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Abstract

Stereotactic radiosurgery (SRS) can be an effective primary or adjuvant treatment option for intracranial tumors.
However, it carries risks of various radiation toxicities, including radionecrosis and functional deficits. Current SRS
inverse planning algorithms allow efficient inclusion of organs at risk (OARs) in the treatment planning process, which
will be spared by setting a maximum radiation dose. In this work we propose using activation maps from functional
MRI to map the eloquent regions of the brain and define functional OARs. We evaluate the effects of these functional
OARs for Elekta Leksell Gamma Knife SRS inverse treatment planning on open data MRI from 5 subjects. Our results
show that fMRI-derived functional OARs can effectively be used to reduce the radiation dose incident on the eloquent
brain regions, while maintaining acceptable treatment planning metrics on the tumor targets.
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1. Introduction

Brain tumors compose about 2% of new cancer
diagnoses, affecting some 300 000 subjects globally each
year (Leece et al., 2017). Although not the most
prevalent cancer type, brain tumors are prone to
complicated and challenging treatment procedures, which
often combine surgical resection, radiotherapy, and
chemotherapy, with a high morbidity and low survival
rate for the patients. Stereotactic radiosurgery (SRS) can
be an efficient treatment option for small primary brain
tumors and metastases. However, treatment planning
requires considerable time, as it involves collecting MR
and/or CT images, segmenting the tumor and organs at
risk (OARs), and the generation of treatment plans.
Furthermore, OARs typically include various anatomical
landmarks, but eloquent regions of the brain are rarely
used for this purpose. In this work, we describe a
workflow for efficiently incorporating functional OARs
(fOARs), in the form of brain activation maps derived
from functional MRI (fMRI), into Gamma Knife SRS
treatment planning in order to minimize the radiation
dose incident on eloquent brain areas.

1.1. Stereotactic radiosurgery

Stereotactic radiosurgery is an image-guided
non-invasive surgical approach which relies on focused
beams of radiation to ablate tissue. Originally developed
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to treat various benign intracranial conditions, it has
since seen its use extended to malignant conditions, both
intracranial and elsewhere in the body.

Since its inception, SRS has been adopted within the
fields of neurosurgery and radiation oncology. It has
become one of the treatments of choice for multiple
intracranial conditions and malignancies, such as
arteriovenous malformations, vestibular schwannomas,
cavernous sinus meningiomas, recurrent or residual
pituitary tumors, metastatic tumors, and trigeminal
neuralgia (Lunsford & Sheehan, 2009). It is also
increasingly being applied for the treatment of high- and
low-grade gliomas (Fetcko et al., 2017; Bokstein et al.,
2016; Skeie et al., 2012; Weintraub et al., 2012) and
meningiomas (Ruge et al., 2021; Pinzi et al., 2017; Han
et al., 2017).

1.2. Handling risk organs

Despite the precise dose delivery and sharp dose
fall-off achievable with radiosurgery, patients are still at
risk of suffering various radiation-induced toxicities.
Complications associated with SRS for vestibular
schwannoma include facial neuropathy, hearing loss and
damage to the trigeminal nerve (Kondziolka et al., 1998).
High grade glioma treatment complications include
radionecrosis, cranial nerve palsy, paralysis, seizures,
CNS hemorrhage, and stroke (Fetcko et al., 2017). A
large scale meta-analysis of published research on
Gamma Knife radiosurgery for arteriovenous
malformations found that 34 % of the patients developed
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radiation-induced changes, with 8 % developing
neurological symptoms and 3 % experiencing permanent
neurologic deterioration (China et al., 2022).

In order to mitigate potential radiation-induced
functional deficits to patients treated with SRS, it is
common to segment various organs at risk (OARs)
during the treatment planning process, and keep the dose
incident on them within established limits by shaping the
radiation dose delivered to the targets. For SRS of the
brain, these OARs typically include anatomical regions
such as the brain stem, the hippocampus, the optic
nerves, and the cochlea.

1.3. Using risk organs from functional MRI

Since its development in 1992, fMRI has been used to
study brain activity and brain connectivity (Logothetis,
2008). It has become very popular for both research and
clinical applications, as it is based on a natural contrast
mechanism that is part of the human physiology.

fOARs derived from fMRI have been previously used
to spare the eloquent brain regions in radiotherapy
(Narayana et al., 2007; Kovács et al., 2011; Wang et al.,
2015), as well as in SRS with LINAC (Liu et al., 2000)
and CyberKnife (Stancanello et al., 2007; Pantelis et al.,
2010; Conti et al., 2013; De Martin et al., 2017), but, to
the best of our knowledge, not with Gamma Knife. One
reason for this could be the availability of inverse
planning solutions. While treatment plans with multiple
anatomical and/or functional OARs can be designed with
manual forward planning, the process can be too
time-consuming, depending on the number and size of
the targets and the OARs, as well as the distances
between them. Modern inverse planning methods for
radiation delivery (Sjölund et al., 2019; Paddick et al.,
2020; Zeverino et al., 2019) greatly simplify the
incorporation of fOARs into the treatment planning
routine, using automatic optimization to generate
treatment plans that consider multiple OARs within
minutes. The recent introduction of the Elekta Gamma
Knife Lightning treatment planner (Sjölund et al., 2019)
(henceforth referred to as Lightning) enables the creation
of complex treatment plans with multiple OARs for
Gamma Knife SRS.

In this work we have developed a pipeline for
analyzing fMRI data to create fOARs, and converting the
anatomical images and fOARs into DICOM objects that
can be imported into the Elekta Leksell GammaPlan
software (henceforth referred to as GammaPlan, see
Figure 1), to be used with the Lightning inverse planner
add-on. We used this pipeline to generate retrospective
treatment plans for 5 brain tumor patients and evaluated
the effects of including fOARs in the treatment planning
process with the Lightning planner.

