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Exploring the use of synthetic placebo populations in ALS randomized 

clinical trials 

Objectives: The use of synthetic data to supplement clinical trial placebo groups 

or for trial planning is rapidly gaining interest. However, there is not yet an 

established framework for generating synthetic data for these purposes. In this 

work we test two approaches to generating synthetic placebo arms for ALS trials 

with survival being the primary outcome variable.   

Methods: For the first approach, we extracted sample subsets from the UK MND 

register (n = 308) using an evolutionary algorithm such that the subset baseline 

variables matched a target trials group, either people enrolled in LiCALS  (n = 

106) or people included in the PRO-ACT database  (n = 171). We also applied 

trial specific exclusion criteria where possible or alternatively we applied a 

custom ‘time filter’. For the second approach, survival was predicted for LiCALS 

participants using the ENCALS model. Survival probabilities from each method 

were compared to real placebo participants using Kaplan-Meier analysis and the 

log rank test. 

Results: We found that the synthetic placebo groups derived from the MND 

register matched the target trials outcomes very well. The ENCALS model 

produces synthetic placebo groups that are significantly different to the real 

placebo groups. However, when participants are censored at 6 month intervals, 

the ENCALS synthetic group matches the target group very well between 24 and 

48 months, indicating a possible timeframe that this method could be utilised. 

Conclusion: Both the register based approach and the ENCALS prognostic 

model  generated synthetic placebo groups that matched placebo groups from 

historical trials. These methods need to be validated in prospective trials. 

Keywords: trial recruitment, synthetic data, trial design, prognostic modelling, 

historical controls, amyotrophic lateral sclerosis  
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Introduction 

Randomised clinical trials are designed to ensure that observed differences in outcomes between 

groups are due to the treatment effect rather than unmeasured confounders. As such, they are the 

gold standard for assessing medical interventions [1]. In life-limiting diseases with no effective 

therapy and no viable proxy for the commonly used survival endpoint, this strategy raises 

ethical questions [2,3]. The use of a placebo means that a proportion of people will be denied a 

potentially life-saving treatment for the duration of the trial. Trial designs such as cross-over 

studies, where treatment arms are swapped after an interval, or designs in which everyone has 

active therapy after an interval, may mitigate the issue of withholding new treatments, but still 

mean that people are not taking a potential treatment for some considerable time [4,5].  

One example condition where such issues are clearly seen is amyotrophic lateral sclerosis 

(ALS), a fatal adult-onset neurodegenerative disease with a lifetime risk of about 1 in 300 [6]. 

ALS primarily affects motor neurons of the cortex, brainstem, and spinal cord, leading to a 

progressive weakness and ultimately death due to neuromuscular respiratory failure, typically 

within 2-3 years of onset [7].  Currently, only a few disease-modifying drugs, for example 

riluzole and edaravone, are approved for ALS, but they do not have a beneficial effect 

sufficiently large to be noticeable to the patient [8,9]. Use of placebo in an ALS clinical trial due 

to randomisation will certainly lead to permanent irreversible damage or even death, as this is 

the natural history of the disease. However, not using a placebo greatly complicates 

interpretation of trial results and the detection of adverse events so that life-saving treatments 

may not be licensed.  

One alternative to recruiting people into a placebo arm would be to use synthetic controls, 

obtained using historical control data from previous clinical trials [10] or real-world data from a 

disease register [11]. Alternatively, a validated prognostic model could be used to predict 

disease outcome in people recruited to a trial giving an expected disease trajectory (assuming no 

treatment) that can be compared to the real trajectory where the experimental treatment was 
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administered [12]. 

These approaches have value, but also potential drawbacks. Comparison of historical control 

data, from previous trials or registers could be biased by improvements in patient care over time 

and other non-measured confounders [13]. ALS trials usually recruit from specialist centres, 

where the patients tend to be younger and are more likely to be male than in the general ALS 

population [14,15,16].  Furthermore, the delay in referral and potential delay before screening 

and recruitment into trials means that the cohort recruited is likely to have longer survival than 

the population average, since the faster progressing patients will have died or become too ill to 

attend [17]. A related problem is that for a condition like ALS, where there may not be many 

trials available, the balance between prevalent and incident patients also plays a part in the bias: 

a pool of patients waiting for trials to become available builds up, but as time goes on, becomes 

enriched for longer survivors, which is not the case when there are multiple trials recruiting and 

newly diagnosed patients can be recruited. These differences between the general ALS 

population and the population recruited to trials means that clinical databases used to derive 

expected rates of recruitment, event calculations, and power analyses may well lead to 

inaccurate conclusions.  

