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Abstract 

Aims: Amyloid-related imaging abnormalities (ARIA) have hampered clinical trials and 

therapeutic use of amyloid-β (Aβ) immunotherapy for Alzheimer’s disease (AD), with the 

cause of the white matter oedema (ARIA-E) unknown.  Aquaporin 4 (AQP4), present in 

astrocyte endfeet, controls water flow across the blood-brain barrier.  Experimental studies 

suggest that as Aβ plaques are cleared following immunotherapy, capillary angiopathy 

(capCAA) increases, displacing astrocyte endfeet allowing influx of extracellular water 

(oedema).  We sought neuropathological evidence for this mechanism in immunised AD 

patients. 

Methods: Brains of 16 Alzheimer’s patients immunised against Aβ42 (iAD, AN1792, Elan 

Pharmaceuticals) and 28 unimmunized Alzheimer’s (cAD) cases were immunolabelled and 

quantified for Aβ42 and AQP4.   

Results: CapCAA was 3.5 times higher in iAD (p=0.009).  No difference between the groups 

was identified in the proportion of capillaries wrapped by AQP4 or AQP4 protein load.  

However, capCAA in iAD negatively correlated with AQP4 load (r = -0.498, p<0.001), 

suggesting disturbance of AQP4 in presence of capCAA. 

Conclusions: After Aβ immunotherapy, capCAA was increased, likely reflecting the drainage 

of soluble Aβ towards the vasculature and providing a potential mechanism to disrupt AQP4-

containing astrocyte endfeet, resulting in ARIA-E.  We did not identify alterations in AQP4, 

potentially because of limitations in the timing of the post-mortem analysis.  Given the recent 

licencing of Aβ immunotherapy, the field must prioritise obtaining neuropathological 

correlates of ARIA to explore its mechanisms further. 
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Introduction 

The amyloid cascade hypothesis [1] stipulates that amyloid-β (Aβ) aggregation is the 

initiating event in AD.  The hypothesis has been tested therapeutically in a range of active 

and passive immunotherapy trials targeted against Aβ [2].  The first clinical trial, using an 

active anti-Aβ42 vaccine (Elan Pharmaceuticals AN1792) [3] failed to demonstrate slowing 

of cognitive decline [4], while post-mortem findings showed clearance of plaques [4-7] and 

exacerbation of cerebral amyloid angiopathy (CAA) [8, 9].  This was attributed to plaques 

being disaggregated by anti-Aβ antibodies [10] and phagocytic microglia [11], permitting Aβ 

to enter the perivascular drainage pathway [12-14] and be removed from the brain [8, 15]. 

Subsequent Aβ immunotherapy trials incorporated systematic brain imaging into their 

study design [16], allowing the identification of amyloid-related imaging abnormalities (ARIA) 

as radiological observations interpreted as representing microhaemorrhages (ARIA-H) and 

oedema (ARIA-E) [16-18].  ARIA has become a persistent obstacle in Aβ immunotherapy 

trials [2, 19], its presence limiting dosing regimens and curtailing clinical trials, hampering 

completion of studies to assesses efficacy.  ARIA is associated with possession of the 

apolipoprotein ε4 allele (APOE4), higher antibody doses and localised reduction of amyloid 

assessed in vivo by PiB PET scans [17, 20].  ARIA-H has been proposed to be due to 

increased severity of CAA following immunotherapy causing microbleeds [8, 15].  ARIA-E is 

defined as radiological hyperintensity in the grey or white matter or leptomeninges of the 

brain, which represent oedema [16], in particular seems to be restricted to the weeks after 

onset of treatment and is reversible.  From a pathophysiological point of view, vascular 

permeability [8, 16], inflammation [15, 21, 22] and APOE isoform [16] have been proposed to 

play a role in causing ARIA-E; however the exact mechanism remains unknown.  