2. Data

We used an open MRI dataset of brain tumor
patients to carry out our experiments (Pernet et al.,
2016). The dataset contains structural (T1w, T2w, DWI)
and functional MRI data from 22 patients with various
types of brain tumors located close to the eloquent
regions of the brain. Functional imaging protocols
include a motor task consisting of three conditions (finger
tapping, foot flexing, lip pursing), a covert verb
generation task (mapping of Broca area and
supplementary motor area), an overt word repetition task
(mapping of Wernicke area), as well as resting state
fMRI. The employed fMRI protocol has previously been
shown to provide reliable singe-subject activations on
control subjects (Gorgolewski et al., 2013). Due to
medical considerations, not all fMRI datasets are
available for all patients. While we are aware of larger
open brain tumor datasets, such as the BraTS dataset
(Menze et al., 2014), including 1251 subjects in the
training set of the 2021 version, they do not generally
include fMRI data, and are thus unsuitable for this work.

Due to limitations in the suitable radiation doses and
treatment times for a patient, SRS is mainly applied on
relatively small pathologies. Because of this, we only
used data from patients with tumors smaller than 40
cubic centimeters, which excluded 17 of the 22 patients
in the dataset. Table 1 presents information on the
remaining 5 subjects that were used in our analyses.

For each subject we made use of the T1w volume as
reference for treatment planning, and the task fMRI data
was used to obtain functional OARs (fOARs). Table 2
presents some relevant acquisition parameters for these
modalities. While the dataset includes tumor masks,
these were generated using a semi-automatic procedure.
To ensure the accurate localization of the tumors,
co-author IB, an experienced neuroradiologist, manually
annotated the tumor for each of the patients used in our
analyses.

3. Methods

This section describes the methods used to generate
the fMRI activation maps and use them as fOARs for
treatment planning in GammaPlan. All data processing
and conversion was done using a combination of Bash,
Matlab, and Python scripts, which are available online1.
A diagram of our processing and analysis pipeline is
shown in Figure 2.

3.1. Preprocessing of MRI data

For each subject, the T1w and fMRI data are
available in NIfTI format. The first four volumes of all
fMRI sequences are dummy volumes, and were deleted.

1https://github.com/DavidAbramian/CENIIT2
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Figure 1: An example of treatment planning in GammaPlan after loading the anatomical images, the tumor mask and the risk organs obtained
from fMRI. Red contours represent the tumor mask. Thick yellow and green contours represent the 11 Gy and 4 Gy isolevels, respectively,
corresponding to the target tumor irradiation dose and the maximum dose constraint on fOARs, respectively. Thin green, orange, cyan, and
magenta contours represent fOARs defined from the hand, foot, lips and verb repetition fMRI conditions, respectively.

Subject ID Pathology Tumor location Tumor size Available fMRI data
17904 Oligodendroglioma type II Left supplementary motor area 35.92 cm3 M V R
18582 Astrocytoma type II Wernicke area 10.34 cm3 M V W
18975 Glioblastoma multiforme Left primary motor area 13.24 cm3 M V W R
19015 Glioblastoma multiforme Left supplementary motor area 37.40 cm3 M V W
19849 Not available Right primary motor area 9.66 cm3 M R

Table 1: An overview of the patients analyzed in this study. Patients with tumors larger than 40 cubic centimeters were excluded from the
original Pernet et al. (2016) dataset, since SRS is normally not used for such patients. Not all fMRI datasets are available for all patients.
M = motor, V = verb generation, W = word repetition, R = resting state.

T1w Motor Verb generation Word repetition
Voxel size [mm] 1× 1.3× 1 4× 4× 4 4× 4× 4 4× 4× 4
Dimensions [vox] 256× 156× 256 64× 64× 30 64× 64× 30 64× 64× 30

TR [s] 10 2.5 2.5 5 (effective 2.5)
Number of volumes 1 184 173 76

Table 2: Acquisition parameters for the Pernet et al. (2016) dataset.

3

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 14, 2022. ; https://doi.org/10.1101/2022.12.12.22283334doi: medRxiv preprint 

https://doi.org/10.1101/2022.12.12.22283334
http://creativecommons.org/licenses/by/4.0/


fMRI

preprocessing
(fMRIPrep)

T1w

mask

motion 
parameters

T1w_brain

brain 
mask

to DICOM

GammaPlan

resample

raw T1w raw fMRI

tumor 
mask

model 
fitting
(FSL)

resample threshold mask to RTSTRUCT
z-maps

activation 
maps

T1w_brain

T1w

1 x 1 x 1 mm

1 x 1.3 x 1 mm

4 x 4 x 4 mm

Matlab

Python

Other

Figure 2: Diagram of the preprocessing and statistical analysis pipeline for fMRI data. The preprocessing (e.g., registration between T1w and
fMRI volumes, head motion correction) is done with the fMRIPrep software, with some additional resampling of the volumes. The statistical
analysis of the fMRI data is done with the FSL software. A custom Python script is finally used to convert the brain activity maps to DICOM
RTSTRUCT, for loading them into GammaPlan.

We chose to preprocess the anatomical and functional
MRI data with the fMRIPrep software (Esteban et al.,
2019), which purposefully combines processing steps from
multiple MRI software tools to produce a robust and
versatile preprocessing pipeline in accordance with best
practices. As fMRIPrep requires the data to be in the
BIDS format (Gorgolewski et al., 2016), the dataset was
first manually converted to BIDS. The preprocessing
steps included bias correction of the T1w volume, brain
mask extraction, head motion correction of the fMRI
volumes, and co-registration of fMRI data to the
corresponding T1w anatomical references, among others.
A full description of the preprocessing performed by
fMRIPrep is given in Appendix A.

