It is made available under a CC-BY-NC-ND 4.0 International license .

1	Lower Omega-3 Status Associated with Higher Erythrocyte Distribution Width and Neutrophil-
2	Lymphocyte Ratio in UK Biobank Cohort
3	Michael I. McBurney ¹⁻³ , Nathan L. Tintle ^{1,4} , William S. Harris ^{1,5}
4	¹ Fatty Acid Research Institute, Sioux Falls, SD 57106, USA (MIM, NLT, WSH); ² Department of Human
5	Health and Nutritional Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada (MIM), ³ Division of
6	Biochemical and Molecular Biology, Friedman School of Nutrition Science and Policy, Tufts University,
7	Boston, MA 02111, USA (MIM); 4 Department of Population Health Nursing Science, College of Nursing,
8	University of Illinois – Chicago, Chicago, IL 60612, USA(NLT); ⁵ Sanford School of Medicine, University of
9	South Dakota, Sioux Falls, SD 57105, USA (WSH).
10	Authors last names: McBurney, Tintle, Harris
11	Corresponding author: M.I. McBurney, Fatty Acid Research Institute, Sioux Falls, SD 57106, USA. E-mail:
12	mim@faresinst.com
13	Reprint requests: W.S. Harris, Fatty Acid Research Institute, Sioux Falls, SD 57106, USA. E-mail:
14	wsh@faresinst.com
15	Sources of Support: This work was supported by the Fatty Acid Research Institute (FARI). FARI is a non-
16	profit foundation bringing together nutrition scientists and biostatistical experts to accelerate discovery
17	of the relationships between fatty acids, especially omega-3 fatty acids, and health. Analytic code will be
18	made available upon request to the Fatty Acid Research Institute (<u>https://www.faresinst.org/</u>).
19	Running Title: Omega-3 Fatty Acids and Hematological Indices
20	Abbreviations: BMI, body mass index; CRP, high-sensitivity C-reactive protein; DHA, docosahexaenoic
21	acid; eO31, estimated omega-3 index; EPA, eicosapentaenoic acid; Hb, hemoglobin; Omega3%, total
22	omega-3 fatty acid; NLR, neutrophil-lymphocyte ratio; O3I, omega-3 index; NMR, nuclear magnetic
23	resonance; RDW, red blood cell distribution width.
27	

It is made available under a CC-BY-NC-ND 4.0 International license .

25 Abstract

26	High red blood distribution width (RDW) is associated with decreased red blood cell deformability, and
27	high neutrophil-lymphocyte ratio (NLR) is a biomarker of systemic inflammation and innate-adaptive
28	immune system imbalance. Both RDW and NLR are predictors of chronic disease risk and mortality.
29	Omega-3 index (O3I) values have previously been shown to be inversely associated with RDW and NLR
30	levels. Our objective was to determine if total plasma long chain omega-3 fatty acids (Omega3%)
31	measured in the UK Biobank cohort were associated with RDW and NLR values. RDW- and NLR-
32	relationships with Omega3% were characterized in 109,191 adults (58.4% female). RDW- and NLR-
33	Omega3% relationships were inversely associated with Omega3% (both p<0.0001). These cross-sectional
34	associations confirm previous findings that increasing RDW and NLR values are associated with low O3I.
35	The hypothesis that RDW and/or NLR values can be reduced in individuals with less-than optimal long
36	chain omega 3 values need to be tested in randomized controlled intervention trials using EPA and/or
37	DHA.
38	
39	Keywords: erythrocytes, neutrophil-lymphocyte ratio, red blood cell distribution width, long chain

40 omega-3 fatty acids.

It is made available under a CC-BY-NC-ND 4.0 International license .

42 Introduction

43	A complete blood count is a routine component of medical exams that provides comprehensive
44	hematologic information. Using standardized reference ranges, healthy individuals can be distinguished
45	from those with nutrient deficiencies, infections, tissue damage, and inflammation. In addition to basic
46	information provided by hemoglobin, hematocrit, and platelet and white blood cell counts, the red
47	blood cell distribution width (RDW) is routinely used to diagnose anemias [1] and may be useful to
48	assess overall wellness [2]. Another metric, the neutrophil-to-lymphocyte ratio (NLR), a measure of
49	innate-adaptive immune balance, is used to monitor inflammation and immunity [3–6]. Risk of non-
50	communicable disease and mortality has been associated with elevated RDW (Table 1) and NLR values
51	(Table 2).
52	The long-chain omega-3 fatty acid (Omega3%) composition of all cell membranes (including blood
53	cells) affects physicochemical properties such as fluidity, membrane protein function, signaling cascades,
54	overall cell function and ultimately, host physiology [7–9]. The EPA DHA content of RBC membranes, i.e.,
55	the Omega-3 Index (O3I) [10], reflects long-term dietary omega-3 intake [11] and the EPA+DHA
56	composition of major organs [12]. Optimal O3I levels for cardiovascular health appear to be >8% [13].
57	O3I is predictive of risk of total mortality in individuals without prevalent cardiovascular disease [14] and
58	associated with mortality risk before and after adjustment for individual n-6 fatty acids, whether in
59	aggregate, by carbon-chain groups, or individually [15]. A harmonized, de novo analysis of over 42,000
60	individuals prospectively followed for over 16 years, with over 15,000 deaths observed, found risk for
61	total mortality was 15-18% lower in the highest vs lowest quintile for long chain omega-3 fatty acids and
62	similar relationships were observed for death from cardiovascular disease and cancer [16]. Increased
63	dietary long chain omega-3 fatty acid intake increases red blood cell deformability [17–20], and frequent
64	fish consumption is associated with lower NLR [21].

It is made available under a CC-BY-NC-ND 4.0 International license .