Of the two main pathogenic isoforms of Aβ, Aβ42 is the main constituent of parenchymal 

plaques and capillary cerebral amyloid angiopathy (capCAA) located within the capillary 

basement membrane [23, 24]; whereas Aβ40 predominates in the walls of arteries and 

arterioles, forming CAA [24].  CAA is classified into two distinct histopathological 

phenotypes, with the presence of capCAA and the possession of an APOE4 allele 

distinguishing type 1 CAA from type 2 [25, 26].  Unlike arterial and arteriolar CAA, capCAA 

may be surrounded by tau deposits and reactive microglia [27] and results in functional 

blood flow disturbances, which may exacerbate Aβ-mediated neurotoxicity [28].  Therefore, 

although capCAA is typically an infrequent feature of AD [29, 30], it may be biologically 

important in its pathogenesis.  In PDAPP mice, capCAA was increased after passive Aβ 

immunisation [31], and although capCAA has been noted to occur in human AD following Aβ 

immunotherapy, it has not been systematically studied or quantified [6, 9]. 

Aquaporin-4 (AQP4), the principal water transporter in the CNS [32, 33], offers a potential 

link between the vascular Aβ changes following immunisation and ARIA-E.  AQP4 is 
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expressed by astrocytes [34] at interfaces between brain parenchyma and fluid, most 

notably in perivascular astrocyte endfeet [35-37], and is integral to maintain astrocyte 

function, including fluid and ion homeostasis [33, 38, 39].  Experimental [31, 40-42] and 

human studies [40] have demonstrated a relationship between Aβ deposits and AQP4 

distribution.  In areas of vascular Aβ, AQP4 is redistributed away from perivascular endfeet, 

with a concurrent clustering of AQP4 around parenchymal plaques [43-46].  In the PDAPP 

mouse model immunised against Aβ, AQP4 was reduced in areas of newly formed capCAA.  

In addition, there was structural disorganisation of astrocyte endfeet [31], displacing endfeet 

away from their normally tight contact with endothelial cells, potentially allowing efflux of 

water from the blood into the brain parenchyma, causing extracellular water accumulation.  

Images suggested a similar mechanism may occur in human AD [31].  However, no such 

study has been performed to date in the brains of AD patients immunised against Aβ and 

this might provide important insights into the pathophysiology of ARIA-E.  We therefore 

hypothesise that an increase in capCAA may occur following Aβ immunisation and cause 

displacement of astrocyte AQP4-containing endfeet away from the vessel wall, or relocation 

of AQP4 within astrocytes away from the endfeet, leading to impaired water transfer across 

the capillary and resulting in interstitial oedema (ARIA-E). 

In this study, we took the opportunity offered by our unique neuropathological cohort of 

immunised AD cases to explore certain components of the aforementioned hypothesis. 

Specifically, by assessing whether Aβ removal was associated with (i) increased capCAA (ii) 

decreased AQP4 expression and (iii) displacement of AQP4-containing astrocyte endfeet 

away from capillaries. 

 

Materials and Methods 

Characteristics of the cases 

Clinical and neuropathological follow-up of Alzheimer’s patients (age range 63-89 years) 

enrolled in the Elan Pharmaceuticals phase 1 trial of AN1792 was previously reported [3, 4, 

7].  Patients (or carers) were invited to consent to post-mortem neuropathological 

examination, and subsequently, tissue was available from 22 immunised patients with 16 

having a neuropathological diagnosis of AD (termed iAD) (Table 1).  Six had another cause 

of dementia and were excluded from further analysis.  One patient (case no. 1) required 

imaging in life, which demonstrated features of meningoencephalitis and neuroradiological 

features consistent with the later defined ARIA-E [5, 16].  The case IDs were not known to 

anyone outside the research group. 

As there were inadequate numbers of post-mortem placebo treated samples from the 

original trial, 28 unimmunised AD cases used as controls (cAD; age range 63-88 years) were 
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sourced from the South West Dementia Brain Bank.  Cases were matched as closely as 

possible for age at death, APOE genotype and sex.  

