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 10 
Background 11 
The time-varying reproduction number (Rt) is an important measure of epidemic transmissibility; it can directly 12 
inform policy decisions and the optimisation of control measures. EpiEstim is a widely used software tool that 13 
uses case incidence and the serial interval (SI, time between symptoms in a case and their infector) to estimate 14 
Rt in real-time. The incidence and the SI distribution must be provided at the same temporal resolution, which 15 
limits the applicability of EpiEstim and other similar methods, e.g. for pathogens with a mean SI shorter than 16 
the frequency of incidence reporting.  17 
Methods 18 
We use an expectation-maximisation algorithm to reconstruct daily incidence from temporally aggregated 19 
data, from which Rt can then be estimated using EpiEstim. We assess the validity of our method using an 20 
extensive simulation study and apply it to COVID-19 and influenza data. The method is implemented in the 21 
opensource R package EpiEstim.  22 
Findings 23 
For all datasets, the influence of intra-weekly variability in reported data was mitigated by using aggregated 24 
weekly data. Rt estimated on weekly sliding windows using incidence reconstructed from weekly data was 25 
strongly correlated with estimates from the original daily data. The simulation study revealed that Rt was well 26 
estimated in all scenarios and regardless of the temporal aggregation of the data. In the presence of weekend 27 
effects, Rt estimates from reconstructed data were more successful at recovering the true value of Rt than 28 
those obtained from reported daily data. 29 
Interpretation 30 
Rt can be successfully recovered from aggregated data, and estimation accuracy can even be improved by 31 
smoothing out administrative noise in the reported data. 32 
Funding 33 
MRC doctoral training partnership, MRC centre for global infectious disease analysis, the NIHR HPRU in 34 
Modelling and Health Economics, and the Academy of Medical Sciences Springboard, funded by the AMS, 35 
Wellcome Trust, BEIS, the British Heart Foundation and Diabetes UK. 36 
 37 
Introduction 38 
 39 
As infectious disease outbreaks become more common, it is increasingly important to rapidly characterise the 40 
threat of emerging and re-emerging pathogens.1 Transmissibility, i.e. a pathogen’s ability to spread through a 41 
population, can be quantified using the time-varying reproduction number, Rt, defined as the average number 42 
of infections that are caused by a primary case at time t of an outbreak. Rt signals whether an outbreak is 43 
growing (Rt > 1) or declining (Rt < 1), and whether current interventions are sufficient to control the spread of 44 
the disease. 45 
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 46 
One of the most popular tools for real-time Rt estimation, the R package EpiEstim, relies on observing the 47 
incidence data and supplying an estimated serial interval (SI) distribution – the time between symptom onset 48 
in a case and their infector. EpiEstim requires that the SI distribution and incidence data are supplied using 49 
the same time units. This can be problematic when daily incidence data is not reported, which is common for 50 
many diseases, such as influenza, Zika virus disease, and most notifiable diseases in countries such as the UK 51 
and the US.2–5 Additionally, several studies intentionally aggregate data to reduce the impact of daily reporting 52 
variability; administrative noise, such as “weekend effects”, are characterised by a drop in reported cases over 53 
weekends, due to reduced care seeking and longer delays in reporting, followed by a peak on Mondays.6,7 A 54 
commonly used workaround is to aggregate the SI distribution to match the frequency of incidence 55 
reporting,8,9 however this is not possible if the SI is shorter than the aggregation of data. For example, 56 
influenza-like illness is typically reported on a weekly basis, but influenza has an estimated mean SI of 2-4 57 
days.10,11 Similarly, reporting of COVID-19, which has an estimated SI of 3-7 days, has typically moved from 58 
daily to weekly.12,13 Therefore, enabling estimation of Rt from temporally aggregated data is critical to ensure 59 
methods such as EpiEstim are widely applicable.14  60 
 61 
In this study, we combine an expectation-maximisation (EM) algorithm with the renewal equation approach 62 
implemented in EpiEstim to reconstruct daily incidence from aggregated data and estimate Rt. We assess the 63 
performance of the method using influenza and COVID-19 data, in addition to an extensive simulation study. 64 
 65 
Methods 66 
 67 
EpiEstim 68 
 69 
EpiEstim uses the renewal equation (eq.1), a form of branching process model.15 In this formulation, the 70 
incidence of new symptomatic cases at time t (It) is approximated by a Poisson process, where It-s is the past 71 
incidence, and 𝑔s is the probability mass function of the serial interval. 72 
 73 
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 74 
With EpiEstim, Rt can be assumed to remain constant within user defined time windows, which smooth out 75 
estimates.  76 
 77 
Extending EpiEstim for coarsely aggregated data 78 
 79 
We extended EpiEstim to estimate Rt from aggregated incidence data (Iw), where each aggregation window 80 
(w) is >1 day, whilst still conditioning on an assumed serial interval distribution (𝑔s). We use an EM algorithm 81 
to iteratively reconstruct daily incidence (It) from Iw, and in turn estimate Rt. We present the method with 82 
weekly data in mind, but the method and software can be applied to any temporal aggregation (Figure 1 & 83 
appendix pp22-24). The algorithm involves three steps: initialisation, expectation, and maximisation.  84 
 85 
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 86 
Figure 1. Schematic of the EM algorithm approach used to reconstruct daily incidence (It) from weekly 87 
aggregated incidence data (Iw). The algorithm is initialised with a naive disaggregation of the weekly incidence 88 
(assuming constant daily incidence throughout the aggregation window). The resulting daily incidence is then 89 
used to estimate the reproduction number for each aggregation window, in this case for each week, Rw. Rw is 90 
converted into a growth rate (see eq. 2), which is in turn used to reconstruct daily incidence data, whilst 91 
ensuring that if It were to be reaggregated it would still sum to the original weekly totals. The process cycles 92 
between the expectation and maximisation steps until convergence. 93 
 94 

