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Abstract

The spread of SARS-CoV-2 has been studied at unprecedented levels worldwide. In jurisdictions
where molecular analysis was performed on large scales, the emergence and competition of numer-
ous SARS-CoV-2 lineages has been observed in near real-time. Lineage identification, traditionally
performed from clinical samples, can also be determined by sampling wastewater from sewersheds
serving populations of interest. Of particular interest are variants of concern (VOCs), SARS-CoV-
2 lineages that are associated with increased transmissibility and/or severity. Here, we consider
clinical and wastewater data sources to retrospectively assess the emergence and spread of different
VOCs in Canada. We show that, overall, wastewater-based VOC identification provides similar in-
sights to the surveillance based on clinical samples. Based on clinical data, we observed a synchrony
in VOC introduction as well as similar emergence speeds across most Canadian provinces despite
the large geographical size of the country and differences in provincial public health measures. In
particular, it took approximately four months for VOC Alpha and Delta to contribute to half of
the incidence, whereas VOC Omicron achieved the same contribution in less than one month. By
quantifying the timing and rapidity of SARS-CoV-2 VOCs invasion in Canada, this study provides
important benchmarks to support preparedness for future VOCs, and to some extent, for future
pandemics caused by other pathogens.

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.


https://doi.org/10.1101/2022.12.09.22283256
http://creativecommons.org/licenses/by-nd/4.0/

medRxiv preprint doi: https://doi.org/10.1101/2022.12.09.22283256; this version posted December 13, 2022. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in

Champredon et al. perpelliFmergence of SARS-CoV-2 VOCs in Canada

It is made available under a CC-BY jcéns

1 Introduction

Unprecedented clinical, genomic, and environmental surveillance applied to manage the
on-going coronavirus disease 2019 (COVID-19) pandemic has allowed the scientific com-
munity to observe the emergence and spread of multiple lineages of severe acute respi-
ratory syndrome coronavirus 2 (SARS-CoV-2). A consequence of the global prevalence
of COVID-19 has been the emergence of SARS-CoV-2 variants, which have been closely
monitored due to the acquisition of mutations that confer increased transmissibility or
increased evasion of immune response functions [1, 2, 3, 4]. Variants associated with par-
ticularly high transmission and/or severity are designated “Variants of Concern” (VOC)
by the World Health Organization and some have managed to propagate rapidly on a
global scale. The first prominent and global VOC emerging in early 2021 was Alpha
(lineage B.1.1.7), followed in June 2021 by Delta (lineage B.1.617.2), and since December
2021 Omicron (lineage B.1.1.529) has rapidly become the predominant strain. Some VOCs
have not become dominant on a global scale, but have nevertheless reached a significant
frequency at least regionally including Gamma in Brazil [5] and Beta in South Africa
[2].

In addition to the traditional surveillance from clinical samples, wastewater-based epi-
demiology (WBE) can determine the proportion of VOC RNA in a given sewershed by
use of sequencing or polymerase chain reaction (PCR) techniques [6, 7, 8]. Despite the
inherent uncertainties in measuring viral concentration or estimating variants diversity
in wastewater, WBE has been useful for informing public health officials and the gen-
eral public on the status and trends of outbreaks [9, 10]. Hence, it is possible to use
both data sources, clinical and wastewater, to potentially improve our confidence in esti-
mates of VOC abundance circulating in a given population. Indeed, multiple international
studies have shown that the relative abundance of a given VOC in wastewater correlates
with the proportion of cases infected with this VOC identified by clinical surveillance
[11, 12, 13, 14, 15, 16, 17, 18, 19, 20].