 

Immunohistochemistry 

Four µm-thick sections of formalin fixed paraffin-embedded tissue were immunostained 

for Aβ42 (clone 21F12, 1:4000, Prothena Biosciences).  Sections from three neocortical 

areas – the medial frontal lobe, middle temporal lobe and inferior parietal lobule – were 

immunostained for AQP4 (H-80, Santa Cruz, Dallas, USA, 1:1000) and Aβ42 (Clone 21F12, 

Elan Pharmaceuticals).  Immunolabelling was performed using the appropriate antigen 

retrieval method, and the signal was amplified via the avidin-biotin-peroxidase complex 

method (Vectastain Elite) for a detection with 3,3’-diaminobenzidine as the chromogen 

(Vector Laboratories, Peterborough, UK).  All experiments included a negative control slide 

incubated in buffer with no primary antibody, and a positive control slide. 

 

Quantification 

Slides stained for Aβ42 and AQP4 were scanned using Olympus VS110 slide scanner at 

magnification x40 (CapCAA, AQP4 endfeet) or x20 (Aβ42 and AQP4 loads).  Olympus VS-

Desktop software (v2.9) was used to extract regions of interest (ROIs) with the quantification 

performed in each neocortical region and blind to immunisation status.  

CapCAA:  Thirty-five ROIs of 1.58mm2 each were placed contiguously in the area of 

cerebral cortex sampled in adjacent slides for Aβ42 and AQP4.  Identification of a capillary 

required an identifiable endothelial nucleus and/or cuboidal erythrocytes in the lumen, and a 

diameter less than 10µm.  The number of capCAA vessels was counted in each ROI.  

AQP4 capillary endfeet:  The number of capillaries surrounded by AQP4-positive endfeet 

(identified by the presence of AQP4 staining surrounding the capillary outer wall) were 

counted in 15 ROIs placed contiguously.   

Aβ42 and AQP4 loads:  Images of thirty ROIs were captured in a zigzag manner to 

sample the whole thickness of the neocortex.  The percentage area of Aβ42 or AQP4 

staining was measured using Image J 1.45v software and expressed as protein load (%) as 

previously reported [9].  

 

Statistical analysis 

Statistical analysis was performed in SPSS (ISM v25) and graphs were generated using 

GraphPad (PRISM v8).  Due to the highly patchy nature of plaque removal observed in the 

immunised cohort, data from the three neocortical areas were analysed and plotted 

individually for each parameter used.  Normality of the data was assessed using one-sample 
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Kolmogorov-Smirnoff tests and through examination Q-Q plots.  Due to the non-parametric 

distribution of the data, Mann-Whitney U-test was performed for group comparison.  For 

correlations Pearson’s or Spearman’s rank test, based on the data distribution, was done 

within each group to determine the relationships between capCAA, AQP4 and Aβ42, and in 

relation with the duration of dementia, age at death, and for the iAD group with the immune 

response (antibody peak and mean) and the survival time after immunotherapy.  Statistical 

tests were conducted at the 5% for intergroup comparisons and 1% significance level for 

correlations. 

 

Results 

 

CapCAA 

CapCAA was defined as Aβ42 located within or in close association with the capillary 

wall.  Examples of an unaffected capillary and capCAA in longitudinal and transverse section 

are illustrated in Figure 1A-C.  CapCAA can be an early consequence of Aβ immunotherapy 

as it was prominent in association with disrupted plaques in one patient as little as 4 months 

after the first immunisation dose (Figure 1D).  In addition, capCAA in areas of cerebral cortex 

devoid of plaques was notable in several long-term survivors, up to 14 years after 

immunisation, indicating it to be a longstanding and/or late recurrent feature (Figure 1E-G). 

Quantification of capCAA showed significantly more capCAA in the iAD vs cAD cases 

(median iAD=3.5 vs cAD=1, p=0.009; Figure 1H).  In order to determine the influence of 

APOE ε4 on capCAA, subgroup analysis was performed according to APOE ε4 allele status 

(ε4 carriers vs non-carriers).  In iAD, there was eight times more capCAA in ε4 carriers 

compared to non- ε4 carriers, but with borderline significance (median ε4+=4 vs ε4-=0.5, 

p=0.056; Figure 1I).  In cAD, there was no difference in capCAA based on ε4 status 

(p=0.238; Figure 1J). 