65 In previous studies using a clinical US laboratory database, a low O3I was inversely associated with

66 RDW [22] and NLR [23]. The present study aims to confirm reported RDW and NLR relationships with

67 Omega3% in a large and well-characterized cohort from the UK.

68 Methods

69 Sample:

The UK Biobank is a prospective, population-based cohort of 502,639 individuals, aged 40-69y,
recruited between April 2007 and December 2010 [24,25]. Total long chain omega-3 fatty acids

72 (Omega3%) and DHA (DHA%) were measured in plasma as a percent of total fatty acids by nuclear

73 magnetic resonance (NMR, Nightingale Health Plc, Helsinki, Finland) [26] at enrollment. Within the

cohort, 117,351 adults ≥18y had data available for Omega3% and DHA%, and 109,191 also had complete

75 data on RDW, neutrophil count, lymphocyte count, NLR, age, sex, body mass index (BMI), high-

sensitivity C-reactive protein (CRP), and hemoglobin (Hb) (Figure 1). Since O3I was not measured in the

77 UK Biobank, the O3I was calculated from Omega3% using the method of Schuchardt et al [27]. UK

78 Biobank has ethical approval (Ref. 11/NW/0382) from the Northwest Multi-centre Research Ethics

79 Committee as a Research Tissue Bank (RTB). All participants gave electronic signed informed consent.

80 The UK Biobank study was conducted according to the guidelines laid down in the Declaration of

81 Helsinki. The UK Biobank protocol is available online (<u>http://www.ukbiobank.ac.uk/wp114</u>

82 <u>content/uploads/2011/11/UK-Biobank-Protocol.pdf</u>). The University of South Dakota Institutional

83 Review Board reviewed and approved the use of de-identified data for research purposes (IRB-21-147).

84 Statistical methods

85 Sample characteristics are summarized using standard statistical methods (e.g., means, SDs,

86 correlations) with t-tests. Unadjusted linear models (Model 1) were used to predict RDW and NLR values

by cubic splines of Omega3% and DHA%. Model 2 adjusted for sex, age, BMI, CRP and Hb values for

It is made available under a CC-BY-NC-ND 4.0 International license .

- 88 RDW and for sex, age, BMI, and CRP for NLR. Pearson correlations were used to assess the strength and
- 89 direction of linear association between covariates and RDW or NLR. Statistical significance was set to
- 90 0.05 for all analyses and 95% confidence bands are provided where appropriate.
- 91
- 92 Results
- 93 Dietary determinants of Omega3% status have been published for the UK Biobank cohort [27].

94 Thirty-one percent of participants reported using fish oil supplements, and fatty fish were consumed by

- 95 56% of the cohort, factors contributing to a mean Omega3% of 4.42% (**Table 3**) and O3I = 5.59% [27]. In
- 96 this cohort of 109,191 individuals, the correlation between Omega3% and DHA% was r=0.88. Because
- 97 Omega3% and DHA% were so highly correlated, only the Omega3% results for Model 1 are presented in
- 98 the main text, with results for DHA% located in **Supplemental Figure 1**. Model 2 results for RDW- and
- 99 NLR-relationships with Omega3% and DHA% are also located in Supplemental Figures 2 and 3,
- 100 respectively.
- 101 RDW was significantly (p<0.0001) and inversely associated with Omega3% (Figure 2A). Adjustments
- 102 for age, sex, BMI, CRP and Hb (Model 2) did not significantly change the R² nor the shape of the
- 103 relationship (Supplemental Figure 2). Excluding 3,698 individuals with anemia (mean cell volume >100fL
- and/or Hb <13g/dL for males and Hb <12g/dL for females) as done by [22], did not significantly change
- 105 the R² for the RDW-Omega3% (data not presented).
- NLR was significantly (p<0.0001) and inversely associated with Omega3% (Figure 3A). Adjustments
 for age, sex, BMI and CRP (Model 2) did not significantly change the R² nor the shape of the relationship
 (Supplemental Figure 2). Excluding 24,559 individuals with evidence of inflammation, i.e., CRP >3 mg/L,
 as done by [23], did not significantly change NLR-Omega3% (data not presented).
- 110
- 111

It is made available under a CC-BY-NC-ND 4.0 International license .

112 Discussion

135

113	In this study examining the UK Biobank cohort, we confirm previously reported inverse associations
114	of long chain omega-3 fatty acid concentrations with RDW [22] (Figure 2) and NLR [23] (Figure 3). The
115	average estimated O3I of 5.59% in the UK Biobank cohort [27] is similar to that (~5.0%) reported in
116	healthy individuals globally [28,29]. The average RDW in the UK Biobank cohort (13.5%) is similar to
117	values (12.6-12.9%) reported in adults living in the US [30], including those free of cardiovascular disease
118	(NHANES 1994-2004) [31] and without clinical evidence of anemia or inflammation [22]. The UK Biobank
119	average NLR (2.36±1.20, Table 3) is similar to the ~2.2 of the US population [3,6] and a healthy cohort
120	without evidence of anemia or inflammation [23].
121	Elevated RDW levels predict risk for several adverse health outcomes including death (Table 1). In
122	four studies of apparently healthy, free-living individuals, the highest RDW category (Cn; top 20-25% of
123	individuals) has an average HR=1.17 (vs C1) (Table 4) . Thus, the observed distribution of mean RDW
124	values across values of the Omega3% (13.85-13.40=0.45 units) (Figure 2A) corresponds to a HR = 1.06 or
125	a 6% increased risk of all-cause mortality associated with Omega3% when moving from the highest to
126	lowest observed Omega3% values.
127	An elevated NLR has been associated with increased risk of cardiovascular events, lower respiratory
128	disease, influenza, cancer, and mortality (Table 2). In two studies of free living, apparently healthy
129	individuals, the average HR for mortality in the highest NLR category (Cn; top 20-25% of individuals) vs
130	the lowest (C1) NLR (Table 5) was 1.43. As shown in Figure 3, there was a 0.7 difference in the mean NLR
131	(1.7 to 2.4) across the observed Omega3% range (Figure 3A), which is equivalent to a HR = 1.24 or a 24%
132	increased risk of all-cause mortality associated with Omega3% when moving from the highest to lowest
133	observed Omega3% values.
134	The primary strengths of this study are the large sample of free-living individuals and that blood

samples for RDW, NLR, and Omega3% measurements were taken at the same time. Consistent with

It is made available under a CC-BY-NC-ND 4.0 International license .