In light of the multiple SARS-CoV-2 lineages, a retrospective analysis of the dynamics of
emergence and spread by VOCs — using wastewater and clinical data — can help inform
preparedness planning for emergence of other VOCs in the future. Therefore, the objective
of this study was to retrospectively review the invasion dynamics of the prevalent SARS-
CoV-2 VOCs that have circulated in Canada, with the timing of emergence and speed
of spread observed for those VOCs in several Canadian jurisdictions being quantified
and described. Our analysis of VOCs circulation in Canada considers both clinical and
wastewater data from VOC Alpha (the first to appear in Canada) up to the emergence of
VOC Omicron (early 2022). Our results are in agreement with findings from studies from
other countries.

As jurisdictions world-wide are transitioning to management of SARS-CoV-2 as an en-
demic virus, with accompanying reductions in health surveillance, a clear understanding
on how an emerging VOC spreads at a regional and national scale will be useful for in-
forming effective public health policy.
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2 Methods

2.1 Clinical data

The Public Health Agency of Canada (PHAC) compiles a national line list of COVID cases
that are reported by Canadian Provinces and Territories. For some records in this line
list, the variant or lineage associated with each infection is identified. The lineage is either
confirmed from whole genome sequencing or from “screening” via a discriminatory PCR
assay that assesses the presence of variants by targeting specific mutations that are likely
variant-defining, given the prior knowledge of circulating lineages nationally. In the event
of both results being present, sequencing was prioritized over screening. These sequencing
and screening efforts varied during the pandemic and across jurisdictions. In this study,
this retrospective assessment focused on the four VOCs that reached non-negligible sta-
tuses in Canada: Alpha (lineage B.1.1.7), Gamma (lineage P.1), Delta (linecage B.1.617.2)
and Omicron (lineage B.1.1.529). Thus, all other VOCs (e.g., Beta, Epsilon, Kappa) were
ignored here. Because there could be some overlap with the mutations defining variants
(e.g., Omicron and Alpha), we applied cut-off dates such that variants were assumed to
exist only after those dates: 2020-11-01 for Alpha; 2021-02-01 for Gamma; 2021-03-01 for
Delta; 2021-11-15 for Omicron.

2.2 Wastewater data

In October 2020, PHAC, the National Microbiology Laboratory (NML) and Statistics
Canada started a pilot program that tested for the presence of SARS-CoV-2 in wastewater
collected between two to three times per week from 15 wastewater treatment plants in
various cities in Canada including Vancouver, Edmonton, Toronto, Montreal, and Halifax.
In addition, wastewater was sampled from the three treatment plants in Winnipeg (the
largest city in the province of Manitoba) five times a week through a provincial /municipal
collaboration. All wastewater samples from Winnipeg, Vancouver, Edmonton, Toronto,
Montreal and Halifax were shipped to NML in Winnipeg for qPCR analysis. To expand
the population coverage of the NML/Statistic Canada program, we include the qPCR
analysis of the wastewater sampled from Saskatoon (the largest city in the province of
Saskatchewan) three times a week performed by the University of Saskatchewan (not
NML).

Thus, the wastewater data samples the population of one large municipality in each
province, whereas our clinical data samples the whole province. The comparison of the
proportion of VOCs between clinical and wastewater data is still relevant because the
catchment areas of the municipal wastewater treatment plants represent a substantial
proportion of its provincial population. The population present in the catchment area of
the wastewater treatment plants in Vancouver represents 48% of the total population of
British Columbia; 24% of the province of Alberta for Edmonton; 23% of the province of
Saskatchewan for Saskatoon; 54% of the province of Manitoba for Winnipeg; 20% of the
province of Ontario for Toronto; 20% of the province of Quebec for Montreal; and 46% of
the province of Nova Scotia for Halifax