 

AQP4  

AQP4 expression was detected in the cell bodies and processes of astrocytes (Figure 

2A).  A patchy staining pattern of AQP4 was noted in the cerebral cortex, likely reflecting 

astrocytes associated with Aβ plaques, as previously described.  There was dense AQP4 

immunolabelling in astrocytes located in the subpial cortex and in the periventricular 

subependymal region.  Variable AQP4 expression was observed around large CAA-affected 

blood vessels with more intense staining attributed to AQP4-positive astrocyte endfeet 

around some, but not all, capillaries (Figure 2B, 2C). 
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Quantification of peri-capillary AQP4-positive endfeet showed no significant difference 

between groups (median iAD=46 vs cAD=56, p=0.311, Figure 2D).  Likewise, quantification 

of overall cortical AQP4 load showed no significant difference between the groups (median 

iAD=4.87% vs cAD=8.82%, p=0.294, Figure 2E).  In the subgroup analysis in relation to 

APOE status, there was no difference in AQP4 load or AQP4 endfeet according to ε4 carrier 

status between the iAD and cAD groups (data not shown).  

 

The case with known ARIA-E (case no. 1) 

Once the study was unblinded, detailed data were assessed for case no. 1, the only 

patient in the cohort who had imaging during life, in retrospect defined as having had ARIA-E 

[5, 7]. As previously reported, the case has extensive removal of Aβ and severe cortical and 

parenchymal CAA [5].  In this case (black triangle), quantification of capCAA, AQP4 endfeet 

and AQP4 load fell within the ranges for the other iAD cases (white triangles), not appearing 

strikingly different in this regard (figures 1H, 2D-E). 

 

Correlations 

Correlations were assessed between capCAA, AQP4 endfeet data, AQP4 and Aβ42 

loads and available clinical information. 

In the iAD group, a significant negative correlation was observed between capCAA and 

AQP4 load (r = -0.498, p<0.001), and a trend towards an association between AQP4 load 

and capillary AQP4+ endfeet (r = 0.317, p=0.032) (Table 2A). 

In the cAD cohort, a positive correlation was detected between the AQP4 load and 

AQP4+ endfeet (r = 0.547, p<0.001) and a negative correlation between AQP4+ endfeet and 

age at death (r = -0.487, p=0.010) (Table 2B).  No other associations were observed in 

either group. 

 

Discussion 

ARIA-E has been a persistent hurdle in clinical trials of Aβ immunotherapy for AD [19].  

The presence of MRI signal changes, interpreted as reflecting oedema [16], have occurred 

in most clinical trials to date, causing significant dose reduction, interruption or trial 

cessation.  Consequently, it is important to understand the pathophysiological basis for this 

problem, but understanding has been hampered by the paucity of neuropathological 

analyses of brain tissue from affected patients.  There have been few autopsy studies of 

patients with AD in Aβ immunotherapy trials, other than the cases described here, and none 

with numbers of cases as large as the cohort investigated in this study.  The impact of 

AN1792 immunotherapy on other aspects of AD pathology has been previously reported [5-

9] - notably, the reduction in plaque load [5, 6, 47] and the increase in cerebral amyloid 
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angiopathy (CAA) [5-8].  This has been attributed to Aβ from plaques being solubilised and 

drained towards the perivascular pathway (intramural periarterial drainage, IPAD) [13-15] as 

Aβ is cleared from the brain.   

A similar increase in CAA severity has also been identified in animal models of AD 

immunised against Aβ including accumulation specifically in association with capillaries 

(capCAA).  In AD mouse models, AQP4 the principal water transporter in the brain [32, 33, 

48], is displaced away from capillaries following Aβ immunisation [31] – offering potential 

insight into the pathophysiology of ARIA-E.  In this human study, we therefore investigated 

the impact of immunisation on capCAA and on the distribution of AQP4-positive astrocyte 

endfeet around capillaries.  