136	previous studies (Figures 2B and 3A) [22,23], monotonic inverse relationships were observed with long-
137	chain omega-3 concentrations (Figures 2A and 3A). The higher RDW and NLR values observed in the UK
138	Biobank cohort may reflect a higher prevalence of inflammation (UKBB mean CRP= 2.60 ± 4.40 mg/L vs
139	Health Diagnostic Laboratory mean CRP=1.23 \pm 0.77 mg/L) and differences in age (UKBB mean age
140	=57.1 \pm 8.08 y vs Health Diagnostic Laboratory mean = 54.3 \pm 14.8 y). Among the limitations are the
141	unavailability of data on levels of other n-3 fatty acids ($lpha$ -linolenic acid, EPA, and n-3 docosapentaenoic
142	acid) and the potential for other unmeasured (or unconsidered) covariates that might have contributed
143	to the observed associations. The major weakness of this and previous studies [22,23] is their cross-
144	sectional natures which do not provide evidence of causality.
145	In conclusion, significant inverse relationships with RDW- and NLR- were identified with Omega3%
146	and DHA%. These observations in the UK Biobank cohort using a different analytical method, i.e. NMR,
147	confirm previously reported RDW- and NLR relationships with O3I, i.e. EPA+DHA [22,23]. We propose
148	that low Omega3% may indicate a state that is less resilient and/or more predisposed to disease. We
149	cautiously suggest that RDW- and NLR- relationships with Omega3% are clinically relevant and highly
150	recommend that randomized controlled intervention trials using EPA and/or DHA be conducted to
151	determine their effects on RDW and/or NLR values, particularly in individuals with less-than optimal long
152	chain omega 3 values at baseline.
153	
154	CRediT authorship contribution statement: Michael I. McBurney: Conceptualization, Writing – original
155	draft, Writing – review & editing. Nathan L. Tintle: Formal analysis, Writing -reviewing & editing.
156	William S. Harris: Conceptualization, Funding acquisition, Writing – review & editing.
157	

Disclosures: M.I. McBurney has or has held consulting agreements in the past 3 years with the Council
 for Responsible Nutrition; Church & Dwight; DSM Nutritional Products; International Life Sciences

It is made available under a CC-BY-NC-ND 4.0 International license .

- 160 Institute, North America; McCormick; PepsiCo; Smartech Topicals; and VitaMe Technologies. W.S. Harris
- 161 holds an interest in OmegaQuant Analytics, a lab that offers omega-3 blood testing; and is a member of
- 162 the RB Schiff Science and Innovation Advisory Board. N.L. Tintle has no conflicts to disclose.

163

It is made available under a CC-BY-NC-ND 4.0 International license .

165 **Citations**

- 166 [1] J.D. Bessman, P.R. Gilmer, F.H. Gardner, Improved Classification of Anemias by MCV and RDW, Am
- 167 J Clin Pathol. 80 (1983) 322–326. https://doi.org/10.1093/ajcp/80.3.322.
- 168 [2] L.C. Pilling, J.L. Atkins, M.O. Duff, R.N. Beaumont, S.E. Jones, J. Tyrrell, C.-L. Kuo, K.S. Ruth, M.A.
- 169 Tuke, H. Yaghootkar, A.R. Wood, A. Murray, M.N. Weedon, L.W. Harries, G.A. Kuchel, L. Ferrucci,
- 170 T.M. Frayling, D. Melzer, Red blood cell distribution width: Genetic evidence for aging pathways in
- 171 116,666 volunteers, PLoS ONE. 12 (2017) e0185083.
- 172 https://doi.org/10.1371/journal.pone.0185083.
- 173 [3] B. Azab, M. Camacho-Rivera, E. Taioli, Average Values and Racial Differences of Neutrophil
- 174 Lymphocyte Ratio among a Nationally Representative Sample of United States Subjects, PLoS ONE.
- 175 9 (2014) e112361. https://doi.org/10.1371/journal.pone.0112361.
- 176 [4] J. Li, Q. Chen, X. Luo, J. Hong, K. Pan, X. Lin, X. Liu, L. Zhou, H. Wang, Y. Xu, H. Li, C. Duan,
- 177 Neutrophil-to-lymphocyte ratio positively correlates to age in healthy population, J. Clin. Lab. Anal.
- 178 29 (2015) 437–443. https://doi.org/10.1002/jcla.21791.
- 179 [5] A.M. Paul, S.D. Mhatre, E. Cekanaviciute, A.-S. Schreurs, C.G.T. Tahimic, R.K. Globus, S. Anand, B.E.
- 180 Crucian, S. Bhattacharya, Neutrophil-to-lymphocyte ratio: A biomarker to monitor the immune
- 181 status of astronauts, Front. Immunol. 11 (2020) 564950.
- 182 https://doi.org/10.3389/fimmu.2020.564950.
- 183 [6] M. Song, B.I. Graubard, C.S. Rabkin, E.A. Engels, Neutrophil-to-lymphocyte ratio and mortality in
- the United States general population, Nature Res. 11 (2021) 464. https://doi.org/10.1038/s41598020-79431-7.
- 186 [7] T. Huber, K. Rajamoorthi, V.F. Kurze, K. Beyer, M.F. Brown, Structure of Docosahexaenoic Acid-
- 187 Containing Phospholipid Bilayers as Studied by 2H NMR and Molecular Dynamics Simulations, J.
- 188 Am. Chem. Soc. 124 (2002) 298–309. https://doi.org/10.1021/ja011383j.

It is made available under a CC-BY-NC-ND 4.0 International license .

