. Negligible when the size of the population is large, this source of uncertainty

become relevant at regional level. In our example, adding the Poisson uncertainty around our

estimates increases the confidence interval by 0.9 year. At last, in 2020 and for Territoire de Belfort,
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Figure 1: Illustrative figure of sources of uncertainty around excess mortality measure. Life ex-
pectancy at 60 (left panels) and associated losses (right panels) for Territoire de Belfort, males,
2020. Upper panels: forecast uncertainty is accounted. Lower panel: both forecast and Poisson
uncertainty are reported. Texts refer to either point estimates or 95% confidence intervals. Dashed
lines depict naive estimation of excess mortality.

we measure a loss in male e60 between 1.1 and 2.5 years.

In the Supplementary Material B we replicate Figure 1 for Seine-Saint-Denis. This département

was also heavily affected by the pandemic in 2020, but male population is 13 times larger. To-

tal uncertainty is thus much lower (0.8 year) with we estimate a loss in e60 between 2.4 and 3.2

years.

Figure 2 presents point estimates of losses/gains in e60 for each département along with their

95% confidence interval as well as naive estimates. Both sources of uncertainty, forecast and Poisson,

are portrayed. Figure 3 mirrors this information into a French map: point estimates are portrayed

and départements with non-significant result at the 5% level are highlighted.

In mainland France, we estimate that e60 has decreased by 0.77 year, whereas the naive estimate

is almost two times lower (0.42). The uncertainty around this value is 0.15 year and mostly due

to forecast; the Poisson uncertainty almost disappears when we deal with the whole French male

population (33 million). Loss in male e60 remarkably vary across the subpopulations: the maximum

loss was in Seine-Saint-Denis (2.4 years) whereas the minimum was in Gers (gain of 0.6 year).

However, 95% confidence intervals around this point estimate is very large (1.2 years) resulting in

only a slightly significant gain at the 5% level.

Overall 26 départements show not significant estimates at 5% level; only when losses in e60 rise

to about 0.4 year we start detecting significant excess mortality, with the exception of relatively

highly populated areas such as Hérault and Loire-Atlantique. Figure 3 reveals the geography of the

pandemic in 2020. Whereas Western France was practically spared by the pandemic, estimates were

larger in the East and in the Greater Paris (Ile-de-France) region with losses in life expectancy at

age 60 about 1 and 1.5 years, respectively.
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Figure 2: Losses in male life expectancy at age 60 in 2020 for each French département. Colors
of dots and texts depict express the presence of significant estimates at 95% level, and colors of
the horizontal bars represent the two sources of uncertainty. Green dots identify the so-called naive
estimation of losses.

A central aspect of this paper concerns the importance of measuring uncertainty around excess

mortality estimates when dealing with small areas. Figure 4 presents a log-log plot of the amount of

uncertainty (measured by the range of the 95% confidence intervals) against population size, i.e. we

portray the proportional change in uncertainty in response to a proportional change in population

size. In order to broaden the view, we portray both départements (NUTS 3) and régions (NUTS

2) and, along with the total uncertainty (in green), we differentiate uncertainty coming from the

forecast procedure (in purple) and from Poisson on observed data (in orange).

With a linear fit to both departmental and regional values, we are able to estimate elasticity

associated to source-specific uncertainty and gauge the percent change in uncertainty for a doubling

in population size. In general, we estimate that uncertainty decreases by 24% when the population

doubles. This value combines two sources of uncertainty that decrease at an unequal pace when

population grows. Whereas Poisson uncertainty is higher than the forecast uncertainty for almost all

subnational populations, this source of uncertainty decreases at faster pace (26%) than the forecast

uncertainty (17%) when the population doubles.
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Figure 3: Map of France département by losses/gains in male life expectancy at age 60 in 2020.
Slash symbol (/) denote areas with loss/gain in e60 not significant at 5% level. On the upper-right
corner zoom of a part of the map referring to Greater Paris (Ile-de-France).

We can also read Figure 4 from an alternative perspective. When excess mortality is measured

by e60, a loss larger than 0.75 years would be necessary to have a significant estimate at 95% level if

the population size is 50,000. This value decrease with larger populations: in a region with 200,000

(one million) men, a loss in e60 equal to 0.4 (0.2) would be required to obtain a significant excess

mortality.

4 Discussion

Assessing excess mortality during a pandemic such as the recent Covid-19 is as crucial from an health

policy perspective as challenge from a methodological view. Moreover these challenges increase

when we deal with excess mortality estimation at subnational level. Specifically we face two main

issues.