In all sites, the proportion of the circulating VOCs present in a wastewater sample was
quantified (i.e., not just a presence/absence test) by two laboratories only, the NML and
the University of Saskatchewan (the latter analyzed the samples from Saskatoon only).
Briefly, raw-post grit primary influent was shipped on cold-packs for testing to the NML
(Winnipeg, Manitoba). Samples were stored at 4°C and tested within 1-3 days of receipt.
Wastewater samples were mixed vigorously and a 30 mL aliquot was centrifuged (4000g,
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4°C, 20 min) in a swinging bucket centrifuge. The pellet was then resuspended in Buffer
RLT (Qiagen) containing 1% 2-mercaptoethanol and subjected to bead beating using a
Bead Mill Homogenizer. The samples were then centrifuged (4000g, 4°C, 3 min) and total
nucleic acids were extracted from the supernatant by use of the Roche MP96 instrument
using the Magna Pure 96 DNA and Viral NA Large Volume Kit (Roche Diagnostics, Laval,
QC) according to the Plasma External Lysis 4.0 protocol. See [21] for full methodological
details. Base viral loads were determined by use of US-CDC N1/N2 assays [22]. The Alpha
and Delta lineage assays were performed as previously described in [21]. The Omicron
assay is described in Supplementary Material.

The raw influent samples from Saskatoon were processed as previously described in [17, 10]
with modifications. Virus in 70 mL whole raw influent was enriched by PEG-8000 pre-
cipitation. Total RNA was extracted by use of RNeasy PowerMicrobiome Kit (Qiagen,
Ontario, Canada). Percentage of Alpha VOC was determined by N_D3L assay [23],
while percentages of Delta and Omicron were determined by N200 assay [24]. There
were no structured comparisons of laboratory performance between the NML (that ana-
lyzed all samples, except the ones from Saskatoon) and the laboratory at the University
of Saskatchewan (that analyzed samples from Saskatoon only). However, the latter per-
formed a comparison of concentration measurements between raw influent (the sample
type used for Saskatoon in our study) and post grit primary influent samples (the sample
type used by NML in our study), all collected in Saskatoon, and found a significant cor-
relation (R? = 0.57, p < 0.001, manuscript in preparation by Oloye et al.). Moreover, the
respective methods of each laboratory remained the same during the study period which
allows us to perform the longitudinal analysis presented here, despite potential differences
between the two laboratory assays.

2.3 Statistical analysis

Using the PHAC line list, clinical cases that had been identified as one of the four VOCs
of interest (through screening or sequencing) were retained. Frequencies of circulation of
variant v at time t is therefore defined as p(v,t) = n,(t)/n(t) where n,(t) is the num-
ber of clinical cases identified with variant v on day ¢, n(t) is the number of clinical cases
where any variant was identified on day t. A multinomial distribution for n, was assumed.
Confidence intervals for proportions of each VOC were simultaneously estimated by use
of the function MultinomCI from the R [25] package DescTools version 0.99.44 [26]. To
evaluate growth rates (i.e., speed of initial spread) of clinical data during each wave of a
given VOC in a given jurisdiction, we assumed the time-dependent proportions of VOCs
followed a logistic growth model. The three parameters defining the logistic function —
location, steepness and asymptotic value — were estimated from clinical data only. We fit
the models independently for each province (using only clinical data) with Markov chain
Monte-Carlo implemented in the R library rjags version 4-12 [27]. To calculate the time
since introduction in the logistic growth model, we assumed a single date of introduction
nationwide for each VOC : 2020-11-01 for Alpha, 2021-02-01 for Gamma, 2021-03-01 for
Delta and 2021-11-15 for Omicron. Moreover, to aggregate provincial clinical data into
national estimates, a similar logistical growth model was applied, but with a hierarchi-
cal structure. A full description of the statistical models is given in the Supplementary
Materials.

The VOC proportions estimated from wastewater are simply the variant allele percent-
ages detected by the corresponding assay. No confidence intervals were derived. Moreover,
wastewater data was not used to fit the logistic models due to insufficient data at the be-
ginnings of most waves of SARS-CoV-2 associated with various VOCs. Hence, growth rate
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of each VOC will be assessed using clinical data only. However, the wastewater-based VOC
proportions will be compared to the clinical-based ones to assess their similarity.