We experimented with several different settings for
fMRIPrep with and without the inclusion of brain
surface extraction with FreeSurfer (Fischl, 2012) for the
refinement of the brain mask. Given the substantial
increase in processing time from the use of surface
extraction (6 hours per subject vs. 1.5 hour per subject)
and the minimal differences observed in the final results,
we decided not to use surface processing for our
experiments. Other fMRIPrep settings used included
producing output in the native space of each subject, and
using experimental fieldmap-free susceptibility distortion
correction for the fMRI data, due to the absence of
fieldmaps in the dataset.

Following preprocessing with fMRIPrep, we used the
generated brain mask to produce a skull-stripped version
of the T1w volume, to be used in FSL. Both versions of
the T1w volume were then resampled to 1 mm isotropic
resolution and 256 × 256 × 256 voxels in order to fulfill a
requirement from the GammaPlan software, namely that
the 2D slices of the reference volume have square pixels.
These images were used by co-author IB to produce new
tumor segmentations, so these were made in the target
resolution.

3.2. Activation mapping

We used the FSL 6.0.4 software (Jenkinson et al.,
2012) to perform first-level analysis of the fMRI data.
Preprocessing steps were disabled, as they were already
carried out by fMRIPrep, with the exception of spatial
smoothing. Due to the importance that smoothing has
for the detection power and spatial specificity of found
activations, we decided to test Gaussian filters of two
different sizes for our analyses, with full width at half
maximum (FWHM) sizes of 4 mm and 6 mm,
respectively. The GLM design matrices included an
activity regressor for each task, the temporal derivative
of each activity regressor, and a standard set of six head
motion regressors estimated by fMRIPrep.

Prior to thresholding the Z-static maps, these were
resampled to the same resolution of the T1w reference
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volume, as necessary setup for the later conversion of the
activation maps into DICOM RTSTRUCT formatted
data (see Section 3.4). The resampled Z-statistic maps
were then thresholded at an arbitrary voxel level of
Z = 5, with no cluster extent threshold, to produce
binary activation maps. While arbitrary, this threshold
provides relatively strong familywise error control,
corresponding to Bonferroni correction with α between
0.006 and 0.008 for the various subjects and tasks. This
activation mapping scheme did not produce any
activations for the word repetition task for any subject,
so this task was disregarded in the remainder of our
analyses.

The arbitrary nature of our chosen thresholding
scheme was considered appropriate for several reasons.
Firstly, there is currently no consensus on how to best
threshold brain activation maps for single subject fMRI
analysis. This is especially true for clinical applications,
where the relative importance of false positives and false
negatives is different to that in research (Silva et al.,
2018). Furthermore, ad hoc thresholds are routinely used
in clinical fMRI, where the operator manually adjusts the
thresholds until a satisfactory activation map had been
achieved (Stippich et al., 2022), or sets them in
accordance with the relative ease of detecting activations
for different tasks (Stancanello et al., 2007). As our work
is not focused on settling these questions but on
demonstrating the feasibility of generating and using
fOARs for Gamma Knife treatment planning, we chose
an arbitrary thresholding level with strong control of
familywise error rates.

3.3. Masking of activation maps

For several subjects and tasks, fMRI activations were
present inside or in close proximity to the tumor mask. It
is unclear whether these activations represent true brain
activity or they are artifactual, potentially caused by
tumor-induced neurovascular uncoupling (Bogomolny
et al., 2004; Silva et al., 2018). However, as the
GammaPlan inverse planner treats the maximum dose on
OARs as a hard optimization constraint, it prioritizes
reducing the radiation dose incident on OARs over
fulfilling the irradiation requirements on the tumor mask,
resulting in poor quality treatment plans. In order to
address this issue, we created three additional masked
versions of each activation map: one where activations
found inside the tumor mask were removed, and two
where activations were also removed within 2 mm and 4
mm of any tumor voxel, respectively. Thus, for each
subject and condition we generated 8 activation maps in
total (2 smoothing settings × 4 masking settings).

3.4. Data conversion to DICOM

As a clinical software, the GammaPlan treatment
planning software accepts input data in the DICOM
format, ensuring interoperability with other medical

devices. However, most fMRI processing and analysis
tools require data in the NIfTI format, standard in
neuroimaging research, so this is the data format used
throughout our pipeline. Therefore, a data conversion
step was needed before the brain activation maps could
be loaded onto GammaPlan.

The various ROIs, such as the tumor mask and
activation maps, need to be provided as DICOM
radiotherapy structure sets (RTSTRUCTs) (Law & Liu,
2009), used for the storage and transfer of patient
structures. In this format ROIs are represented as
collections of contours encompassing the relevant region,
with each contour being associated to a reference
DICOM object, which in our case are individual T1w
axial slices. A single RTSTRUCT file can contain any
number of separate ROIs, each of which can be used as a
target or risk organ in GammaPlan. Contrastingly, the
most common way of representing ROIs in the NIfTI
format is as binary volumes, with voxels taking a value of
1 if belonging to the ROI and 0 otherwise.

The T1w reference volume of each subject was split
into 256 axial slices, and each of them converted into a
DICOM file. The conversion of ROIs from solid 3D
regions into collections of 2D contours was done using a
custom Python script. The active voxels were first
extracted for each axial slice separately, following which
the contrours enclosing each connected regions were
found automatically using the find contour routine
from the scikit-image package (Van der Walt et al.,
2014), which relies on the marching squares algorithm for
finding contours. The sets of contours were converted
into RTSTRUCT files using the pydicom package
(Mason, 2011). Specifically, as RTSTRUCT files can be
quite complex, we used the codify function to
deconstruct an existing RTSTRUCT file and generate the
Python code that would recreate it, and altered this code
to suit our needs.