Initialisation 95 
The algorithm is initialised with naively disaggregated incidence data. For weekly data, the total incidence for 96 
each week is split evenly over 7 days (allowing for non-integers).  97 
 98 

Expectation 99 
The current reconstructed It is used to estimate the expected reproduction number for each aggregation 100 
window, Rw, obtained as the posterior mean from EpiEstim.16 101 
 102 

Maximisation 103 
Conditional on Rw, we reconstruct the most likely It. First, Rw is translated into a daily growth rate for that week 104 
(rw), using Wallinga and Lipsitch’s method:17  105 
 106 
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 107 
It for that week is then computed assuming exponential growth, with a multiplying constant kw ensuring that 108 
when reaggregated, the reconstructed It matches the original Iw: 109 
 110 
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 111 
where t is time (in days) and at is an index representing the day of the aggregation window, e.g. taking values 112 
1 to 7. 113 
 114 
The process is repeated iteratively until convergence, at which point It can be used to estimate the full 115 
posterior distribution of Rt using EpiEstim. For this final step, Rt can be estimated on any time window.  116 

Expectation of Rw | It Maximisation of It | Rw , IwInitialisation of It | Iw
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 117 
Case studies 118 
 119 
We chose datasets where incidence data was available daily, and then artificially aggregated them to weekly 120 
counts. Rt was estimated from daily incidence that was reconstructed from weekly aggregated data using our 121 
new approach, and compared to Rt estimates obtained from the reported daily incidence using the original 122 
EpiEstim R package. All Rt estimates were made using both daily and weekly sliding time windows, and we 123 
refer to those estimates as daily Rt estimates and weekly Rt estimates respectively. 124 
 125 
We considered three characteristics: 1) mean Rt estimates, 2) uncertainty in the Rt estimates, and 3) the 126 
classification of Rt as increasing, uncertain or declining (appendix pp8-9). To compare the performance of this 127 
approach to the original method, we assessed the correlations between each of the three characteristics when 128 
using the reported and reconstructed incidence. 129 
 130 
The priors for Rw and Rt were set to a mean and standard deviation of 5.  131 
 132 