- 189 [8] H.F. Turk, R.S. Chapkin, Membrane lipid raft organization is uniquely modified by n-3
- 190 polyunsaturated fatty acids, PLEFA. 88 (2013) 43–47.
- 191 [9] P.C. Calder, Marine omega-3 fatty acids and inflammatory processes: Effects, mechanisms and
- 192 clinical relevance, Bioch. Biophys. Acta: Mol Cell Biol Lipids. 1851 (2015) 469–484.
- 193 https://doi.org/10.1016/j.bbalip.2014.08.010.
- 194 [10] W.S. Harris, C. von Schacky, The Omega-3 Index: a new risk factor for death from coronary heart
- 195 disease?, Prev. Med. 39 (2004) 212–220. https://doi.org/10.1016/j.ypmed.2004.02.030.
- 196 [11] K.H. Jackson, J.M. Polreis, N.L. Tintle, P.M. Kris-Etherton, W.S. Harris, Association of reported fish
- 197 intake and supplementation status with the omega-3 index, Prostaglandins, Leukotrienes and
- 198 Essential Fatty Acids. 142 (2019) 4–10. https://doi.org/10.1016/j.plefa.2019.01.002.
- 199 [12] J.I. Fenton, E.A. Gurzell, E.A. Davidson, W.S. Harris, Red blood cell PUFAs reflect the phospholipid
- 200 PUFA composition of major organs, Prostaglandins, Leukotrienes and Essential Fatty Acids. 112
- 201 (2016) 12–23. https://doi.org/10.1016/j.plefa.2016.06.004.
- 202 [13] W.S. Harris, The Omega-3 Index: Clinical Utility for Therapeutic Intervention, Curr Cardiol Rep. 12
- 203 (2010) 503–508. https://doi.org/10.1007/s11886-010-0141-6.
- 204 [14] M.I. McBurney, N.L. Tintle, R.S. Vasan, A. Sala-Vila, W.S. Harris, Using an erythrocyte fatty acid
- fingerprint to predict risk of all-cause mortality: the Framingham Offspring Cohort, The American
 Journal of Clinical Nutrition. (2021) ngab195. https://doi.org/10.1093/ajcn/ngab195.

207 [15] W. Harris, N. Tintle, V. Ramachandran, Erythrocyte n-6 fatty acids and risk for cardiovascular

- 208 outcomes and total mortality in the Framingham Heart Study, Nutrients. 10 (2018) 2012.
- 209 https://doi.org/10.3390/nu10122012.
- 210 [16] W.S. Harris, N.L. Tintle, F. Imamura, F. Qian, A.V. Ardisson Korat, M. Marklund, L. Djoussé, J.K.
- Bassett, P.-H. Carmichael, Y.-Y. Chen, Y. Hirakawa, L.K. Kupers, M. Lankinen, R.A. Murphy, C.
- 212 Samieri, M.K. Senn, P. Shi, J.K. Virtanen, I.A. Brouwer, K.-L. Chien, G. Eiriksdottir, N.G. Forouhi, J.M.

- 213 Geleijnse, G.G. Giles, V. Gudnason, C. Helmer, A. Hodge, R. Jackson, K.-T. Khaw, M. Laakso, H. Lai,
- D. Laurin, J. Lindsay, R. Micha, J. Mursu, T. Ninomiya, W. Post, B.M. Psaty, U. Riserus, J.G.
- 215 Robinson, A.H. Shadyab, L. Snetselaar, A. Sala-Vila, Y. Sun, L.M. Steffen, M.Y. Tsai, N.J. Wareham,
- A.C. Wood, J.H.Y. Wu, F. Hu, Q. Sun, D.S. Siscovick, R.N. Lemaitre, D. Mozaffarian, F. The Fatty
- Acids and Outcomes Research Consortium, Blood n-3 fatty acid levels and total and cause-specific
- 218 mortality from 17 prospective studies, Nature Commun. 12 (2021) 1–9.
- 219 https://doi.org/10.1038/s41467-021-22370-2.
- 220 [17] T. Terano, A. Hirai, T. Hamazaki, S. Kobayashi, T. Fujita, Y. Tamura, A. Kumagai, Effect of oral
- administration of highly purified eicosapentaenoic acid on platelet function, blood viscosity and
- red cell deformability in healthy human subjects, Atherosclerosis. 46 (1983) 321–331.
- [18] I.J. Cartwright, A.G. Pockley, J.H. Galloway, M. Greaves, F.E. Preston, The effects of dietary omega-
- 3 polyunsaturated fatty acids on erythrocyte membrane phospholipids, erythrocyte deformability
 and blood viscosity in healthy volunteers, Atherosclerosis. 55 (1985) 267–281.
- 226 [19] R. Bach, U. Schmidt, F. Jung, H. Kiesewetter, B. Hennen, E. Wenzel, H. Schieffer, L. Bette, S.
- 227 Heyden, Effects of Fish Oil Capsules in Two Dosages on Blood Pressure, Platelet Functions,
- Haemorheological and Clinical Chemistry Parameters in Apparently Healthy Subjects, Ann Nutr
- 229 Metab. 33 (1989) 359–367. https://doi.org/10.1159/000177559.
- [20] E. Hessel, J.J. Agren, M. Paulitschke, O. Hanninen, A. Hanninen, D. Lerche, Freshwater fish diet
- affects lipid composition, deformability and aggregation properties of erythrocytes,
- 232 Atherosclerosis. 82 (1990) 37–42.
- [21] S. Tani, R. Matsuo, W. Atsumi, K. Kawauchi, T. Ashida, T. Yagi, K. Imatake, Y. Suzuki, A. Takahashi,
- 234 N. Matsumoto, Y. Okumura, Higher frequency of fish intake may be associated with a lower
- neutrophil/lymphocyte ratio: Anti-atherosclerotic effects of fish consumption, Ann Nutr Metab.
- 236 (2021) 1–8. https://doi.org/10.1159/000515915.

It is made available under a CC-BY-NC-ND 4.0 International license .

- [22] M.I. McBurney, N.L. Tintle, W.S. Harris, Omega-3 index is directly associated with a healthy red
- blood cell distribution width, Prostaglandins, Leukotrienes and Essential Fatty Acids. 176 (2022)
- 239 102376. https://doi.org/10.1016/j.plefa.2021.102376.
- [23] M.I. McBurney, N.L. Tintle, W.S. Harris, The omega-3 index is inversely associated with the
- neutrophil-lymphocyte ratio in adults', Prostaglandins, Leukotrienes and Essential Fatty Acids. 177
- 242 (2022) 102397. https://doi.org/10.1016/j.plefa.2022.102397.
- [24] C. Sudlow, J. Gallacher, N. Allen, V. Beral, P. Burton, J. Danesh, P. Downey, P. Elliott, J. Green, M.
- Landray, B. Liu, P. Matthews, G. Ong, J. Pell, A. Silman, A. Young, T. Sprosen, T. Peakman, R. Collins,
- 245 UK Biobank: An open access resource for identifying the causes of a wide range of complex
- diseases of middle and old age, PLoS Med. 12 (2015) e1001779.
- 247 https://doi.org/10.1371/journal.pmed.1001779.
- 248 [25] H. Julkunen, A. Cichońska, P.E. Slagboom, P. Würtz, Nightingale Health UK Biobank Initiative,
- 249 Metabolic biomarker profiling for identification of susceptibility to severe pneumonia and COVID-
- 250 19 in the general population, ELife. 10 (2021) e63033. https://doi.org/10.7554/eLife.63033.
- 251 [26] P. Wurtz, J.R. Raiko, C.G. Magnussen, P. Soininen, A.J. Kangas, T. Tynkkynen, R. Thomson, R.
- 252 Laatikainen, M.J. Savolainen, J. Laurikka, P. Kuukasjarvi, M. Tarkka, P.J. Karhunen, A. Jula, J.S.
- 253 Viikari, M. Kahonen, T. Lehtimaki, M. Juonala, M. Ala-Korpela, O.T. Raitakari, High-throughput
- 254 quantification of circulating metabolites improves prediction of subclinical atherosclerosis,