Understanding and accurately modelling these biases would allow more accurate trial design, 

and dramatically reduce or possibly even abolish the need for a placebo arm. We therefore 

explored two strategies for such modelling, using ALS as an exemplar. The first uses real-world 

data to model those taking placebo in a trial, and the second uses a prognostic model. 

Methods 

Data 

Population level clinical data were extracted from the MND Register for England, Wales and 

Northern Ireland [18]. This MND Register is a population register set up in 2015. Data are 

collected by specialist tertiary centres, general neurology clinics, specialist nurses and palliative 
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care services and sent to a central repository for data cleaning and analysis. Data on people 

diagnosed between 01/01/2017 and 31/12/2018 were extracted from the database. 

Clinical trials data were obtained from the following sources: the Lithium Carbonate in 

amyotrophic lateral sclerosis trial (LiCALS) [19] and the Pooled Resource Open-Access ALS 

Clinical Trials (PROACT) database [20]. The LiCALS clinical trial was a phase 3, randomised, 

double blind, placebo-controlled trial of lithium in ALS, completed in 2012, and includes 107 

people randomized to lithium therapy, and 107 randomized to placebo. Survival was the 

primary endpoint. The PROACT database was established in 2014. It contains clinical data from 

16 trials from 1990 to 2010. The use of PROACT data as a historical control group was 

suggested at its initial publication and it has indeed been used in this way [21]. PROACT 

contains data for 8635 people with ALS, including treatment/placebo grouping, survival, 

ALSFRS, adverse events and demographics.  

We modelled the following variables: age of onset, age of diagnosis, gender, site of onset, dead 

or alive status at study end, survival (or time to censor date), El Escorial category, total score on 

the ALS Functional Rating Scale-Revised (ALSFRS-R), the presence of frontotemporal 

dementia, and genotype status for the C9orf72 expansion mutation. 

Approach 1 - Population register and historical control filtering and matching 

The combination of biased recruitment from specialist ALS clinics and stringent trial inclusion 

criteria means that trial participants have different clinical characteristics from the general ALS 

population. Additionally, the likelihood that a patient satisfies trial inclusion criteria is tightly 

linked to disease progression, as trials may not be able to accommodate patients at late stages of 

the disease.  

We developed two filter methods to mimic trial recruitment and applied them separately to the 

MND register data. We then used an evolutionary algorithm (EA) to select a subgroup from the 

filtered sets whose average baseline variables matched a real, target placebo group. We also 
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applied the EA to historical control data from PROACT, to test whether EA baseline matching 

can increase the similarity of a historical and more recent control group (LiCALS). We 

compared the survival of the resulting synthetic placebo groups with that of the real placebo 

groups using the Kaplan-Meier product limit distribution and the log rank test. 

Filter 1 – Stepwise Filter 

We filtered the population register to select only those who attended a specialist clinic and then 

applied trial selection criteria for LiCALS: age of onset 18 to 85 inclusive and disease duration 

from 6 months to 3 years. Sample size changes as the filters are applied, and so to account for 

this at the comparison stage, data were subset to match the smallest dataset. These datasets were 

subset multiple times and the mean results reported with standard deviation (SD).  

Filter 2 – Time filter 

A prevalent cohort of people living with ALS will have a median survival that increases with 

time since diagnosis, and will deviate from survival in an incident population. The reason for 

this is that those still alive at any arbitrary time since diagnosis are more likely to be those 

without poor prognostic factors. To simulate this effect, we assigned a random number 

representing diagnosis date to each patient in the register with a known disease duration. We 

used diagnostic delay and known survival duration to calculate the week in which a patient 

would die: 

Simulated date of death = random diagnosis date + observed disease duration - observed 

diagnostic delay 

At each week, we calculated the median survival duration of register participants who had been 

diagnosed but had not yet died. This simulation was run 20 times to give weekly averages and 

the results were compared to the total MND register median, which aggregates both living and 

dead participants over time. We expected that the weekly median survival rate would deviate 

from the total register median survival with time because of the proportions of prevalent and 
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incident patients; prevalent patients are selected for longer survival because those with short 

survival are removed from the pool. 