Influenza  133 
We obtained a five-week subset of a dataset (11th December 2009 – 14th January 2010) on US active 134 
component military personnel (employed by the military as their full-time occupation) that made an 135 
outpatient visit to a permanent military treatment facility describing a respiratory-related illness. This daily 136 
incidence by date of presentation at a clinic was originally obtained by Riley et al. from the Armed Forces 137 
Health Surveillance Center and were digitally extracted for use here.18 We used a mean SI of 3.6 days and SD 138 
of 1.6 days.10 139 
 140 

COVID-19 141 
Incidence of UK COVID-19 cases and deaths were taken from the UK government website.19 For COVID-19 142 
cases, we obtained ninety-seven weeks of data (21st February 2020 to 30th December 2021) for incidence by 143 
date of specimen, which is the date that a sample was taken from an individual which later tested positive. 144 
For COVID-19 deaths, we used ninety-six weeks of data (2nd March 2020 to 2nd January 2022) for incidence by 145 
date of death within twenty-eight days of a positive test. We assumed a mean SI of 6.1 days and SD of 4.2 146 
days.12 147 
 148 
Simulation study 149 
 150 
We considered scenarios where Rt either remained constant or varied over time, with a stepwise or gradual 151 
change. For each scenario, one hundred seventy-day epidemic trajectories were simulated using a Poisson 152 
branching process as implemented in the R package projections.20 Daily datasets were aggregated weekly and 153 
used to estimate Rt using the proposed method; these values were compared to Rt estimates obtained from 154 
simulated daily data using the original EpiEstim R package. We explored the impact of weekend effects on Rt 155 
estimates, the ability to supply alternative temporal aggregations of data e.g., three-day, ten-day, or two-156 
weekly aggregations, and finally, the number of iterations required to reach convergence when reconstructing 157 
daily incidence data. The full simulation study description and details can be found in the appendix. 158 
 159 
Role of funding source 160 
 161 
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The funders of the study had no role in the study design, data collection, data analysis, data interpretation, 162 
or writing of the report. 163 
 164 
Results 165 
 166 
Hereafter, we refer to reported and reconstructed incidence data, these are the reported daily incidence 167 
and the daily incidence that has been reconstructed from weekly aggregated data, respectively. 168 
 169 
Influenza 170 
 171 
The reconstructed incidence of influenza was much smoother than the reported incidence, which showed 172 
clear weekend effects and lower reported cases on two public holidays, both occurring on Fridays (Figure 2A 173 
& appendix p8). Considering weekly sliding Rt first, there was a high correlation in both the mean Rt estimates 174 
derived from each dataset (R2 = 0.91, Figure 2C & appendix p2) and their associated uncertainty (R2 = 0.93 & 175 
Figure 2C). The overall agreement in the classification of Rt reached 81.8% (see methods & appendix p9). 176 
 177 
In contrast, mean daily Rt estimates differed markedly depending on whether the reported or reconstructed 178 
data were used, with an R2 of 0.13 and much higher mean Rt and uncertainty in estimates obtained from 179 
reported data (Figure 2E-F). Higher mean Rt estimates coincided with large peaks in the reported daily 180 
incidence (typically on Mondays), as daily Rt estimates were not smoothed and therefore more affected by 181 
intra-weekly variability (appendix p2). The overall agreement in the classification of daily Rt estimates was 182 
much lower, with only 44.4% agreement (appendix p9).  183 
 184 
In this case study, the greatest differences in Rt estimates tended to correspond to time periods when the 185 
reported and reconstructed incidence data were most dissimilar (Figure 2B & appendix p3). There was no 186 
apparent pattern in the estimates with regard to the outbreak phase, i.e. early, mid or late-phase, but this is 187 
likely due to this dataset being a snapshot of incidence taken from within an established epidemic (Figure 2). 188 
 189 
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 190 
 191 
Figure 2. Rt estimates from daily incidence that was either reported or reconstructed from weekly aggregated 192 
influenza data. A) The reported (grey) and reconstructed (green) daily incidence of influenza by date of 193 
presentation at a military clinic. B) Squared error of the daily (orange) and weekly sliding (pink) Rt estimates 194 
that were made from reconstructed daily data compared to those obtained from the reported daily data. Rt 195 
estimation starts on the first day of the second aggregation window (day 8 – 18th December 2009) and is 196 
plotted on the last day of the time window used for estimation (i.e., starting on day 9 (19th December) for daily 197 
estimates and day 14 (24th December) for weekly estimates). Note: the x-axis is shared with the incidence plot 198 
above. C & E) Correlation between the weekly sliding (C) and daily (E) mean Rt estimates using reconstructed 199 
data (y-axis) and reported daily data (x-axis). Vertical and horizontal lines depict the 95% credible intervals and 200 
dotted lines show the threshold of Rt = 1. D & F) Correlation between the uncertainty in the weekly sliding (D) 201 
and daily (F) Rt estimates, defined as the width of the 95% credible intervals, using the reconstructed (y-axis) 202 
and reported (x-axis) daily data. The colour of the points in panels C-F correspond to the epidemic phase, i.e. 203 
the early (19th – 30th December for daily estimates, or 24th – 30th December for weekly sliding estimates), 204 
middle (31st December – 6th January) or late (7th – 14th January) phase of the data, shown by the strip in panel 205 
A. Solid lines show the linear model fit with 95% confidence intervals (grey shading). Dashed lines represent 206 
the x = y line.  207 
 208 
 209 
COVID-19 cases 210 
 211 
The reconstructed incidence of COVID-19 smoothed out intra-weekly variability, caused by factors such as 212 
weekend effects (Figure 3A & appendix pp7-8). Weekly sliding Rt estimates obtained from reconstructed and 213 
reported incidence were similar, both in their means (R2 = 0.98) and their level of uncertainty (R2 = 0.99, Figure 214 
3C-D & appendix p4). Mean daily Rt estimates were less well correlated (R2 = 0.67), although the difference is 215 
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less marked than in the influenza case study (Figure 3E), and the uncertainty in the estimates was similar 216 
across both approaches (R2 = 0.97, Figure 3F). Most of the discrepant Rt estimates and higher levels of 217 
uncertainty coincide with the early phase of the outbreak when incidence was lower (Figure 3E-F). Outside of 218 
periods of low incidence, the largest differences in Rt estimates tended to correspond to time periods with 219 
greater disparities between the reported and reconstructed incidence data (Figure 3B & appendix p5). The 220 
overall agreement in the classification of Rt estimates was higher than for influenza, with 74.4% and 94.9% 221 
agreement for daily and weekly sliding Rt estimates respectively (appendix p9). 222 
 223 
 224 