3.5. Treatment planning

A non-clinical version of GammaPlan2 was set up on
an HP Z6 G4 workstation with a 10 core Intel Xeon 2.2
GHz CPU, an Nvidia Quadro P2000 GPU, and 96 GB
of RAM, in accordance with the required specification for
the software, with the exception of the increased RAM (96
GB instead of 32 GB). All analyses were performed with
a treatment dose rate of 3.5 Gy/min, corresponding to a
new Gamma Knife unit.

For each subject, the set of DICOM files containing
the T1w reference volume and the RTSTRUCT files
containing the tumor mask and activation map ROIs
were transferred to the GammaPlan workstation using a
USB drive and imported into the software. Each subject
and set of parameters were analyzed in separate

2software build: alpha1A1-nonclinical (6576.d71bbebac) @

sesrdtpsbuild005 2019-10-10T11:55
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examinations within the software. For each such
examination, the T1w reference volume and relevant
tumor and fOAR ROIs were loaded. In all cases, all of
the available activation maps for each subject were used
simultaneously, yielding between 80 and 180 risk organs
(i.e. individual brain activity clusters, see section 5.3).
The skull was segmented automatically in GammaPlan
from the T1w volume.

We defined two treatment plans in each examination:
one where only the target dose for the tumor is specified,
and another were dose limits were also set for each fOAR.
The doses incident on the tumor and fOARs were logged
in both cases. We used a target dose of 11 Gy and a dose
limit of 35 % of the target dose (4 Gy) for all fOARs in all
cases.

Optimized treatment plans were generated using the
Lightning inverse planning system (Sjölund et al., 2019).
It provides two tuning parameters for setting the relative
importance of minimizing the dose incident on tissue
outside the target and minimizing the beam-on-time,
respectively. These were set to their default value of 0.5.
The optimization of individual treatment plans took
between 20 seconds and 30 minutes.

3.6. Exporting GammaPlan results

As treatment plan optimization times are not
reported in GammaPlan, we measured them by tracking
the timing of changes in on-screen dialog boxes, using
motion tracking software running on another computer
with a webcam. Furthermore, while it is possible to
export complete treatment plans in DICOM format,
detailed dose reports for ROIs are only presented in a
table to be visualized by the GammaPlan operator, and
can not be exported in a machine-readable format on a
single-treatment-plan basis. GammaPlan offers the
possibility of exporting the full debug logs of the
treatment planning computer to external media, which
include a complete history of treatment planning logs
with detailed statistics in JSON format, but these do not
include minimum and mean dose statistics for ROIs other
than the targets. In addition, this process is inconvenient
for exporting the metrics of individual treatment plans of
interest, as it is time-consuming and produces a large
number of log files unrelated to this task. Therefore, in
order to extract the full treatment planning statistics
reported by GammaPlan, we took screenshots of the
results tables and exported them as PDF files to a USB
drive. We then used custom OCR software written in
Matlab to parse the numbers from the tables. The dose
statistics for all ROIs that constitute a single fMRI
condition were combined.

4. Results

For every subject, spatial filter size, and masking
setting, we compared the quality of treatment plans with

and without the inclusion of fOARs with different
masking settings in the optimization process. In total we
generated 50 treatment plans (5 subjects × 2 smoothing
levels × (no fOARs + fOARs with 4 masking settings)).
Figure 3 shows example treatment plans for every
subject and setting tested.

We evaluated the treatment plans on the basis of the
metrics reported by GammaPlan. These include
minimum, maximum and mean doses for each ROI
(tumor mask and fOARs), as well as the following overall
treatment plan quality metrics: target coverage, Paddick
conformity index (PCI) (Paddick, 2000), gradient index
(Paddick & Lippitz, 2006), and treatment time. In
addition, we report the optimization time needed to
produce each treatment plan. Note that GammaPlan did
not report gradient indices for the subjects with larger
tumors, so results are only provided for subjects 18582,
18975 and 19849.

4.1. Effects of including fOARs

Treatment planning without the inclusion of fOARs
results in highly conformal treatment plans, with a target
coverage of 1 in all cases, a median PCI of 0.89 (range
0.86 – 0.90), and a median gradient index of 2.66 (range
2.62 – 2.75) where reported. The median minimum,
maximum and mean doses delivered to the tumors are
9.9, 20.7 and 15.2 Gy, respectively, reflecting good
compliance with the target doses. However, the doses
received by the fOARs are in excess of the permissible
maximum, with a median maximum dose on fOARs of
6.7 Gy, and reaching doses larger than 10 Gy in several
cases.

Incorporating maximum dose constraints for fOARs
successfully limits the dose received by them, lowering
the median maximum dose on fOARs to 3.9 Gy, i.e., just
under the maximum constraint of 4 Gy. In spite of that,
the presence of fMRI activations within or in close
proximity to the tumor masks results in the inclusion of
dose constraints for fOARs having a severe detrimental
effect on treatment plan metrics. In this case the median
target coverage and PCI are reduced to 0.80 (range 0.60
– 0.97) and 0.70 (range 0.48 – 0.81), respectively, while
the median gradient index increased to 2.88 (range 2.74 –
3.19). Furthermore, while the mean tumor doses
remained approximately constant, the treatment plans
suffer from both hot and cold spots, as indicated by high
maximum and low minimum doses, with medians of 2.25
Gy and 32.45 Gy, respectively.