 

CapCAA 

Prior to this study, the impact of immunisation on capillaries was unclear.  As the capillary 

basement membrane is at the origin of the perivascular drainage pathway [12], it might be 

predicted that there would be increased capCAA following immunisation.  In this study, we 

show that capCAA was 3.5 times higher in the immunised AD cohort, consistent with the 

hypothesis that Aβ from plaques is partly cleared via the perivascular drainage pathway and 

deposits in the capillary basement membrane forming capCAA [6, 8].  Interestingly, we did 

not see an association between capCAA and Aβ42 load in either of the groups.  In AD, this 

might be explained by the very uncommon occurrence of capCAA (median of 1 event in 35 

ROIs in AD) relative to the amount of Aβ in the form of plaques.  Following immunotherapy, 

this might imply that only a small proportion of Aβ draining from plaques participates, 

resulting in the increased capCAA.  

APOE4 is the largest genetic risk factor for sporadic AD [49, 50], with E4 homozygotes 

having a 90% lifetime risk of AD [51, 52].  The presence of ARIA-E has been strongly 

associated with possession of APOE4 – with each allele conveying 2.55x risk [16].  The risk 

of the APOE4 allele is thought to relate to the efficiency of APOE-mediated Aβ clearance 

[52], which may underpin the concurrent increase in capCAA.  When we analysed the 

presence of capCAA according to APOE4 allele status in our cohorts, the E4 carriers in the 

immunised group had 8 times more capCAA than the non-E4 carriers; whereas no difference 

was observed in the unimmunised AD group when divided according APOE4 status.  

Consistent with our observation, two types of CAA have been defined, with type 1 including 

capCAA and associated with 4 times increased of the APOE4 allele frequency; while type 2 

lacks capCAA and is mainly associated with APOE2 [25].  This implies that capCAA is more 

prone to form in E4 carriers, and CAA-Type 1 might be a contributory event underlying ARIA. 

In addition, considering the fundamental role that capillaries play in maintaining cerebral 

homeostasis, for example in delivering oxygen and glucose and removing CO2, it is likely 
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that disruption of the capillary structure by Aβ deposition will have deleterious 

consequences.  CapCAA has been shown to cause capillary occlusion and functional blood 

flow disturbances [28], with other neuropathological features of AD such as tau deposits and 

neuroinflammation observed surrounding capCAA but not CAA [27].  Therefore, 

exacerbation of capCAA could potentially counteract a possible therapeutic benefit of 

lowered plaque burden after immunisation [4]. 

 

AQP4 

CapCAA may impact surrounding molecular and cellular structures, specifically perivascular 

astrocyte endfeet and associated AQP4 distribution.  Indeed, displacement of AQP4 away 

from vascular Aβ with a concurrent increase of AQP4 around plaques has been reported 

previously in experimental models of AD [31, 40-42].  One study in human AD observed 

AQP4 staining associated with blood vessels in AD with mild CAA; while AD with moderate 

CAA had a diffuse pattern of AQP4, which was absent in AD with severe CAA [40].  In that 

study the staining was performed in n=3 per group and not quantified.  In our larger and 

quantitative study, we did not observe changes in AQP4 load per se or in the number of 

capillaries surrounded by AQP4 after Aβ immunisation.  However, a significant negative 

association was found between capCAA and AQP4 load, consistent with the idea that 

increased capCAA has led to alterations in AQP4 as demonstrated in mice [31]. 

 

Implications for ARIA 

A lymphocytic inflammatory reaction to the increased burden of Aβ in the vasculature, has 

also been proposed to play an important role in generating ARIA [15].  Close parallels have 

been noted between this post-immunotherapy iatrogenic change and the naturally occurring 

disorder of CAA-related inflammation [53, 54] in which patients produce anti-Aβ antibodies 

as an autoimmune response [55, 56].  Both CAA-related inflammation and severe CAA by 

itself are known to cause alterations on imaging of the underlying cerebral white matter, 

although the mechanism for this is unclear [57].  Both our own single case known to have 

ARIA and one other such published case [58] had a lymphocytic reaction in relation to the 

CAA and so inflammatory processes may have additional or greater relevance to ARIA than 

capCAA-associated alterations in AQP4. 