 225 
 226 
Figure 3. Rt estimates from daily incidence that was either reported or reconstructed from weekly aggregated 227 
COVID-19 case data. A) The reported (grey) and reconstructed (green) daily incidence of COVID-19 by date of 228 
specimen. B) Squared error of the daily (orange) and weekly sliding (pink) Rt estimates made from 229 
reconstructed data compared to those obtained from the reported daily data. Rt estimation starts on the first 230 
day of the second aggregation window (day 8 – 28th February 2020) and is plotted on the last day of the time 231 
window used for estimation (i.e., starting on day 9 (29th February) for daily estimates and day 14 (5th March) 232 
for weekly estimates). Note: the x-axis is shared with the incidence plot above and the y-axis has been limited 233 
to 0.5 for clarity. C & E) Correlation between the weekly sliding (C) and daily (E) mean Rt estimates using 234 
reconstructed (y-axis) and reported (x-axis) daily data, excluding the first 30 days due to low incidence. Vertical 235 
and horizontal lines depict the 95% credible intervals and dotted lines show the threshold of Rt = 1. D & F) 236 
Correlation between the uncertainty in the weekly sliding (D) and daily (F) Rt estimates, defined as the width 237 
of the 95% credible intervals, using the reconstructed (y-axis) and reported (x-axis) daily data. The colour of 238 
the points in panels C-F correspond to the epidemic phase, i.e. the early (21st March – 12th October 2020), 239 
middle (13th October 2020 – 22nd May 2021) or late (23rd May – 30th December 2021) phase of the data, shown 240 
by the strip in panel A. Solid lines show the linear model fit with 95% confidence intervals (grey shading). 241 
Dashed lines represent the x = y line. 242 
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 243 
COVID-19 deaths 244 
 245 
The reported incidence of COVID-19 deaths was much less influenced by day-to-day variation. The 246 
reconstructed daily incidence was more similar to the observed daily data than in the previous case studies 247 
(Figure 4A). Both weekly and daily Rt estimates obtained from weekly data were highly consistent with those 248 
obtained from daily observations (R2 = 0.98 and R2 = 0.80 respectively, Figure 4C & 4E). The overall agreement 249 
in Rt classifications for daily estimates was the highest of all case studies at 85.8%, and 93.3% for weekly Rt 250 
estimates (appendix p9). Discrepancies between the two mostly coincide with periods of particularly low 251 
incidence of deaths (Figure 4B & appendix p7). The overall lower incidence of COVID-19 deaths compared to 252 
COVID-19 cases means there is greater uncertainty in Rt estimates in this case study (Figure 4D, 4F & appendix 253 
p6). However, there was minimal difference in the uncertainty of estimates obtained from daily and weekly 254 
data (Figure 4D & 4F).  255 
 256 