Only those patients alive at a trial’s recruitment date are eligible for selection for the trial, and 

this contributes to preferential recruitment of long survivors into trials. We therefore adapted the 

simulation to achieve biased recruitment of longer surviving patients on to a trial. For every 

week that a patient was diagnosed but had not yet passed a certain percentage of their disease 

progression (60% LiCALS, 50% PROACT), they had a 5% chance of being recruited into the 

synthetic placebo group. The recruitment chance and percentage progression parameters were 

obtained using exhaustive grid search. This probabilistic time-based approach was then used as 

an alternative to the stepwise filter method.  

Evolutionary algorithm  

A custom, evolutionary algorithm was applied to subgroups derived from either the stepwise or 

time filters to extract a group whose baseline variables matched the baseline variables of a 

targeted trial placebo group, remaining unblinded to treatment arm as would be the case in 

reality. We hypothesised that matching the distribution of baseline variables in the synthetic 

placebo group to the real, target group, would give a better match in the outcome variable.  

The EA starts with a population of randomly generated ‘agents’. These agents are ascribed a 

fitness level and the fittest agents ‘reproduce’ - to give a new generation. This is repeated over 

many iterations and the fitness of the population increases. This method can be used for 

numerical optimisation, where the fitness function is a function we want to maximise (or 

minimise) and the agents are possible solutions.  

An agent in our EA was a bit vector (a list of 1s and 0s) which indexes an input dataset, giving a 

subset. The fitness function is minimised by the EA and was defined as a linear sum of 

differences in the baseline variables. Fit bit vector pairs were mated by splitting them at 

multiple random positions and taking alternate sections from both parents to build up a new bit 
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vector offspring (Supplementary methods 1). As the algorithm iterates, fit agents (data subsets) 

whose baseline variables match the target become over-represented and we are left with a final 

population of data subsets whose baseline variables match the target very well. A more detailed 

breakdown of the algorithm is available in supplementary methods 1. Code for this EA can be 

found at:  https://github.com/harrybPHDcode/ALS_synthetic_trial_data  

The EA was applied to population data from the MND Register that had either undergone 

stepwise filtering or time filtering (Filters 1 and 2 above) with LiCALS means and proportions 

being the target. The EA was also applied to data from the PROACT clinical trials database to 

match placebo data from LiCALS. We called this approach ‘historical EA’.  

The evolutionary algorithm is stochastic, meaning the output differs based on the random 

generation of the initial population and the random recombination occurring in the reproduction 

phase. To account for the resulting variability, the EA was run 20 times and results concatenated 

together to give an average result. Variance between runs was reported. The EA output was the 

synthetic placebo group, whose survival was then compared to the real, target group survival 

using the log rank test.  

Approach 2) Predicting survival of trial participants using a prognostic model 

We used the baseline characteristics of trial participants to predict their survival at the trial 

endpoint using the ENCALS Prognostic Model, a probabilistic model of ALS survival that was 

developed and validated using population data on more than 11,000 people with ALS in Europe 

[22]. 

The ENCALS model requires age at motor symptom onset, months between onset to diagnosis, 

rate of ALSFRS-R point decline per month, site of onset of motor symptoms, El Escorial 

category at diagnosis, forced vital capacity at diagnosis, presence of frontotemporal dementia 

and whether someone carries a C9orf72 expansion mutation. It was assumed that people 

enrolled in trials did not have frank frontotemporal dementia as ALS trials usually exclude 
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people with this condition. Additionally, where people did not have C9orf72 expansion 

mutation status recorded, this was imputed using a binary distribution with a probability of 12% 

likelihood of having a C9orf72 mutation, based on frequencies of people with C9orf72 variants 

in familial and sporadic ALS populations similar to those used for modelling. 

The ENCALS model produces a set of individual survival probabilities corresponding to 

months from onset. To calculate survival probabilities at the group level using Kaplan-Meier 

analysis, for each individual we extracted a predicted survival time that corresponded with a 

survival probability randomly picked from a normal distribution with a mean of 0.5. In order to 

simulate data as it would occur throughout the course of a trial, values were truncated at 

different cut-off points. For example, to simulate a 12-month follow-up, observed or predicted 

survival greater than 12 months from trial inclusion would be categorised as censored at 12 

months. For each cut off point, Kaplan-Meier survival probabilities and the log rank test were 

calculated 200 times. The survival probabilities and standard error from each imputation were 

combined by Rubin’s rules after complementary log-log transformation. The combined survival 

probabilities and confidence intervals were visualised compared to the observed survival using 

Kaplan-Meier plots.  