255 European Heart Journal. 33 (2012) 2307–2316. https://doi.org/10.1093/eurheartj/ehs020.

- [27] J.P. Schuchardt, N. Tintle, J. Westra, W.S. Harris, Estimation and predictors of the Omega-3 Index in
 the UK Biobank, Br J Nutr. (2022) 1–40. https://doi.org/10.1017/S0007114522003282.
- 258 [28] J.P. Schuchardt, M. Cerrato, M. Ceseri, L.F. DeFina, G.E. Delgado, S. Gellert, A. Hahn, B.V. Howard,
- A. Kadota, M.E. Kleber, R. Latini, W. Maerz, J.E. Manson, S. Mora, Y. Park, A. Sala-Vila, C. von
- 260 Schacky, A. Sekikawa, N. Tintle, K.L. Tucker, R.S. Vasan, W.S. Harris, Red blood cell fatty acid

- 261 patterns from 7 countries: Focus on the Omega-3 index, Prostaglandins, Leukotrienes and Essential
- 262 Fatty Acids. 179 (2022) 102418. https://doi.org/10.1016/j.plefa.2022.102418.
- 263 [29] K.D. Stark, M.E. Van Elswyk, M.R. Higgins, C.A. Weatherford, N. Salem, Global survey of the omega-
- 264 3 fatty acids, docosahexaenoic acid and eicosapentaenoic acid in the blood stream of healthy
- adults, Prog. Lipid Res. 63 (2016) 132–152. https://doi.org/10.1016/j.plipres.2016.05.001.
- 266 [30] J.M. Crook, A.L. Horgas, S.L. Yoon, O. Grundmann, V. Johnson-Mallard, Vitamin C Plasma Levels
- Associated with Inflammatory Biomarkers, CRP and RDW: Results from the NHANES 2003–2006
- 268 Surveys, Nutrients. 14 (2022) 1254. https://doi.org/10.3390/nu14061254.
- 269 [31] V. Veeranna, S.K. Zalawadiya, S. Panaich, K.V. Patel, L. Afonso, Comparative analysis of red cell
- 270 distribution width and high sensitivity C-reactive protein for coronary heart disease mortality
- 271 prediction in multi-ethnic population: Findings from the 1999–2004 NHANES, Int. J. Cardiol. 168
- 272 (2013) 5156–5161. https://doi.org/10.1016/j.ijcard.2013.07.109.
- [32] Q. Li, X. Chen, B. Han, Red blood cell distribution width is associated with frailty in older inpatients
- in China: Sex differences in a cross-sectional study, Experimental Gerontology. 150 (2021) 111392.
- 275 https://doi.org/10.1016/j.exger.2021.111392.
- [33] E.M. Hald, M.-L. Løchen, J. Lappegård, T.S. Ellingsen, E.B. Mathiesen, T. Wilsgaard, I. Njølstad, S.K.
- 277 Brækkan, J.-B. Hansen, Red Cell Distribution Width and Risk of Atrial Fibrillation and Subsequent
- 278 Thromboembolism: The Tromsø Study, TH Open. 04 (2020) e280–e287. https://doi.org/10.1055/s-
- 0040-1716417.
- 280 [34] H.-M. Yao, T.-W. Sun, X.-J. Zhang, D.-L. Shen, Y.-Y. Du, Y.-D. Wan, J.-Y. Zhang, L. Li, L.-S. Zhao, Red
- 281 blood cell distribution width and long-term outcome in patients undergoing percutaneous
- coronary intervention in the drug-eluting stenting era: A two-year cohort study, PLoS ONE. 9
- 283 (2014) e94887. https://doi.org/10.1371/journal.pone.0094887.

- 284 [35] T. Osadnik, J. Strzelczyk, M. Hawranek, A. Lekston, J. Wasilewski, A. Kurek, A.R. Gutowski, K.
- 285 Wilczek, K. Dyrbuś, M. Gierlotka, A. Wiczkowski, M. Gąsior, A. Szafranek, L. Poloński, Red cell
- distribution width is associated with long-term prognosis in patients with stable coronary artery
- 287 disease, BMC Cardiovasc Disord. 13 (2013) 113. https://doi.org/10.1186/1471-2261-13-113.
- [36] S.K. Zalawadiya, V. Veeranna, S.S. Panaich, L. Afonso, J.K. Ghali, Gender and Ethnic Differences in
- 289 Red Cell Distribution Width and Its Association With Mortality Among Low Risk Healthy United
- 290 State Adults, The American Journal of Cardiology. 109 (2012) 1664–1670.
- 291 https://doi.org/10.1016/j.amjcard.2012.01.396.
- [37] S.K. Zalawadiya, V. Veeranna, S.S. Panaich, L. Afonso, Red cell distribution width and risk of
- 293 peripheral artery disease: Analysis of National Health and Nutrition Examination Survey 1999–
- 294 2004, Vasc Med. 17 (2012) 155–163. https://doi.org/10.1177/1358863X12442443.
- [38] T.S. Perlstein, J. Weuve, M.A. Pfeffer, J.A. Beckman, Red blood cell distribution width and mortality
- risk in a community-based prospective cohort, Arch Intern Med. 169 (2009) 588.
- 297 https://doi.org/10.1001/archinternmed.2009.55.
- 298 [39] K.V. Patel, L. Ferrucci, W.B. Ershler, D.L. Longo, J.M. Guralnik, Red blood cell distribution width and
- the risk of death in middle-aged and older adults, Arch Intern Med. 169 (2009) 515.
- 300 https://doi.org/10.1001/archinternmed.2009.11.
- 301 [40] J. Guo, H. Zhang, Y. Li, M. Hao, G. Shi, J. Wang, Z. Wang, X. Wang, Neutrophil-lymphocyte ratio as a
- 302 predictor of slow gait speed in older adults: The Rugao Longitudinal Aging Study, Experimental
- 303 Gerontology. 152 (2021) 111439. https://doi.org/10.1016/j.exger.2021.111439.
- 304 [41] N.H. Adamstein, J.G. MacFadyen, L.M. Rose, R.J. Glynn, A.K. Dey, P. Libby, I.A. Tabas, N.N. Mehta,
- 305 P.M. Ridker, The neutrophil–lymphocyte ratio and incident atherosclerotic events: analyses from
- five contemporary randomized trials, European Heart Journal. 42 (2021) 896–903.
- 307 https://doi.org/10.1093/eurheartj/ehaa1034.