 257 
 258 
Figure 4. Rt estimates from daily incidence that was either reported or reconstructed from weekly aggregated 259 
COVID-19 death data. A) The reported (grey) and reconstructed (green) daily incidence of COVID-19 by date 260 
of death within 28 days of a positive test. B) Squared error of the daily (orange) and weekly sliding (pink) Rt 261 
estimates that were made from reconstructed data compared to those obtained from the reported daily data. 262 
Rt estimation starts on the first day of the second aggregation window (day 8 – 9th March 2020) and is plotted 263 
on the last day of the time window used for estimation (i.e., starting on day 9 (10th March) for daily estimates 264 
and day 14 (15th March) for weekly estimates). Note: the x-axis is shared with the incidence plot above and 265 
the y-axis has been limited to 0.5 for clarity. C & E) Correlation between the weekly sliding (C) and daily (E) 266 
mean Rt estimates using reconstructed (y-axis) and reported daily data (x-axis), excluding the first 30 days due 267 
to low incidence. Vertical and horizontal lines depict the 95% credible intervals and dotted lines show the 268 

0

500

1000

17 Sep 20 05 Apr 21 22 Oct 21

Da
ily

 in
cid

en
ce

 b
y d

at
e 

of
 d

ea
th

Reported
Reconstructed

A

R2 = 0.98

0.5

1.0

1.5

2.0

2.5

0.5 1.0 1.5 2.0 2.5

Mean weekly R (reported data)

M
ea

n 
we

ek
ly 

R 
(re

co
ns

tru
cte

d 
da

ta
)

early
mid
late

C

R2 = 0.8

1

2

3

1 2 3

Mean daily R (reported data)

M
ea

n 
da

ily
 R

 (r
ec

on
str

uc
te

d 
da

ta
)

E

0.0

0.1

0.2

0.3

0.4

0.5

17 Sep 20 05 Apr 21 22 Oct 21

Date

Sq
ua

re
d 

er
ro

r o
f R

 e
sti

m
at

es
us

ing
 re

po
rte

d 
an

d 
re

co
ns

tru
cte

d 
da

ta

Daily R
Weekly sliding R

B

R2 = 0.996

0.0

0.2

0.4

0.6

0.0 0.2 0.4 0.6

Width of 95% CrI for R (reported data)