Log rank tests were combined using a method for combination of multiply imputed Chi-squared 

tests. Data were analysed in R version 4.0.2 using the packages ‘survival’, ‘miceadds’ and 

‘ggplot2’.  

Results 

Stepwise filter EA and historical EA 

Use of stepwise filters with the population register increases cohort survival time and decreases 

the percentage of people with bulbar onset ALS. However, stepwise filters have no effect on sex 

balance, mean age of onset or mean age of diagnosis. After applying the evolutionary algorithm 

(EA) to this subgroup, the sex ratio was matched with those in the target dataset, and the mean 
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ages of onset and diagnosis dropped to a value closer to that seen in the LiCALS trial. The 

average results are shown in Table 1 and Figure 1. 

The survival curves for each step are plotted in Figure 1. Each step of the stepwise selection 

shifts the survival curve to the right towards the clinical trial population survival curves. Log 

rank tests were applied to compare survival at each step of the filtering process to the LiCALS 

target (Table 1). The test statistic decreases over the course of the stepwise selection process, 

showing that the difference between the synthetic placebo population variables and the target 

population variables reduces at each step.   

 

The EA was applied to the PROACT data to select a subset whose baseline variables better 

matched the LiCALS group (Table 1). For example, the PROACT mean age of onset is 55.54 

while for LiCALS it is 58.30. After application of the EA, the average resulting subset had a 

mean age of onset of 58.00. The survival of the twenty concatenated EA subsets matched the 

observed LiCALS placebo group survival very well (Figure 2). 

MND register over time 

A simulation method was developed to test the hypothesis that the aggregated data stored in the 

MND register reflects ALS patient demographics dependent on the mix of prevalent and 

incident patients in the register. Figure 3 shows how the sample survival duration changes over 

time (measured in weeks) as people with ALS join the register and die. Over time, the median 

survival duration of ALS patients deviates from the total MND register in the direction of the 

clinical trials placebo group medians, and this is very sensitive to the proportion of prevalent 

patients compared with incident patients. The median survival of the total register is higher than 

the median for the subset who have died, and as shown in Figure 3, increases with time more 

rapidly when the prevalent population is high compared with the incident population. 
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Time-based filter EA 

We repurposed the time simulation to preferentially select participants from the register with 

longer survival (time filter) as is seen in trial populations when a clinic has not opened a trial for 

some time and there is a waiting list of patients wanting to participate. The resulting subset can 

then be passed through the EA to give a final virtual placebo population. This method selects 

virtual placebo populations that are very similar to real trials populations in terms of survival 

(figure 4), but is highly dependent on the disease-duration cut-off, showing the importance of 

modelling waiting times when designing trials. 

Approach 2 - Prognostic model to predict survival of people in the treatment 

arm 

Using the ENCALS model to predict survival of people in the control arm of clinical trials 

provides comparable estimates for survival between 24 and 48 months from onset, as shown by 

log rank p-values of greater than 0.05 at these time periods (Table 3). While predicted survival 

overall is worse than observed survival (log rank p-value <0.001), the predicted survival 

matches observed populations more closely when the survival times are truncated, probably due 

to censoring longer survivors (Figure 5). 

Discussion 

In this study we have shown that there are differences in clinical features between people 

enrolled in ALS trials and those recorded in population databases. If synthetic placebo 

populations are to be used in trials, a method of accounting for these many biases is required. 

We have shown that it is possible to use filters and an evolutionary algorithm to match the 

demographics of people in a dataset collected at a population level to people in the active arm of 

a trial. Additionally, we have found that using a prognostic model to predict survival generates 

comparable estimates to people in the active arm of trials, within a two-year time-frame and one 

year after disease onset. Synthetic placebo data could be used at the start of a trial, given 

baseline parameters for the recruited participants we could select a matching subset using the 
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EA to estimate trial duration or for power analysis. At the end of a trial, with unblinded data, it 

would be possible to supplement the placebo group with synthetic data. 

The virtual placebo population selected by the evolutionary algorithm when applied to the 

PROACT data matched the newer LiCALS population slightly better than the raw PROACT 

population. The PROACT and LiCALS survival curves were already similar, so the EA may be 

redundant in this specific case, but it is encouraging that the EA improved the match, and future 

trials depending on historical controls will need to correct for inherent differences in 

populations over time.  