It is made available under a CC-BY-NC-ND 4.0 International license .

308 42 H. Wada, T. Doni, K. Miyauchi, R. Nishio, M. Takeuchi, N. Takanashi, H. Endo,), IVI. Ugita, H.	Iwata, I
--	-------------------	----------

- 309 Kasai, S. Okazaki, K. Isoda, S. Suwa, H. Daida, Neutrophil to lymphocyte ratio and long-term
- 310 cardiovascular outcomes in coronary artery disease patients with low high-sensitivity C-reactive

311 protein level, Int. Heart J. 61 (2020) 447–453. https://doi.org/10.1536/ihj.19-543.

- 312 [43] J.-H. Liu, Y.-J. Zhang, Q.-H. Ma, H.-P. Sun, Y. Xu, C.-W. Pan, Elevated blood neutrophil to
- 313 lymphocyte ratio in older adults with cognitive impairment, Archives of Gerontology and
- 314 Geriatrics. 88 (2020) 104041. https://doi.org/10.1016/j.archger.2020.104041.
- 315 [44] J. Fest, T.R. Ruiter, B. Groot Koerkamp, D. Rizopoulos, M.A. Ikram, C.H.J. van Eijck, B.H. Stricker,
- 316 The neutrophil-to-lymphocyte ratio is associated with mortality in the general population: The
- 317 Rotterdam Study, Eur J Epidemiol. 34 (2019) 463–470. https://doi.org/10.1007/s10654-018-0472-
- 318 y.
- 319 [45] B. Suh, D.W. Shin, H.-M. Kwon, J.M. Yun, H.-K. Yang, E. Ahn, H. Lee, J.H. Park, B. Cho, Elevated
- neutrophil to lymphocyte ratio and ischemic stroke risk in generally healthy adults, PLoS ONE. 12
- 321 (2017) e0183706. https://doi.org/10.1371/journal.pone.0183706.
- 322
- 323

						Quantile of RDW					
Outcome	Population	Study	n	1	2	3	4	5	OR or HR (95% Cl)	p-value	Citati
Frailty	Hospitalized men, ≥60y	Comprehensive tertiary hospital in mainland China	334	≤12.6%	12.6-13.1%	13.1-13.7%	>13.7%		OR=1.14 (1.05-1.24)	0.002	[32
Frailty	Hospitalized women, ≥60y	Comprehensive tertiary hospital in mainland China	285	≤12.6%	12.6-13.1%	13.1-13.7%	>13.7%		OR=1.27 (1.16-1.38)	<0.001	[32
Incident atrial fibrillation (AF)	Adults ≥25y	inhabitants of Tromso, Norway	26,111	<12.3%	12.4-12.7%	12.8-13.2%	≥13.3%		HR=1.08 (1.03-1.12)	Not reported	t is mad
Venous thromboembolism	Adults with AF ≥25y	inhabitants of Tromso, Norway	1,812	<12.7%	12-8-13.3%	>13.3%			HR=1.09 (0.83-1.41)	Not reported	de ≌vail
Ischemic stroke	Adults with AF ≥25y	inhabitants of Tromso, Norway	1,812	<12.7%	12.8-13.3%	>13.3%			HR=1.18 (1.03-1.34)	Not reported	ab <u>te</u> ur
In-hospital mortality	Patients without anemia who underwent percutaneous coronary intervention (PCI)	Affiliated hospital of Zhengzhou University, China	2,169	<12.27%	12.27-≤13.0%	>13-<13.5%	≥13.5%		HR=1.4 (1.23-1.59)	0.000	nder a CCBY-NC-NE
All-cause mortality	Patients with stable coronary artery disease undergoing stent implantation	Silesian Centre for Heart Diseases, Poland	2,033	<13.1%	13.1-<13.6%	13.6-<14.1%	≥14.1%		HR=1.23 (1.13-1.35)	<0.0001	0 4.0 International
All deaths, men	Adults ≥20y without diabetes or CV	NHANES 1988- 1994, USA	7,201	≤12.4%	>12.4-≤12.9%	>12.9- ≤13.5%	>13.5%		HR=1.21 (1.18-1.25)	<0.001	lice 13e .
All deaths, women	Adults ≥20y without diabetes or previous CV	NHANES 1988- 1994, USA	8,259	≤12.4%	>12.4-≤12.9%	>12.9- ≤13.5%	>13.5%		HR=1.19 (1.14-1.24)	<0.001	[36
All CV deaths, men	Adults ≥20y without diabetes or previous CV	NHANES 1988- 1994, USA	7,201	≤12.4%	>12.4-≤12.9%	>12.9- ≤13.5%	>13.5%		HR=1.19 (1.14-1.25)	<0.001	[36
All CV deaths, women	Adults ≥20y without diabetes or previous CV	NHANES 1988- 1994, USA	8,259	≤12.4%	>12.4-≤12.9%	>12.9- ≤13.5%	>13.5%		HR=1.19 (1.12-1.26)	<0.001	[36