W
idt

h 
of

 9
5%

 C
rI 

fo
r R

 (r
ec

on
str

uc
te

d 
da

ta
)

D

R2 = 0.97

0.0

0.5

1.0

0.0 0.5 1.0

Width of 95% CrI for daily R (reported data)

W
idt

h 
of

 9
5%

 C
rI 

fo
r d

ail
y R

 (r
ec

on
str

uc
te

d 
da

ta
)F

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 13, 2022. ; https://doi.org/10.1101/2022.12.08.22283241doi: medRxiv preprint 

https://doi.org/10.1101/2022.12.08.22283241
http://creativecommons.org/licenses/by/4.0/


threshold of Rt = 1. D & F) Correlation between the uncertainty in the weekly sliding (D) and daily (F) Rt 269 
estimates, defined as the width of the 95% credible intervals, using the reconstructed (y-axis) and reported 270 
daily (x-axis) data. The colour of the points in panels C-F correspond to the epidemic phase, i.e. the early (31st 271 
March - 20th October 2020), middle (21st October 2020 – 28th May 2021) or late (29th May 2021 – 2nd January 272 
2022) phase of the data, shown by the strip in panel A. Solid lines show the linear model fit with 95% 273 
confidence intervals (grey shading). Dashed lines represent the x = y line.  274 
 275 
In all case-studies, incidence reconstructions converged within 10 iterations of the EM algorithm. The overall 276 
process of Rt estimation from weekly aggregated data took three seconds or less to run on MacOS (2 GHz 277 
Quad-Core Intel Core i5) 16GB RAM (appendix p10); the influenza scenario, with over 57,000 cases, took two 278 
seconds to run, whilst the COVID-19 cases and deaths scenarios, with an overall incidence over 149,000 and 279 
13 million cases respectively, took three seconds to run. 280 
 281 
Simulation study 282 
 283 
The method performed well across all scenarios, successfully estimating Rt from the aggregated simulated 284 
data (appendix pp10-20). Convergence of the EM algorithm was quick, with negligible differences in the 285 
reconstructed incidence beyond 5 iterations (appendix p22).  286 
 287 
When introducing weekend effects into simulated data, Rt estimates from reconstructed incidence were more 288 
successful at recovering the true value of Rt than when using reported incidence (appendix p21). The method 289 
can also be successfully applied to other temporal aggregations of data, e.g. three-, ten- or fourteen-day 290 
windows (appendix pp22-24).  291 
 292 
Discussion 293 
 294 
Estimates of the time-varying reproduction number (Rt) have frequently been used to inform and guide 295 
policymaking during outbreaks, and a commonly used approach to estimate Rt is EpiEstim, which relies on 296 
daily incidence data. However, maintaining daily incidence databases requires substantial time and 297 
investment in resources, which is not always feasible, particularly for less acute or routinely reported diseases. 298 
Therefore, in practice, many diseases are not reported on a daily basis, including influenza and other notifiable 299 
diseases in the UK and US.2–5 As the COVID-19 pandemic persists, daily reporting is also becoming less 300 
common.21 Coarsely aggregated data can be challenging to deal with in the context of Rt estimation methods, 301 
restricting their applications in certain contexts. In this study, we develop a statistical framework and tool that 302 
allows Rt estimation from aggregated incidence without introducing bias. Using influenza and COVID-19 data, 303 
alongside a simulation study, we demonstrate how a simple expectation-maximisation algorithm approach 304 
can rapidly reconstruct daily incidence data and accurately estimate Rt.  305 
 306 
In all case studies, direct comparisons between weekly sliding Rt estimates show that very similar estimates 307 
can be made from the reported daily incidence and the reconstructed daily incidence from weekly aggregated 308 
data. However, daily Rt estimates are more influenced by noise, such as intra-weekly variability, leading to 309 
greater disparities in estimates between datasets. There are clear weekend effects exhibited in the influenza 310 
and COVID-19 case data (appendix p8), leading to peaks and troughs in the reported incidence and the 311 
resulting daily Rt estimates (Figures 2 & 3, appendix pp2&4). Using reconstructed incidence considerably 312 
smoothed the daily Rt estimates, removing the impact of weekend-effects. The overall agreement in the 313 