First, computation of mortality levels that would have been observed without pandemic need to

be estimated. In other words, forecasting methods are necessary to extrapolate temporal mortality

variations. In this paper, we use CP -splines [33] and illustrate our approach with a reproducible

example on French départements. If data on deaths and exposure population are available by age

and year, the proposed approach is flexible to adapt to a large variety of current, and historical,
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Figure 4: Log-log plot of the amount of uncertainty against population size by source of uncertainty:
Total, associated to the Forecast process and due to Poisson randomness in observed data. Uncer-
tainty is measured by the width of the 95% confidence intervals around estimated loss in male e60.
Values for both départements (NUTS 3) and régions (NUTS 2) are depicted. Linear fits are provided
for illustrative purposes and for obtaining an approximated value of the elasticity associated to each
source of uncertainty.

scenarios and robust for dealing with very small populations.

Second, uncertainty become very high when one deals with low populated areas. In this paper,

we compute uncertainty around point estimates, and disentangle between uncertainty due to the

forecasting process and inherent uncertainty due to Poisson random nature of observed mortality

data. We show that overall uncertainty in excess mortality decreases by 24% when population

doubles, though Poisson uncertainty tends to decrease more rapidly when population grows. Conse-

quently, whereas for large populations we can safely disregard uncertainty in the observed data and

account only for the forecasting errors, when dealing with excess mortality in small areas, the Poisson

component in the uncertainty must be take into account before drawing any conclusions.

A possible way for reducing uncertainty, namely the Poisson component, is to either gather

populations spatially by aggregating smaller administrative divisions into larger ones, or estimating

excess mortality for both sexes. Still, these choices must be made with caution since associated

outcomes might hide strong heterogeneity.

To illustrate these concepts Figure 5 shows densities of losses in male e60 for two specific

French régions (lower panel) and associated lower level administrative divisions, départements (up-

per panel). In this example, Ile-de-France or Grater Paris is the région that suffered from the

highest loss in life expectancy at age 60 with a 95% confidence interval loss in e60 of [1.57 − 1.85].
Still, this result hides large heterogeneity between the least and the harshest hit département in

this région: Esonne with [0.98 − 1.68] and Seine-Saint-Denis with [2.10 − 2.70]. It is noteworthy
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Figure 5: Illustrative figure on the effects of spatial aggregation in excess mortality estimation.
Densities of losses/gains in life expectancy at 60 for two NUTS 2 populations (Ile-de-France and
Bretagne, lower panel) and their associated NUTS 3 populations (upper panel).

that mortality level in Seine-Saint-Denis was already among the highest in France before 2020.

Concealing its further deterioration caused by the pandemic for the sake of reducing uncertainty

by a spatial aggregation will thus be an inappropriate procedure from an health policy perspective.

On the contrary, estimates for Bretagne do not mask large spatial heterogeneity and aggregation

within this region considerably decreases size of the confidence interval around the excess mortality

estimates without much loss of information.

An alternative way for reducing uncertainty keeping the same administrative division would

be to combine men and women. On the one hand, practically doubling population sizes, this

strategy would reduce the width of associated 95% confidence intervals by 24%. On the other

estimates for both sexes will surely hide heterogeneity between men and women in a context in

which literature has revealed large sex differences in Covid-19 morbidity and mortality. See, among

others, [38; 39; 40; 41; 42]. For completeness, Supplementary Materials B present excess mortality

estimates measured by e60 for both sexes combined as well as for NUTS 2 regions.

In summary, unlike most of the previous methods proposed to estimate excess mortality, our

approach allows to cope with all issues akin with small populations. Thanks to its robustness,

flexibility and low computational cost, we envisage its wider use for mapping the impact of Covid-19

at the international level. We also encourage national statistical offices to continue and expedite

publication of mortality data at regional level that, coupled with our available routines, would

facilitate a more accurate and timely assessment of the burden of any ongoing pandemic.
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[18] Garćıa-Guerrero VM, Beltrán-Sánchez H. Heterogeneity in excess of mortality and its impact

on loss of life expectancy due to COVID-19: evidence from Mexico. Canadian Studies in

Population. 2021;48(2-3):165-200.

[19] Nogueira PJ, Nobre MA, Nicola PJ, Furtado C, Carneiro AV. Excess mortality estimation

during the COVID-19 pandemic: preliminary data from Portugal. Acta Médica Portuguesa.

2020;33(6):450-1.

[20] Trias-Llimós S, Riffe T, Bilal U. Monitoring life expectancy levels during the COVID-19 pan-

demic: Example of the unequal impact of the first wave on Spanish regions. PLoS ONE.

2020;15(11):e0241952.

[21] Modig K, Ahlbom A, Ebeling M. Excess mortality from COVID-19: weekly excess death rates

by age and sex for Sweden and its most affected region. European Journal of Public Health.

2021;31(1):17-22.

[22] Locatelli I, Rousson V. A first analysis of excess mortality in Switzerland in 2020. PLoS One.

2021;16(6):e0253505.

[23] Weinberger DM, Chen J, Cohen T, Crawford W Forrest, Mostashari F, Olson D, et al. Esti-

mation of excess deaths associated with the COVID-19 pandemic in the United States, March

to May 2020. JAMA Internal Medicine. 2020;180(10):1336-44.
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