By simulating the median survival duration of register participants over time, we observe that 

the median survival of participants at a given time point is higher than the median of the total 

register, which is aggregated over time. We also observe a steep increase in median survival at 

the point when new participants stop being recruited to the register. This shows that, after 

having selected out a group of people with ALS, their median survival increases rapidly as the 

faster progressors die. This contributes to the over-representation of long-term survivors in ALS 

trials and needs to be accounted for in tools which generate synthetic trial data based on real 

world data. This change in median survival also impacts trial modelling, since the exact mix of 

prevalent and incident patients waiting for trial recruitment will not necessarily behave as 

expected from modelling in a population or clinic register. 

ALS trials recruit from both incident and prevalent cohorts in the sense that, as fast progressors 

are removed from the pool of potential participants, prevalent patients are favoured. Trial 

exclusion criteria also prevent people very far into their disease being recruited, tending towards 

an incident population. We were able to recreate this mixture of incident and prevalent ALS 

patients by preferentially selecting long-term survivors from the MND register, mimicking the 

bias in real trial recruitment. The evolutionary algorithm can be applied to match the baseline 

variables of a target clinical trials group and select a subgroup whose demographic 

characteristics and survival curves match. A disease progression cut-off is needed for effective 
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matching, because this correctly accounts for trial inclusion and exclusion criteria. For example, 

when modelling the LiCALS population, patients in the register more than 60% through their 

disease course were excluded by our algorithm. A necessary next step will be to develop a 

model that can automatically give the optimal cut-off parameter for a given trial, probably using 

factors such as trial exclusion criteria, time from recruitment to trial start, baseline participant 

characteristics and treatment method. There is room for improvement in the variable matching 

step for example, by inclusion of higher order moments or non-parametric density estimations 

in the fitness function or random mutations in the recombination step [23].   

A limitation of this work is that we have modelled survival time, but other outcomes, including 

functional scores, clinical stage changes, or biomarker levels may be more informative or 

required as the actual trial endpoint [24]. However, survival remains an important outcome, 

essential for licensing of ALS drugs, and allows us to demonstrate proof of concept of the 

various methods explored. Another limitation is that the models are based on general ALS 

populations. As more trials are run on people with specific genetic variants or other subgroups, 

the populations used to model survival will need to be tailored to these subtypes. Another 

potential limitation is that the MND register itself has not been tested for recruitment bias, 

though we expect it to be more representative than a trial cohort, it may not be fully 

representative of people living with ALS in the UK.  

Work on incorporating the ENCALS model into ALS trial planning and outcome has so far 

been focussed on characterising the prognostic profile of people with ALS enrolled in trials to 

refine the selection criteria and trial design [25]. As people with ALS enrolled in clinical trials 

tend to have a better prognosis than expected, power calculations based on survival of the 

general ALS population, without modifying the model as we have done, will incorrectly 

estimate the sample size required through overestimation of the number of expected events 

within the timeframe of the trial. The consequence of this is that trials need to be run for longer 

than expected or no difference will be shown between groups due to lack of power. For 

example, this observation has direct relevance to the recent Lighthouse clinical trial that used 
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the ENCALS model to model survival [26]. 

We assessed the use of the ENCALS model as an alternative to a placebo arm in a trial. We 

found that if artificial data cut-offs are used to censor predicted survival using the ENCALS 

model, the survival curves match, but not if this bias is unaccounted for. Use of prognostic 

models to predict survival of the active arm has been investigated in cancer research [27], 

however the survival time in these paradigms may be much longer and is modelling remission, 

which is not appropriate at this stage for ALS. When there are effective treatments for ALS, the 

nature of parameter modelling of the placebo arm will need to be altered to take the treatment 

effect into account. Similarly, prognostic models should be updated periodically to reflect 

changing patient characteristics. 

In conclusion we have shown that two different strategies can be used to create synthetic 

placebo populations: matching people from population registers and predicting non-treatment 

survival of people enrolled in trials. The results need to be replicated with new trial data, and 

software should be developed to aid trial design. 
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  Real-world data controls     Historical trial  controls 

 
LiCALS 

(target) 

Unfiltered 

ALS 

population  

Clinic 

attenders 

Trial eligible 

participants  

EA 

matched 

population   

Unfiltered 

PRO-ACT 

EA matched 

population  

Mean age of onset 58.30 65.18 65.76 65.08 58.17 55.54 58.00 

Mean age of diagnosis 59.20 66.24 64.70 66.23 59.26 56.46        58.82 

% male 66 56 58 55 64 58 66 

% bulbar onset 22 31 28 24 34  NA          NA 

Mean time to 

death/censor (months) 
34.09 27.49 28.12 29.06 29.45 38.18 36.61 

 

Table 1. Clinical variables for the MND register (starting population), Proact 

(starting population) and LiCALS (target population). 