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classification of Rt as increasing, uncertain, or declining between estimates made from each dataset rose 314 
substantially when some of the variability in the reported data was smoothed by estimating Rt using weekly 315 
sliding windows (appendix pp8-9).  316 
 317 
Despite both being affected by weekly periodicity in reporting, concordance of Rt estimates obtained from 318 
COVID-19 case data is considerably better than for influenza, perhaps due to the greater quantity of data, with 319 
a very strong positive correlation between daily and weekly Rt estimates (Figure 3). This is reflected in the high 320 
overall agreement in the classification of Rt estimates obtained from the reported and reconstructed datasets. 321 
It is important to note that outlying and much larger Rt estimates obtained from both datasets coincide with 322 
the early phase of the epidemic, when incidence was lower and the prior for Rt (µ=5, s=5) had more weight 323 
on estimates. 324 
 325 
During the early stages of epidemics, despite there being far fewer deaths than cases, death data can 326 
sometimes be considered more reliable.22,23 For example, case reporting is affected by surveillance system 327 
quality and the robustness of testing practices, which can vary considerably over the course of an epidemic, 328 
especially early on. COVID-19 incidence by date of death is much less influenced by administrative noise in the 329 
data (appendix p8), and the reconstructed incidence is most similar to the reported daily incidence of any case 330 
study. Therefore, the greatest differences in Rt estimates from death data coincide with periods of low 331 
incidence (appendix p7) when uncertainty increases. Weekly sliding Rt estimates are equally as correlated as 332 
those from COVID-19 case data, but daily Rt estimates are the most strongly correlated of any dataset (Figure 333 
4). Additionally, there is very high overall agreement in the classification of daily and weekly Rt (appendix p9). 334 
This provides further support that differences between daily Rt estimates for influenza and COVID-19 cases is 335 
likely due to the reconstructed incidence smoothing out weekly periodicity in reporting. 336 
 337 
To investigate further, weekend effects were artificially introduced to data in the simulation study (appendix 338 
p21). We have shown that, when using reported incidence, Rt estimates are all strongly influenced by weekend 339 
effects (regardless of the smoothing time-window). Reconstructing daily incidence from weekly data 340 
completely removes the effect of noise from resulting Rt values, greatly improving the accuracy of estimates. 341 
This demonstrates that it may be beneficial to artificially aggregate daily data, as has been done in previous 342 
studies.6,7 However, we did assume quite an extreme level of administrative noise, so in instances where the 343 
pattern is less prominent, it may have less of an impact on estimates. Disentangling important temporal trends 344 
in Rt from noise in the data can be difficult, and if aggregated data is used it will be at the cost of reduced 345 
temporal resolution in Rt estimates. 346 
 347 
This can be seen when the method is applied to data aggregated over longer timescales, such as ten- to 348 
fourteen-days (appendix pp22-24). This approach requires two layers of smoothing: 1) the incidence is 349 
smoothed over each aggregation window during the reconstruction process and 2) Rt estimates are smoothed 350 
by the sliding window chosen by the user. If a change in Rt occurs at the end of an aggregation window (i.e. on 351 
the last day), such as a sudden decrease in Rt due to a strict lockdown, that change is detected with a lag, 352 
corresponding to the length of the sliding window used for Rt estimation (appendix p23). However, if the event 353 
occurs mid-aggregation window, then in addition to the usual lag caused by the sliding window, estimates will 354 
be affected by the smoothing of the incidence within the aggregation window during reconstruction (appendix 355 
p24). The change in Rt will seem more gradual over the period that data are aggregated over and will appear 356 
to start earlier than in reality (corresponding to the first day of the aggregation window). It is important for 357 
users to keep this in mind, particularly when using longer aggregations of data. 358 