3 Results

Findings are reported for seven Canadian provinces that had a sufficiently large sample
size of VOC identified to provide interpretable results: British Columbia (B.C.), Alberta
(Alta.), Saskatchewan (Sask.), Manitoba (Man.), Ontario (Ont.), Quebec (Que.) and,
Newfoundland and Labrador (N.L.).

The trends of VOC proportions observed from the clinical data (shaded areas, Figure 1)
and from the wastewater data (thick lines, Figure 1) appear similar in all provinces. How-
ever, some regional differences were observed. VOC Gamma occurred at a significant
frequency only in British Columbia and Saskatchewan, but did not displace the emer-
gence of VOC Delta (Figure 1). During summer 2021, three VOCs, Alpha, Delta and
Gamma, probably co-circulated at substantial levels in Alberta, British Columbia and
Saskatchewan, whereas transitions between these VOCs appeared to be faster in Ontario
and Quebec. Differences in sizes of clinical samples (Figure S1) affected the size of uncer-
tainties in proportion estimates and result in confidence intervals of different sizes (i.e.,
confidence intervals broadening when the sample size is small. Figure 1, shaded areas).
The proportions of all clinical samples reported that could not be assigned to any VOC,
due to screening results being unable to distinguish between circulating VOCs or sequenc-
ing results not being classified as a VOC, was variable in time and across provinces (Figure
S2). The proportion of unidentified VOCs in the clinical samples was generally below ap-
proximately 80% in each province, except during the early phase of the VOC Alpha and
after July 2021 in Quebec and Manitoba (Figure S2). Hence, we generally had a sufficient
sample size to estimate VOC proportions from clinical samples (the uncertainty being
reflected in the width of the confidence intervals in Figure 1).

In most provinces, proportions of VOCs measured from wastewater samples (Figure 1,
thick lines) show similar trends as the proportions estimated from clinical surveillance,
especially for the Omicron VOC. The assay applied for Delta in wastewater by NML was
available only after 2021-08-18, hence there is no wastewater-based estimates of Delta
proportions before this date (except for Saskatoon). Proportions of VOCs observed in
municipal wastewater only are shown in Figure S3.

The fit of the logistic growth model on clinical data of VOCs observed during their initial
introduction phase is shown in Figure 2. Credible predictive intervals for VOC Alpha
are broad because clinical data were collected too late to capture the early invasion stage
(Figure 2). According to the logistic fit for VOC Gamma we infer that this VOC circulated
at significant levels only British Columbia.

Alpha, Delta and Omicron were the only VOCs that successfully invaded all jurisdiction.
The uncertainty for VOC Alpha is very large because we have enough data one the initial
introduction phase for Delta and Omicron only (Figure S2). Speeds of spread for these
two VOCs were similar among provinces as estimated as time after the first observation
in Canada to reach a proportion of 50% (Figure 3). The estimate for VOC Delta in
Newfoundland is an outlier and probably affected by the small sample size.

VOC Delta took between three and four months to become the major circulating variant
in Canada, but VOC Omicron required less than one month to become dominant. The
same results displayed with respect to calendar dates are presented in Figure S4.
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Figure 1: Proportions of VOCs circulating in each province, estimated from the sequencing of clinical
samples (shaded area representing the upper and lower 95% confidence interval) and RT-qPCR applied to
VOC-defining mutation targets from wastewater samples (thick solid line, representing the mean estimate).
Data sources: PHAC (clinical surveillance); PHAC/NML (wastewater surveillance for B.C., Alta., Man.,
Ont., Que. and N.L); University of Saskatchewan (wastewater surveillance for Sask.). Delta assay was
only available after 18-Aug-2021. Abbreviations: British Columbia (B.C.), Alberta (Alta.), Saskatchewan
(Sask.), Manitoba (Man.), Ontario (Ont.), Quebec (Que.) and, Newfoundland and Labrador (N.L.)