As illustrated by visually comparing the treatment
plans in the first two columns of Figure 3 (e.g., subjects
17904, 18582, and 19015), the 4 Gy isoline very closely
follows the shape of any fMRI activations adjacent to the
tumor mask whenever such a dose constraint is set on the
fOARs, suggesting that the optimizer is successful in
shaping the delivered dose in order to follow the dose
constraints imposed on risk organs.
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Figure 3: Example treatment plans obtained for all subjects and masking settings, using spatial smoothing with a 4 mm FWHM filter. The
first column (”No fOARs”) shows results where no dose limits are set for the fOARs, while the remaining four columns represent the various
masking settings employed. Thick yellow and green contours represent the 11 Gy and 4 Gy isolevels, respectively, corresponding to the target
tumor irradiation dose and the maximum dose constraint on OARs, respectively. Thin magenta, cyan, orange and green contours represent
fOARs defined from each fMRI condition (three from the motor task and one from the verb generation task).
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4.2. Effects of masking fMRI activation maps

We tested three masking settings with the goal of
separating the closest fMRI activations from the tumor
mask and thus improving the quality of the resulting
treatment plans.

Removing all activations that fall inside the tumor
results in a slight improvement in the treatment plan
metrics, with a median target coverage of 0.83 and a
median PCI of 0.73, respectively, while the median
gradient index remains at 2.88. The median maximum
dose decreases to 30.1 Gy, and the median minimum
tumor dose increases to 2.65 Gy, indicating that the hot
and cold spots in the treatment plan are somewhat
alleviated. Although this constitutes a marked
improvement for the treatment plans, most fMRI
activations within the tumor mask do not appear deep
inside the tumor, but are portions of larger activations
adjacent to the tumor which extend into its edges (see
Figure 3, second and third columns). The remaining
portion of such activations, as well as any other
activations immediately adjacent to the tumor, would
shrink the portion of the tumor receiving the full
treatment dose, and have a detrimental effect on the
treatment plans.

Masking out all activations within 2 mm of all tumor
voxels results in a further improvement to treatment plan
metrics. Median target coverage and median PCI take
values of 0.88 and 0.76, respectively, while the median
gradient index remains nearly unchanged. Hot and cold
spots are substantially reduced, with median maximum
and minimum tumor doses of 3.85 Gy and 27.1 Gy,
respectively. Increasing the masking radius to 4 mm
provides an even larger improvement, with median target
coverage and median PCI values of 0.98 and 0.82,
respectively, and median maximum and minimum tumor
doses of 22.65 Gy and 7.8 Gy, respectively. This brings
most treatment plan metrics close to their values when
not applying any dose limits, with the exception of the
median gradient index, which remains at an elevated
value of 2.88.

4.3. Optimization and treatment times

Both treatment plan optimization times and
treatment times are affected by the inclusion of fOARs.
Without fOARs the median time for generating a
treatment plan is 0.45 minutes, or just under 30 seconds.
The inclusion of fOARs increases the median
optimization time for treatment plans to 5 minutes.
Notably, optimization times are mostly dependent on the
number and size of ROIs involved in the treatment
planning, and are thus mostly unaffected by the various
masking settings tested.

The median treatment time for patients when not
using fOARs is 28 minutes, but with the inclusion of
fOARs these times increase fourfold to 113 minutes.
Much of this increase can be attributed to the presence of

fMRI activation within and near the tumor mask, which
give rise to complex treatment plans. While the masking
of activations inside the tumors does not yield shorter
treatment plans, the inclusion of 2 and 4 mm masking
margins reduces median treatment times to 97 and 69
minutes, respectively.

4.4. Effects of spatial smoothing

Figure 4 presents a comparison of treatment plan
metrics for plans where fOARs were produced using
spatial filters of 4 mm and 6 mm FWHM. It should be
noted that 6 mm filters gave rise to substantially more
active voxels than 4 mm filters, with a median ratio of 3
(range 1.6 – 12.3). This is to be expected, as the use of
larger filters increases the detection power of the analysis,
but also introduces uncertainty over the exact location of
activations. Nevertheless, most treatment plan metrics
yield comparable results for both of the filter sizes tested,
particularly when not setting dose limits on fOARs.

When using fOARs, treatment quality metrics are
consistently slightly worse for 6 mm filters than for 4 mm
filters. Median target coverage and PCI are somewhat
reduced for the 6 mm case, while median gradient indices
are substantially higher than for 4 mm filters. These
differences become more pronounced for larger margin
sizes.

Comparison of tumor dose metrics is less
straightforward. While the median minimum dose is
slightly lower for 6 mm filters, the median maximum and
mean doses are larger only for the cases when masking or
margin are not used, while becoming lower than the ones
for 4 mm filters when a masking radius is used.

For both filter sizes, median treatment plan
optimization times when using fOARs are unaffected by
masking and margin settings, and are shorter for 4 mm
filters than for 6 mm filters, with medians of 4 and 6
minutes, respectively. Notably, median treatment times
from the plans generated using both filter sizes are not
substantially different.

4.5. Differences between subjects

Figure 5 presents individual treatment plan metrics
obtained for each subject, illustrating that while there
exists considerable variation in treatment plan quality at
a subject level, the overall trends are shared by all
subjects.

There is substantial subject-level variation in
treatment quality metrics and in the relative benefits of
applying masking and a margin on fOARs. For subjects
17904 and 19849, the inclusion of fOARs does not result
in a substantial worsening of treatment plan quality, and
masking bring quality metrics close to their values when
no fOARs are applied. Conversely, for subjects 18975 and
19015 the use of fOARs results in a considerable
reduction in treatment plan quality, and while masking
provides a moderate improvement, quality metrics do not
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Figure 4: Comparison of effects of different spatial smoothing filter sizes on metrics for treatment plans generated using different fOAR dose
constraints and masking settings. First plot row: tumor dose metrics. Second plot row: fOAR dose metrics. Third and fourth plot rows:
treatment plan metrics. The first column inside each plot (”No fOARs”) shows results when no dose limits are set for the fOARs, while the
remaining four columns represent the various masking settings employed. Dots and error bars represent the median and interquartile range
respectively. Plot data ranges are over subjects.
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Figure 5: Comparison of individual subject metrics for treatment plans generated using different fOAR dose constraints and masking settings.
First plot row: tumor dose metrics. Second plot row: fOAR dose metrics. Third and fourth plot rows: treatment plan metrics. The first
column inside each plot (”No fOARs”) shows results when no dose limits are set for the fOARs, while the remaining four columns represent
the various masking settings employed. Dots and error bars represent the median and interquartile range respectively. Plot data ranges are
over smoothing filter sizes.