Coronary heart disease (CHD) deaths, men	Adults ≥20y without diabetes or previous CV	NHANES 1988- 1994, USA	7,201	≤12.4%	>12.4-≤12.9%	>12.9- ≤13.5%	>13.5%		HR=1.20 (1.12-1.28)	<0.001	[36]prepri
CHD deaths, women	Adults ≥20y without diabetes or previous CV	NHANES 1988- 1994, USA	8,259	≤12.4%	>12.4-≤12.9%	>12.9- ≤13.5%	>13.5%		HR=1.20 (1.11-1.29)	<0.001	[36]
Peripheral artery disease	Adults ≥40y	NHANES 1999- 2004, USA	6,950	<12.2%	12.3-12.5%	12.6-13.1%	>13.1%		HR=1.23 (1.14-1.33)	<0.001	[37]
All-cause mortality	Adults ≥40y	NHANES 1988- 1994, USA	15,852	<12.35%	12.5-12.65%	12.8-13.15%	13.2-13.75%	≥13.80%	HR=1.27 (1.21-1.33)	<0.001	[38]
CV mortality	Adults ≥40y	NHANES 1988- 1994, USA	15,852	<12.35%	12.5-12.65%	12.8-13.15%	13.2-13.75%	≥13.80%	HR=1.26 (1.19-1.33)	<0.001	[38] <mark>ed</mark>
Cancer mortality	Adults ≥40y	NHANES 1988- 1994, USA	15,582	<12.35%	12.5-12.65%	12.8-13.15%	13.2-13.75%	≥13.80%	HR=1.30 (1.22-1.39)	<0.001	t ister n
Chronic lower respiratory tract disease mortality	Adults ≥40y	NHANES 1988- 1994, USA	15,582	<12.35%	12.5-12.65%	12.8-13.15%	13.2-13.75%	≥13.80%	HR=1.36 (1.29-1.51)	0.03	eview) is t 80 de a <u>M</u> ailab
All-cause mortality	Adults ≥45y	NHANES 1988- 1994, USA	8,175	<12.55%	12.55- 12.95%	13.0-13.4%	13.45-14.05%	>14.05%	HR=1.22 (1.15-1.30)	<0.001	he auth
											or/funder, who has granted medRxiv a licens r a CC-BY-NC-ND 4.0 International license .

Table 2. Odds Ratio (OR) or Hazards Ratio (HR) per increase in neutrophil-lymphocyte ratio (NLR) with respect to clinical outcome.

Outcome	Population	Study				Quantiles	of NLR					
Outcome			n	1	2	3	4	5	6	OR or HR	p-value	Citation
Slow gait	Adults ≥70y	Rugao Longitudinal Aging Study, China	1,753	≤1.29	>1.29- ≤1.79	>1.79- ≤2.36	>2.36			OR ¹ =2.73 (1.60- 4.68)	<0.001	[40]
All-cause mortality	Adults ≥30y	NHANES 1999-2014, USA	32,454	<1.54	1.54-2.00	2.01-2.67	>2.67			HR ² =1.14 (1.10- 1.17)	<0.0001	[6]
Heart disease mortality	Adults ≥30y	NHANES 1999-2014, USA	900	<1.54	1.54-2.00	2.01-2.67	>2.67			HR ² =1.17 (1.06- 1.29)	0.002	[6]
Chronic lower respiratory disease mortality	Adults ≥30y	NHANES 1999-2014, USA	197	<1.54	1.54-2.00	2.01-2.67	>2.67			HR ² =1.24 (1.04- 1.47)	0.02	[6]
Influenza/pneumonia mortality	Adults ≥30y	NHANES 1999-2014, USA	82	<1.54	1.54-2.00	2.01-2.67	>2.67			HR ² =1.26 (1.03- 1.54)	0.03	[6]
Kidney disease mortality	Adults ≥30y	NHANES 1999-2014, USA	89	<1.54	1.54-2.00	2.01-2.67	>2.67			HR ² =1.62 (1.21- 2.17)	0.001	[6]
All-cause mortality in individuals with prior myocardial infarction (MI), CANTOS	Adults with prior myocardial infarction (MI) and CRP ≥2mg/L	Canakinumab Thrombosis Outcomes Study (CANTOS)	10,061	≤1.81	1.81-≤2.36	2.37-≤3.08	>3.08			HR ² = 1.36 (1.30- 1.46)	<0.0001	[41]
Cardiovascular (CV) death, CANTOS	Adults with prior myocardial infarction (MI) and CRP ≥2mg/L	Canakinumab Thrombosis Outcomes Study (CANTOS)	10,061	≤1.81	1.81-≤2.36	2.37-≤3.08	>3.08			1.36 ² (1.27- 1.46)	<0.0001	[41]
Major adverse cardiovascular event (MACE): non-fatal	Adults with prior myocardial	Canakinumab Thrombosis Outcomes	10,061	≤1.81	1.81-≤2.36	2.37-≤3.08	>3.08			HR ² =1.22 (1.16- 1.28)	<0.0001	[41]

MI, non-fatal stroke or CV death	infarction (MI) and CRP ≥2mg/L	Study (CANTOS)								
MACE + hospitalization of unstable angina requiring urgent revascularization (MACE+)	Adults with prior myocardial infarction (MI) and CRP ≥2mg/L	Canakinumab Thrombosis Outcomes Study (CANTOS)	10,061	≤1.81	1.81-≤2.36	2.37-≤3.08	>3.08	HR ² = 1.20 (1.14- 1.25)	<0.0001	[41]
MACE+	Healthy patients with LDL-C <130mg/dL and CRP ≥2mg/L	Justification for the Use of Statins in Prevention: An Intervention Trial Evaluating Rosuvastatin (JUPITER)	17,802	≤1.58	1.58-≤2.10	2.10-≤2.75	>2.75	HR ² =1.11 (1.01- 1.22)	0.03	[41]
MACE+	Patients with prior CV event and LDL-C ≥70mg/dL	PCSK9 Inhibition and the Reduction of Vascular Events (SPIRE- 1)	16,819	≤1.72	1.72-≤2.24	2.24-≤2.93	>2.93	HR ² =1.31 (1.14- 1.49)	0.00007	[41]
MACE+	Patients with prior CV event and LDL-C ≥100mg/dL	PCSK9 Inhibition and the Reduction of Vascular Events (SPIRE- 2)	10,621	≤1.67	1.67-≤2.16	2.16-≤2.83	>2.83	HR ² =1.27 (1.12- 1.43)	0.0002	[41]
MACE+	Patients with previous MI or multi-vessel coronary disease and either type 2 diabetes or metabolic syndrome	Cardiovascular Inflammation Reduction Trial (CIRT)	4,768	≤1.73	1.73-≤2.27	2.27-≤2.96	>2.96	HR ² =1.09 (1.00- 1.20)	0.045	[41]

medRxiv preprint doi: https://doi.org/10.1101/2022.12.09.22283290; this version posted December 13, 2022. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC-ND 4.0 International license .