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 359 
Another consideration is that the reconstructed incidence can have discontinuities in the borders between 360 
aggregation windows (appendix pp11-12). This occurs because in reconstructing daily incidence we impose 361 
that, if it were to be re-aggregated, it would match the original data. Methods that simply fit smoothing splines 362 
to weekly data, inferring daily case counts from the daily difference in cumulative counts, are not affected by 363 
this.24,25 To circumvent this problem, we recommend that sliding windows used to estimate Rt are at least 364 
equal to or longer than the length of aggregation windows to reduce the impact of discontinuities on estimates 365 
(appendix pp22-24).  366 
 367 
Alternative approaches include modelling frameworks implemented in the Epidemia and EpiNow2 R 368 
packages.6,22,26 Daily infections are modelled as a latent process, back-calculated from observed data on cases 369 
or deaths, depending on an appropriate infection to observation distribution. In addition, Epidemia integrates 370 
further information, such as the infection ascertainment rate (for cases) or the infection fatality rate (for 371 
deaths).22 This facilitates a ‘nowcasting’ approach, allowing users to estimate Rt directly from the unobserved 372 
infections, but they typically require more data (e.g. incidence of deaths and cases), more assumptions (e.g. 373 
delay distributions and ascertainment rates), and are much more computationally intensive, which can be a 374 
barrier to the adoption of such methods by users.14 375 
 376 
Here, Rt estimates are based on a single daily incidence reconstruction, meaning Rt can be estimated very 377 
rapidly from aggregated data, which is particularly desirable during real-time outbreak analysis.14 A potential 378 
downside is that uncertainty in Rt estimates could be underestimated. However, the simulation study showed 379 
that the 95% credible interval of estimates encompassed the correct value of Rt the majority of the time, and 380 
we found no substantial indication that this approach detrimentally affected our characterisation of the 381 
uncertainty. 382 
 383 
Given that this method is directly derived from EpiEstim, it relies on similar assumptions and caveats.15,27 As 384 
time of infection is more difficult to observe than symptom onset, the SI is typically used as an approximation 385 
of the generation time in the renewal equation, which may introduce bias.28 The SI, the level of undetected 386 
cases, and the reporting rate are assumed to remain constant, which is often not the case in practice. Factors 387 
such as changes in population immunity, and the introduction of interventions, can alter the SI throughout an 388 
epidemic.29 Whilst changing case definitions, new testing practices, and increased healthcare-seeking 389 
behaviour, can all affect case ascertainment.15 Parameters chosen by users can also influence estimation 390 
accuracy, for instance, the time window length for temporal smoothing and the prior for Rt.27  391 
 392 
To make the method simple to implement for current and future users of EpiEstim, this extension has been 393 
fully integrated with the ‘estimate_R()’ function in the original R package on github.30 Just one additional 394 
parameter is required – the number of days data are aggregated over (with some other optional parameters). 395 
More details regarding the applications of this method can be found in the package vignette and associated 396 
examples.30 397 
 398 
Conclusion 399 
 400 
We extended the widely used Rt estimation approach proposed by Cori et al.,15 and implemented in the R 401 
package EpiEstim, to incorporate a new feature which allows Rt to be easily estimated from any temporal 402 
aggregation of incidence data. We have demonstrated that the method performs well using both simulated 403 
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and real-world data, recovering or even improving upon the estimates that would have been made from 404 
reported daily data. This extension is easy to use and computationally efficient, which will enable 405 
epidemiologists and other public health professionals to apply EpiEstim to a wider range of diseases and 406 
epidemic contexts. 407 
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