A crucial limitation affecting all ARIA studies, ours notwithstanding, is the lack of 

neuropathological correlates. During the clinical phase of the AN1792 phase 1 trial, imaging 

was not routine and ARIA had not been described. In our cohort, one case retrospectively 

had imaging features consistent with ARIA-E (case no. 1) [5, 7], occurring nearly a year prior 

to death. As ARIA-E is a transient phenomenon, occurring 4 – 8 weeks after the first dose 

and lasting up to 113 days [20, 59], these changes may have fully resolved before death. 
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This may explain why case no. 1 did not differ obviously from the other immunised AD cases 

in terms of capCAA, AQP4+ endfeet and AQP4 load. In addition, there may have been 

ARIA-E occurring in other cases in our cohort, that was not detected clinically or 

radiologically. Hence, it is challenging to be sure that we are looking at tissue affected by 

ARIA-E.  

The best quality information about the relevant pathophysiological processes would be 

from biopsies or post-mortem samples from the time that ARIA occurred, but as far as we 

are aware no such samples exist. This is a substantial blind spot in the field of Alzheimer’s 

research. Understanding the mechanisms behind ARIA takes on a renewed level of 

importance given the recent approval by the Federal and Drug Administration (FDA) of 

Aduhelm (aducanumab), an anti-Aβ antibody, for the treatment of AD, with similar agents 

undoubtedly to follow. Aducanumab causes ARIA in clinical trials [60], and wider use may 

lead to more cases of ARIA.  Especially given the controversy of whether aducanumab 

produces clinically meaningful improvement [61-63], we need a better understanding of 

ARIA to accurately appraise the balance of risks and benefits. Obtaining neuropathological 

correlates of ARIA should be a priority in the field.  

 

Conclusions 

ARIA occurring in the context of Aβ immunotherapy in AD is hypothesised to result from 

dynamic changes in the localisation of Aβ with a shift of Aβ from plaques to blood vessel 

walls.  This increased CAA severity is likely associated with inflammation and is analogous 

to the spontaneous disease of CAA-related inflammation.  ARIA-E may be due to failure to 

control water flux at the blood-brain barrier.  In support of this hypothesis, we found that Aβ 

immunotherapy is associated with increased in severity of capillary CAA, more so in carriers 

of APOE4 who are also at greater risk of ARIA.  Therefore, exacerbation of capCAA could 

potentially counteract possible therapeutic benefit of lower plaque burden after 

immunisation, particularly in APOE4 carriers.  Furthermore, capillary CAA is inversely related 

to AQP4 levels after immunisation, although we found no evidence of an overall change in 

AQP4 load or displacement of AQP4 from astrocyte endfeet.  Limitations to our 

understanding of ARIA include the few cases from which tissue is available to study, lack of 

biopsies and difficulty in imaging of CAA and inflammation in vivo.  The field must prioritise 

obtaining neuropathological correlates of ARIA to explore its mechanisms further. 
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Legends 

Figure 1. Illustrations of cerebral cortical capillaries unaffected (A) and affected (B and C) by 

accumulation of Aβ within and in close association with their walls (i.e. capillary CAA).  

Prominent capillary CAA was detected as early as 4 months after first Aβ immunisation dose 

in one case (case no. 2) during what appeared to be a dynamic phase of plaque removal 

(D).  In addition, in some long term survivors, marked capillary CAA in the absence of 

plaques was present in some cortical regions up to 14 years after immunisation indicating it 

could also be a longstanding and/or late recurrent feature (E, case no. 20; F, case no. 21; G, 

case no. 22, Aβ42 immunohistochemistry).  Quantification showed significantly more 

capCAA in the cerebral cortex of immunised AD cases compared with untreated AD cases 

(H).  The case known to have had ARIA (case no. 1) is indicated in red.  Amongst the 

immunised AD cases, there was a trend for more capCAA in APOE ε4 carriers than non-ε4 

carriers (p=0.056) (I).  No such trend was evident in APOE ε4 carriers in untreated AD cases 

(J).  Scale bar (A-C) = 50μm; (D-G) =.100μm. 