CV events: CV death, non-fatal MI, and non-fatal stroke	Patients with coroanry artery disease who underwent elective percutaneous coronary intervention (PCI)	Juntendo University Hospital, Japan	1,951	<1.5	1.5-1.9	1.9-2.5	≥2.5			HR ¹ =1.85 (1.19- 2.88)	0.007	[42]
Cognitive impairment	Adults ≥60y, community dwelling	Weitang Geriatric Diseases Study, China	4,579	<1.535	1.535- 2.022	2.023- 2.641	>2.641			HR ³ =1.11 (1.03- 1.20)	0.02	[43]
All-cause mortality	Adults ≥45y, community dwelling	Rotterdam Study, The Netherlands	8,715	<1.30	1.30-1.59	1.60-1.91	1.92- 2.41	>2.41		HR ⁴ =1.64 (1.44- 1.86)	<0.001	[44]
Ischemic stroke	Adults, 30-75y, undergoing general health screening	Seoul National University Hospital, Korea	24,708	<1.5	1.5-<2.0	2.0-<2.5	2.5-<3.0	3.0- <3.5	>3.5	HR ⁴ =2.96 (1.57- 5.58)	<0.001	[45]
¹ per 1 unit increase in logNLR. ² Per category increase	e in NLR.			<u> </u>								

³ per SD increase in logNLR.

⁴ comparing highest

vs lowest quartile

It is made available under a CC-BY-INC-IND 4.0 International lic
--

Table 3. Variable distributions (Mean±SD) for entire UK Biobank cohort.							
Variable	All ¹	All ¹ Female					
n	101,191	59,113	50,078				
DHA, %	2.01±0.68	2.12±0.66	1.88±0.68 ³²⁹				
Omega3, %	4.42 (1.56)	4.6 (1.58)	4.21 (1.5)				
RDW %	13.49±0.98	13.32±1.05	13.45±0.89 ³³⁰				
NLR	2.36±1.20	2.26±1.09	2.48±1.31				
Neutrophil, 10 ³ /µL	4.22±1.42	4.19±1.40	4.26±1.45				
Lymphocyte, 10 ³ /µL	1.96±1.04	2.01±0.89	1.90±1.19 ₃₃₂				
Age, y	57.06±8.08	56.89±7.98	57.27±8.19				
BMI, kg/m ²	27.42±4.77	27.08±5.15	27.84±4.23333				
CRP, mg/L	2.60±4.40	2.69±4.33	2.49±4.49				
Deprivation Score ²	-1.33±3.09	-1.36±3.04	-1.29±3.14 ³³⁴				
Hb, g/dL	14.17±1.24	13.49±0.96	14.98±1.03				
¹ Based on self-identified social construct for race: 94.58% White, 0.57% Black, 1.91% Asian, and 2.94%							
Other. 336							

² With the exception of number (n), variable means are statistically different between females and males, p<0.0001. 337

338

Table 4. Mortality Hazard Ratio (HR) comparing the highest (top 20-25% of individuals) and lowest (bottom 20-25% of individuals) categories in red blood cell distribution width (RDW) in apparently healthy, free-living individuals.

Outcome	Population	Study	n	RDW (%) Cn-C1 ¹	HR (95% Cl)	p-value	Citation
Coronary heart disease (CHD) deaths, men	Adults ≥20y without diabetes or previous CV	NHANES 1988- 1994, USA	7,201	1.10	1.19 (1.16- 1.22)	<0.001	[36]
CHD deaths, women	Adults ≥20y without diabetes or previous CV	NHANES 1988- 1994, USA	8,259	1.10	1.17 (1.13, 1.22)	<0.001	[36]
All-cause mortality	Adults ≥40y	NHANES 1988- 1994, USA	15,852	1.45	1.18 (1.14, 1.22)	<0.001	[38]
All-cause mortality	Adults ≥45y	NHANES 1988- 1994, USA	8,175	1.50	1.14 (1.10, 1.19)	<0.001	[39]
Average				1.29	1.17		
¹ Highest category (Cn) minus lowest C1.							

It is made available under a CC-BY-NC-ND 4.0 International license .

340

Table 5. Mortality Hazards Ratio (HR) comparing the highest (top 20-25% of individuals) and lowest categories (bottom 20-25% of individuals) in neutrophil-lymphocyte ratio (NLR).								
Outcome	Population	Study	n	NLR Cn-C1 ¹	HR (95% CI)	p-value	Citation	
All-cause mortality	Adults ≥30y	NHANES 1999-2014, USA	32,454	1.4	1.30 (1.21, 1.41)	<0.0001	[6]	
All-cause mortality	Adults ≥45y, community dwelling	Rotterdam Study, The Netherlands	8,715	1.11	1.56 (1.39, 1.75)	<0.001	[44]	
Average				1.26	1.43			
¹ Highest category (Cn) minus lowest C1.								

341

342

Figure 1. Analytical sample flow chart. Hb, hemoglobin; NLR, neutrophil-lymphocyte ratio; RDW, red blood cell
distribution width; CRP, C-reactive protein.

345

Figure 2. A. Unadjusted red blood cell distribution width (RDW) relationship with omega-3 percentage

347 (Omega3%). Omega-3 Index (O3I) values calculated using the conversion equation [O3I = 1.2791*Omega3%+

348 1.0589 (R2=0.59; r=0.77)]. B. Unadjusted RDW relationship with the Omega-3 Index (O3I) adapted from

349 McBurney et al (22).

350

Figure 3. A. Unadjusted neutrophil-lymphocyte ratio (NLR) relationship with omega-3 percentage (Omega3%).

352 Omega-3 Index (O3I) values calculated using the conversion equation [O3I = 1.2791*Omega3%+ 1.0589

353 (R2=0.59; r=0.77)]. B. Unadjusted NLR relationship with the Omega-3 Index (O3I) adapted from McBurney et al

354 (23).