The fit of the hierarchical model to clinical data provides a national perspective of the
initial invasion dynamics for each VOC. Posterior estimates presented in Figure 4 suggest
that Alpha had nearly fully invaded Canada by early January 2021, Delta by early July
2021, and Omicron by early January 2022. Despite its inability to invade fully, Gamma
VOC probably reached a maximum proportion of about 25% nationally.
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Figure 2: Logistic growth model fit to initial invasion. The circles represent the observed proportion of
the VOC; circle size is proportional to the number of clinical samples identified as that VOC. The shaded
area and solid lines represent the upper and lower bounds of the 95% credible intervals for prediction of
the logistic growth model. Abbreviations: British Columbia (B.C), Alberta (Alta.), Saskatchewan (Sask.),
Manitoba (Man.), Ontario (Ont.), Quebec (Que.) and, Newfoundland and Labrador (N.L)
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Figure 4: Estimates of circulating VOC proportions in Canada. Thick line represents the mean, dark
(resp. light) shaded area the 80% (resp. 95%) credible interval.

4 Discussion

The COVID-19 pandemic has provided the first opportunity to observe, in detail and near
real time, an emerging pathogen spreading in human populations globally. Moreover, due
to unprecedented sequencing efforts with over 8 million clinical sequences collected world-
wide and uploaded to the sharing platform GISAID (www.gisaid.org) in less than two
years, it has been possible to track the evolution of SARS-CoV-2. This includes observing
emergences of various lineages and describing how they have spread in various populations,
in particular their rate of spread and severity of illness.

This study reports the spread of four SARS-CoV-2 variants of concern (VOCs) across
seven Canadian provinces by use of clinical and wastewater surveillance data, covering
approximately 95% and 25% of the population of Canada, respectively. Despite being a
geographically large country, in which public health measures related to COVID-19 were
decided and implemented at the provincial level, synchrony in the VOC introduction was
observed in all jurisdictions with similar speeds of invasion for each VOC. This is remark-
able since there were notable differences in management of COVID-19 by implementation
of various public health measures between provinces [28]. Despite having a small sample
size (due to its population size) Newfoundland and Labrador appeared to be an outlier.
This province had very different public health measures, at least as it pertained to the
movement of people, and it managed to keep the number of COVID-19 cases relatively
low, at least until the Omicron wave. At the time when Delta started to invade, there were
virtually no local transmission in this province. Overall, although public health measures
probably helped to limit locally COVID-19 morbidity and mortality, differences in those
measures among jurisdictions did not appear to have large effects on the emergence or
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the speed of spread of VOCs. This might have been caused by simultaneous importation
events (e.g., international travel linked to essential businesses and services never stopped
in Canada) and the intrinsic high contagiousness of SARS-CoV-2 even among asymp-
tomatic cases. Large uncertainties in estimates of proportions of VOCs, which result in
broad confidence intervals, underscore the importance of having sufficiently large and ro-
bust programs to surveil lineages to accurately monitor VOC emergence and spread. The
proportion of clinical samples without VOC identification was variable in our dataset (Fig-
ure S2) and not explicitly modelled, hence periods with a low proportion should broaden
even more our confidence intervals. Moreover, such a surveillance should rely, partially,
on random sampling to avoid biased estimates.

Effective reproduction numbers (also known as “R;”), which are critical metrics to in-
form public health actions but lack the time dimension, have been estimated for VOCs
in various Canadian locations [29]. It is possible to estimate R; using both clinical and
wastewater data [30, 31]. Here, estimates based on a logistic growth model complement R;
metrics (not estimated in this study) and provide practical, easy-to-understand, quantita-
tive information about the speed of initial spread. Rates of spread reported here provide
benchmarks for what to expect from future SARS-CoV-2 VOCs that might occur.