10

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 14, 2022. ; https://doi.org/10.1101/2022.12.12.22283334doi: medRxiv preprint 

https://doi.org/10.1101/2022.12.12.22283334
http://creativecommons.org/licenses/by/4.0/


approach their values when fOARs are not used. Finally,
subject 18582 is of particular interest, as they experience
the greatest quality loss from the inclusion of fOARs,
with target coverage and PCI being reduced by 0.37 and
.38, respectively, yet disproportionately benefit from the
use of masking, with the same metrics increasing by 0.35
and 0.33, respectively, when a 4 mm margin is used.

Tumor doses for different masking settings vary
substantially across subjects. While subjects are
differently affected by hot and cold spots, the use of
masking and a margin around the tumor consistently
reduces their presence for all subjects. Median maximum
doses to fOARs for individual subjects can be as high as
13.6 Gy when dose constraints are not set, while the
overall maximum dose observed on fOARs was 18.5 Gy.
Nevertheless, setting dose constraints successfully limits
the dose delivered to fOARs to 4 Gy or lower for all
subjects.

Treatment plan optimization times show a strong
dependence on tumor size, with larger tumors generally
resulting in longer optimization times. Similarly,
treatment times are are generally higher for subjects with
larger tumors.

5. Discussion

Our results show that including fMRI-derived fOARs
in the treatment planning process successfully limits the
radiation dose incident on the eloquent brain regions,
while still resulting in clinically acceptable treatment
plans. In general, masking out the fOARs in a margin
around the tumor results in treatment treatment plan
metrics close to the ones obtained without including
fOARs. In terms of radiation, our results are in line with
previous work on using fOARs in treatment planning,
showing that the eloquent brain areas receive
substantially less radiation (Narayana et al., 2007;
Kovács et al., 2011; Wang et al., 2015; Liu et al., 2000;
Stancanello et al., 2007; Pantelis et al., 2010; Conti et al.,
2013; De Martin et al., 2017).

Using the proposed method, it would be possible to
incorporate fMRI-derived fOARs into the treatment
planning protocol without requiring a large additional
time investment. Collecting the fMRI data would require
an additional 5–20 minutes in the MR scanner,
depending on the number of tasks. While the
preprocessing for a single subject can take approximately
100 minutes, most of this time is spent on preprocessing
with fMRIPrep, and could be considerably reduced by
using a different software tool or implementing a custom
preprocessing pipeline.

From a user perspective, adding the fOARs in
GammaPlan takes 1–3 minutes, while the optimization
increases by 3–30 minutes, depending on the number and
size of the targets and fOARs. From a treatment
perspective, the treatment time increases from 20–60
minutes to 40-200 minutes, but this time can be

substantially reduced to 20–160 minutes by the inclusion
of a masking margin around the targets. In addition, the
use of cluster extent thresholding of the fMRI activation
maps, as well as stricter voxel-level thresholding, can
potentially reduce the number of brain activity clusters,
which would reduce the optimization and treatment
times. It should also be noted that the Lightning planner
can be tuned to reduce the treatment time, at the cost of
increasing the dose outside the target.

5.1. Effects on patient quality of life

It is difficult to assess how using fOARs would affect
the quality of life for the patients, as it would require a
clinical study with and without fOARs in the treatment
planning. Nevertheless, radiation induced damage to the
healthy brain and its eloquent structures is a well-known
and feared risk. Sequelae such as motor dysfunction,
cognitive impairment, loss of hearing or vision, cranial
nerve dysfunction or hypopituitarism all have a negative
impact on patients. These unwanted side-effects are
therefore sought to be avoided as far as reasonably
possible while still maintaining sufficient treatment levels
of radiation to the target tissue (Lambrecht et al., 2018).
In this work we show that treatment dose of target tissue
can be maintained with a reduced dose of radiation to
vulnerable areas in the vicinity of the tumor, which
should be beneficial to the patients treated.

5.2. Limitations

Preprocessing and statistical analysis of fMRI data
presents a large number of degrees of freedom (Carp,
2012b,a). A non-exhaustive list of these includes the
specific preprocessing steps performed (e.g., head motion
correction, co-registration, denoising, slice timing
correction, distortion correction), the specific methods
use for each of these, the statistical methods used (e.g.,
voxel-level inference vs. cluster extent inference, Bayesian
models, etc.). It would be very interesting to investigate
how different preprocessing settings, and different
statistical analyses, affect the generated treatment plans,
but GammaPlan requires that each treatment plan is
generated and exported manually. It is therefore not
possible for us to make use any scripting tools to perform
a large number of analyses by looping through different
subjects and a large number of different settings. For this
reason, we have limited the number of presented analyses
in this paper. Without this limitation we could present
results from many different settings for preprocessing and
statistical analysis.

There is a degree of uncertainty inherent in the
activation maps produced by fMRI. Activations
frequently appear in regions other than expected from
the task being performed, and may be disregarded.
Furthermore, there is individual variability in the
number, size, and location of activations (Bennett &
Miller, 2010), which can exacerbated by patient
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pathologies (Silva et al., 2018). For these reasons,
activation maps should be examined and thresholded by
experienced neuroradiologists. This will however increase
the planning time.