This table contains results for the stepwise and historical evolutionary algorithm method 

for generating virtual placebo populations. For the stepwise EA, we start with 

population register and each step of the stepwise EA filter method is represented as a 

column. ‘Clinic attenders’ is the first filter step, followed by ‘Selected clinic attenders’ 

and finally ‘Evolutionary algorithm (stepwise)’. For the historical EA method, 

PROACT is the starting population and the output is ‘Evolutionary algorithm 

(historical)’. In both cases, the LiCALS population is the target dataset. 
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 Mean test stat ± SD 

Population register 2.02 ± 1.39 

Clinic attenders 0.71 ± 0.66 

Selected clinic attenders 0.36 

Evolutionary algorithm 0.28 ± 0.33 

 
 
 

Table 2. Results of Kaplan-Meier analysis of simulated vs observed populations 

The mean test statistic of log rank tests and standard deviations comparing the data 

subsets from each step of the stepwise EA filtering with the target (LiCALS).  
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Time(months) 12 18 24 30 36 42 48 54 60 

P value 0.045 0.012 0.718 0.738 0.717 0.422 0.113 0.043 0.025 

 

Table 3. Effects of data input truncation on mismatch of observed and predicted 

survival for LiCALS data 

This table shows p-values from log rank tests comparing the truncated predicted results 

to the observed LiCALS results, censoring at different time points. The optimal time 

points are those closely matching trial durations in the LiCALS and PROACT datasets. 
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Figure 1  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2  
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Figure 3 

 

 

 

 

 

 

Figure 4  

 

 

Figure 5 
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Figure captions: 

Figure 1. Kaplan Meier plot of Stepwise EA applied to LiCALS data 

Data subsets for each step of the stepwise EA algorithm are represented as a different 

colour survival curve. The starting population is the black curve, the target population is 

the green curve. Confidence intervals have been removed to improve readability. Log 

rank test results for each step are reported in Table 2.  

 

Figure 2. Kaplan Meier survival curve for PRO-ACT data, LiCALS data (the 

target population) and the simulated data using the EA  

The survival curves of PROACT (orange, the starting population), concat EA (blue, 

concatenated results from the EA) and Licals (green, target population). The log rank 

test statistic for PROACT and LiCALS is 0.6. The log rank test statistic for the EA 

result and LiCALS is 0.34.  

 

 

Figure 3. Changes in register median survival as a function of register age 

The blue line is the median survival duration for the sample of people with ALS who 

are currently in the register and are still alive, with standard deviation given by the 

shaded areas. The vertical, dashed black line marks the last week that a person joins the 

register. Left: one new patient joins the register per week. Right: two new patient joins 

the register every week. 

 

Figure 4. Survival curves given by the evolutionary time algorithm  

Both panels show the target placebo group, the original register group and the synthetic 

placebo population. The left panel shows the results of the EA-time algorithm targeted 

to LiCALS, the right shows the EA-time result targeted to PROACT.   

 

Figure 5. Kaplan-Meier survival curves of predicted vs observed survival using the 

ENCALS prognostic model 

Left panel: LiCALS clinical trial, right panel: truncated input dataset, which gives 

closer match to real clinical trials data.  

 

 

 

 

 

All rights reserved. No reuse allowed without permission. 
perpetuity. 

preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in 
The copyright holder for thisthis version posted December 13, 2022. ; https://doi.org/10.1101/2022.12.09.22283281doi: medRxiv preprint 

https://doi.org/10.1101/2022.12.09.22283281

	Introduction
	Methods
	Data
	Approach 1 - Population register and historical control filtering and matching
	Filter 1 – Stepwise Filter
	Filter 2 – Time filter
	Evolutionary algorithm

	Approach 2) Predicting survival of trial participants using a prognostic model

	Results
	Stepwise filter EA and historical EA
	MND register over time
	Time-based filter EA
	Approach 2 - Prognostic model to predict survival of people in the treatment arm

	Discussion
	References