VOCs Delta and Gamma, both having few novel mutations, took about four months
to become predominant. However, Omicron with multiple novel mutations on the spike
protein reached a proportion of 50% in less than a month. Our findings are similar to
those of other studies have found in Canada [32, 33, 34] and in other countries [11, 12, 13,
16, 18, 20]

These are important metrics that can assist in anticipating the necessary public health
reaction time should other VOCs emerge in the future. This study uses two data streams:
clinical reports of COVID-19 cases (used to fit statistical models) and SARS-CoV-2 con-
centration in wastewater (for comparison). Since they each have different sources of bias,
the approximate agreement between both sources strengthens inferences of dynamics of
relative proportions of VOCs in Canada. Clinical sampling is usually not random, includ-
ing in Canada. Some socio-demographic groups, such as healthcare professionals, might
be over-represented. Outbreaks may also be over-represented. Other groups might have
limited access to testing and sequencing capacity might be limited during large infection
waves, which might exacerbate these and other biases. Clinical testing strategies (includ-
ing capacity, and targeted populations) also varied by jurisdiction. Wastewater sampling
might be affected by environmental events, such as large rainfalls or snowmelts, industrial
wastes, and events causing a large influx of people into a sewershed, such as sporting
events or conferences. Finally, areas studied were limited to major urban centers and did
not reflect the burden of disease in remote regions of Canada, except for Newfoundland
and Labrador.

The agreement between clinical and wastewater data, especially that observed during the
Omicron wave, validates the ability to monitor proportions of VOCs circulating in commu-
nities from data collected in wastewater [35, 10, 36]. The WBE estimates can also provide
an opportunity to better triangulate VOC proportions in locations where fewer clinical
samples have been available, such as Newfoundland and Labrador (Figure 1, where larger
uncertainty from clinical data is indicated by the widths of confidence intervals). Even if
it does not reach the level of precision of clinical surveillance, WBE based on PCR assays
targeted on VOC-defining mutations has the potential to be a cost-effective surveillance
method that may be more consistent both in time and across jurisdictions (especially
when the wastewater analysis is performed using a stable assay in each laboratory in or-
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der to perform a longitudinal analysis — as it is the case here in this study). Although
currently not timely enough to provide a near real-time surveillance, full sequencing of
SARS-CoV-2 genetic materials found in wastewater can complement PCR-based assays
because it provides a more complete and detailed picture of circulating VOCs, and can po-
tentially identify new dominant variants (but the development and validation time for new
wastewater-based assays may hamper timeliness). There is a clear advantage to perform
full sequencing (vs. PCR-based assay) when there are multiple overlapping mutations
defining different lineages, as this is the case in the post-Omicron era.

Interpretation of differences between proportions of various VOCs estimated from clinical
and wastewater data is not evident. Indeed, a clinical surveillance that indicates a larger
proportion of a particular VOC than that determined in WBE estimation, for example
Alpha during spring 2021 in Ontario and Quebec, could be caused by a bias where clinical
samples were preferentially selected among patients infected with Alpha because they were
more symptomatic compared to wild types. Other factors that could bias VOC proportions
can be periods of enhanced testing for contacts by some jurisdictions and preferential
sequencing for travelers from certain regions. Alternatively, the lesser proportion estimated
from WBE might be caused by lesser sensitivity of the laboratory assay. There is also an
intrinsic demographic mismatch between clinical surveillance, which is performed province-
wide, and wastewater samples that may only be collected in only a few large cities in each
province (in this study, the single largest city). Hence, differences between proportions of
VOCs estimated from clinical and wastewater data can also be caused by a VOC emergence
that might not occur at the same time and speed in the largest cities of a province as it
does in the whole province. Finally, the small sample size of clinical samples experienced
at times in some provinces (Figures S1 and S2) may have impacted the accuracy of our
analyses.

In conclusion, based on clinical surveillance data the SARS-CoV-2 VOCs have synchronously
invaded different parts of Canada despite being distant and with various intensities of inde-
pendently implemented COVID-19 public health measures. Wastewater-based surveillance
can be a good indicator of VOCs circulation in communities and can complement clini-
cal surveillance. Comparative estimates of the rapidity of spread and synchrony for past
waves driven by VOCs can support preparedness for next VOCs and, to some extent, next
pandemics from other pathogens.
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