Stancanello et al. (2007) refer to two sources of error
in their procedure for generating fOARs from fMRI. The
first is the threshold set by expert neuroradiologists to
determine the location and extent of cortical activations.
The second is the cumulative spatial imprecision
resulting from chaining multiple registration steps. To
this we must add that the data we used lacked any means
for correcting susceptibility-based distortion. Although
distortion correction without fieldmaps (Esteban et al.,
2019) has been shown to produce better result than no
distortion correction, it is an experimental methodology,
and fieldmap-based correction would have been preferred.
In our case the registration between the fMRI data and
the T1w volume will therefore not be perfect.

Our work was carried out on a dataset where
structural MRI was acquired without gadolinium
contrast, making it more difficult to clearly delineate
tumor boundaries. However, as this work is a
proof-of-concept where no actual patients were treated,
the precise delineation of tumor borders is not essential.

5.3. Experiences with GammaPlan

In our initial experiments with GammaPlan, each full
activation map was treated as a single ROI, despite being
composed of multiple unconnected components (clusters),
as the RTSTRUCT format imposes no constraints on
ROIs having to be single connected components.
However, since GammaPlan implicitly creates a single
connected volume as a triangulated mesh based on all
contours belonging to the same ROI, such combined
ROIs gave way to surface artifacts in the form of spurious
connections and self-intersections. Instead, it is necessary
to treat each individual connected component of the
activation maps as a separate ROI, which was done in all
reported experiments. However, this dramatically
increases the number of ROIs that need to be managed
in GammaPlan (up to anywhere from several dozen to
almost two hundred in our case). This can be
inconvenient, as for each ROI it is necessary to specify its
type, i.e. target or region of avoidance, with its
corresponding target or maximum dose, respectively.
While the ROI type can be specified in the DICOM
metadata before loading them into GammaPlan, the dose
settings have to be set manually by the GammaPlan
operator for each ROI.

Although treating each activation cluster as a single
ROI removed most artifacts in GammaPlan, there were
some remaining problems in approximately half of the 50
generated treatment plans. The imported 2D contours
for fOARs look correct in the axial plane, but self
intersections are visible in the coronal and sagittal
planes. The 3D surface generated from these contours,
used by the optimizer for dose calculations, occasionally

intersects the tumor mask, resulting in incomplete target
coverage and suboptimal treatment plans. This problem
was present even in cases where fOARs where masked
out within a radius around the tumor targets, which
should preclude any overlap between fOARs and the
tumor mask. As an independent validation of our
workflow, we imported the same DICOM and
RTSTRUCT files into the 3D Slicer software3, and
observed that these problems were not present. The fact
that the surface reconstruction in GammaPlan causes
intersections between some fOARs and the tumor masks
results in impaired treatment plans, and we believe that
some of the reported treatment metrics would be further
improved without this problem.

5.4. Clinical usage of fMRI in SRS

At Linköping University hospital, fMRI is part of the
clinical protocol for brain tumor resection surgery in
relevant cases, but not for SRS. There are at least two
reasons why fMRI is not commonly used to generate
fOARs for SRS. Firstly, automatic inverse planners have
only recently become available for Gamma Knife SRS
planning. To manually create 50 treatment plans while
considering 80–180 fOARs for each would be
prohibitively time-consuming. Secondly, creating a
pipeline that analyzes the fMRI data and generates
RTSTRUCT files was a non-trivial task. For instance,
the conversion of data from NIfTI to DICOM format is
substantially more involved than the opposite conversion.
RTSTRUCT and DICOM are rather complex file
formats, whereas neuroimaging researchers are mostly
used to the simpler NIfTI file format. Our hope is that
this work will increase the use of fOARs in SRS, and that
our shared code can help other researchers and clinicians
who want to continue our work.

One factor that could simplify the incorporation of
fMRI data into clinical tumor treatment protocols is the
adoption of DICOM Segmentation objects as a potential
data format for the definition of dose optimization
constraints. DICOM Segmentation objects provide a
means for associating binary or fractional classification
volumes to reference DICOM images, which makes them
ideally suited for storing brain activation maps in their
native form, obviating the need for the cumbersome
conversion step of activation maps into collections of
contours required when using DICOM RT Structure Sets.
Furthermore, the capacity to represent both binary and
fractional classification volumes would allow them to
store both thresholded and unthresholded activity maps,
respectively. While DICOM RT Structure Sets are well
suited for representing manual organ delineations,
DICOM Segmentation objects are a better fit for
representing the output of MRI processing pipelines and
machine-generated organ delineations.

3https://www.slicer.org
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6. Conclusion

Reducing the amount of gamma radiation incident on
the eloquent regions of the brain can help minimize the
risk of neurological complications after SRS, and improve
the quality of life of patients. Task-based fMRI provides
a way for localizing these regions. We have demonstrated
that fMRI-derived fOARs can be incorporated into
Gamma Knife SRS treatment planning to minimize the
radiation dose incident on the eloquent regions of the
brain, while maintaining acceptable treatment quality
metrics. Although we have focused on task-based fMRI,
similar pipelines can be set up to generate OARs from
other MRI modalities, such as resting state fMRI and
diffusion MRI, with the goal of reducing the radiation
incident on specific brain networks and fiber tracts,
respectively.
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Appendix A. fMRIPrep preprocessing

The exact function call used for fMRIPrep was
fmriprep --random-seed 100 --skull-strip-t1w

auto --output-spaces T1w --use-syn-sdc

--fs-no-reconall --fs-license-file /license.txt

/data /out participant.
Following is the detailed description of the

preprocessing steps carried out by fMRIPrep. This
description was itself automatically generated by
fMRIPrep:

Results included in this manuscript come from
preprocessing performed using fMRIPrep 21.0.0 (Esteban
et al., 2019, 2018, RRID:SCR 016216), which is based on
Nipype 1.6.1 (Gorgolewski et al., 2011, 2018,
RRID:SCR 002502).

Appendix A.1. Anatomical data preprocessing

A total of 1 T1-weighted (T1w) images were found
within the input BIDS dataset. The T1-weighted (T1w)
image was corrected for intensity non-uniformity (INU)
with N4BiasFieldCorrection (Tustison et al., 2010),
distributed with ANTs 2.3.3 (Avants et al., 2008,
RRID:SCR 004757), and used as T1w-reference
throughout the workflow. The T1w-reference was then
skull-stripped with a Nipype implementation of the
antsBrainExtraction.sh workflow (from ANTs), using
OASIS30ANTs as target template. Brain tissue
segmentation of cerebrospinal fluid (CSF), white-matter
(WM) and gray-matter (GM) was performed on the
brain-extracted T1w using fast (FSL 6.0.5.1:57b01774,
RRID:SCR 002823, Zhang et al., 2001). Volume-based
spatial normalization to one standard space
(MNI152NLin2009cAsym) was performed through
nonlinear registration with antsRegistration (ANTs
2.3.3), using brain-extracted versions of both T1w
reference and the T1w template. The following template
was selected for spatial normalization: ICBM 152
Nonlinear Asymmetrical template version 2009c (Fonov
et al., 2009, RRID:SCR 008796; TemplateFlow ID:
MNI152NLin2009cAsym).

Appendix A.2. Preprocessing of B0 inhomogeneity
mappings

A total of 1 fieldmaps were found available within the
input BIDS structure for this particular subject. A
deformation field to correct for susceptibility distortions
was estimated based on fMRIPrep’s fieldmap-less
approach. The deformation field is that resulting from
co-registering the EPI reference to the same-subject
T1w-reference with its intensity inverted (Wang et al.,
2017; Huntenburg, 2014). Registration is performed with
antsRegistration (ANTs 2.3.3), and the process
regularized by constraining deformation to be nonzero
only along the phase-encoding direction, and modulated
with an average fieldmap template (Treiber et al., 2016).

Appendix A.3. Functional data preprocessing

For each of the 2 BOLD runs found per subject
(across all tasks and sessions), the following
preprocessing was performed. First, a reference volume
and its skull-stripped version were generated using a
custom methodology of fMRIPrep. Head-motion
parameters with respect to the BOLD reference
(transformation matrices, and six corresponding rotation
and translation parameters) are estimated before any
spatiotemporal filtering using mcflirt (FSL
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6.0.5.1:57b01774, Jenkinson et al., 2002). The estimated
fieldmap was then aligned with rigid-registration to the
target EPI (echo-planar imaging) reference run. The field
coefficients were mapped on to the reference EPI using
the transform. The BOLD reference was then
co-registered to the T1w reference using mri coreg

(FreeSurfer) followed by flirt (FSL 6.0.5.1:57b01774,
Jenkinson & Smith, 2001) with the boundary-based
registration (Greve & Fischl, 2009) cost-function.
Co-registration was configured with six degrees of
freedom. Several confounding time-series were calculated
based on the preprocessed BOLD : framewise
displacement (FD), DVARS and three region-wise global
signals. FD was computed using two formulations
following Power (absolute sum of relative motions, Power
et al. (2014)) and Jenkinson (relative root mean square
displacement between affines, Jenkinson et al. (2002)).
FD and DVARS are calculated for each functional run,
both using their implementations in Nipype (following
the definitions by Power et al., 2014). The three global
signals are extracted within the CSF, the WM, and the
whole-brain masks. Additionally, a set of physiological
regressors were extracted to allow for component-based
noise correction (CompCor, Behzadi et al., 2007).
Principal components are estimated after high-pass
filtering the preprocessed BOLD time-series (using a
discrete cosine filter with 128s cut-off) for the two
CompCor variants: temporal (tCompCor) and
anatomical (aCompCor). tCompCor components are
then calculated from the top 2% variable voxels within
the brain mask. For aCompCor, three probabilistic
masks (CSF, WM and combined CSF+WM) are
generated in anatomical space. The implementation
differs from that of Behzadi et al. in that instead of
eroding the masks by 2 pixels on BOLD space, the
aCompCor masks are subtracted a mask of pixels that
likely contain a volume fraction of GM. This mask is
obtained by thresholding the corresponding partial
volume map at 0.05, and it ensures components are not
extracted from voxels containing a minimal fraction of
GM. Finally, these masks are resampled into BOLD
space and binarized by thresholding at 0.99 (as in the
original implementation). Components are also
calculated separately within the WM and CSF masks.
For each CompCor decomposition, the k components
with the largest singular values are retained, such that
the retained components’ time series are sufficient to
explain 50 percent of variance across the nuisance mask
(CSF, WM, combined, or temporal). The remaining
components are dropped from consideration. The
head-motion estimates calculated in the correction step
were also placed within the corresponding confounds file.
The confound time series derived from head motion
estimates and global signals were expanded with the
inclusion of temporal derivatives and quadratic terms for
each (Satterthwaite et al., 2013). Frames that exceeded a
threshold of 0.5 mm FD or 1.5 standardised DVARS were

annotated as motion outliers. All resamplings can be
performed with a single interpolation step by composing
all the pertinent transformations (i.e. head-motion
transform matrices, susceptibility distortion correction
when available, and co-registrations to anatomical and
output spaces). Gridded (volumetric) resamplings were
performed using antsApplyTransforms (ANTs),
configured with Lanczos interpolation to minimize the
smoothing effects of other kernels (Lanczos, 1964).
Non-gridded (surface) resamplings were performed using
mri vol2surf (FreeSurfer).

Many internal operations of fMRIPrep use Nilearn
0.8.1 (Abraham et al., 2014, RRID:SCR 001362), mostly
within the functional processing workflow. For more
details of the pipeline, see the section corresponding to
workflows in fMRIPrep’s documentation.
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