Figure 2. Aquaporin 4 (AQP4) expression in the cerebral cortex is present in both the cell 

body and processes of astrocytes (A).  There is particularly prominent AQP4 staining around 

many (B) but not all (C) capillaries, representing AQP4 in astrocyte end feet.  Quantification 

showed no significant difference between immunised AD cases (iAD) and control AD cases 

(cAD) in either the density of capillaries wrapped by AQP4-containing endfeet (D) or overall 

AQP4 load (E, % area stained).  The case known to have had ARIA (case no. 1) is indicated 

in red.  Scale bar = 50μm. 
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Table 1: Demographic information on the immunised and non-immunised AD groups. 

 

 

** Case with ARIA-E; iAD: immunised Alzheimer’s case; cAD: non-immunised Alzheimer’s case; F: Female; M: 

Male; n/a: not applicable 

 

Case no. 

(iAD) 
Sex 

Dementia 

duration 

(years) 

APOE 

status 

Mean 

antibody 

response 

(ELISA units) 

Survival time from 

first AN1792 

immunisation 

(months) 

  

  1** F 6 3.4 1:119 20   

2 M 11 3.3 <1:100 4   

3 M 6 3.3 <1:100 41   

4 F 10 3.3 1:4072 44   

6 M 7 3.4 1:1707 57   

7 M 6 3.4 1:4374 60   

8 M 10 3.4 1:6470 64   

9 M 11 4.4 1:491 63   

10 F 11 3.3 1:137 86   

11 M 12 3.4 1:142 94   

16 F 15 3.4 1:142 111   

17 F 13 4.4 <1:100 141   

19 F 19 Unknown 1:221 162   

20 M 17 Unknown 1:430 166   

21 F 18 3.4 1:3045 173   

22 M 18 4.4 1:1313 184   

cAD 

(n=28) 
15 F: 13 M 3-17 

 

21 ε4+ 

6 ε4- 

1 unknown 

n/a n/a 
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Table 2: Correlations between the number of Aβ42+ capillaries (capCAA), AQP4+ capillaries (endfeet), overall 

AQP4 and Aβ42 load and the available clinical information in (A) the immunised AD group and (B) in the non-

immunised AD group. 

A (iAD) 
AQP4 

end-feet 
AQP4% Aβ42% 

Antibody 

peak 

Antibody 

mean 

Survival 

time 

Dementia 

duration 

Age at 

death 

CapCAA 
rs=-0.208 

p=0.156 

rs=-0.498*** 

p<0.001 

rs=-0.018 

p=0.906 

rs=0.287 

p=0.281 

rs=0.238 

p=0.374 

rs=0.063 

p=0.815 

rs=0.125 

p=0.645 

rs=0.084 

p=0.758 

AQP4 end-feet  
rs=0.317* 

p=0.032 

rs=0.232 

p=0.113 

rs=0.066 

p=0.807 

rs=0.229 

p=0.394 

rs=-0.116 

p=0.668 

rs=-0.313 

p=0.238 

rs=0.018 

p=0.948 

AQP4%   
rs=-0.060 

p=0.690 

rs=-0.177 

p=0.512 

rs=0.074 

p=0.786 

rs=-0.124 

p=0.649 

rs=-0.330 

p=0.211 

rs=0.177 

p=0.512 

Aβ42%    
rs=0.109 

p=0.687 

rs=0.065 

p=0.811 

rs=0.100 

p=0.713 

rs=0.081 

p=0.764 

rs=-0.298 

p=0.262 

 

B (cAD) 
AQP4 

end-feet 
AQP4% Aβ42% 

Dementia 

duration 

Age at 

death 

CapCAA 
rs=-0.123 

p=0.275 

rs=0.002 

p=0.989 

rs=-0.060 

p=0.588 

rs=0.004 

p=0.987 

rs=-0.056 

p=0.777 

AQP4 end-feet  
rs=0.547*** 

p<0.001 

rs=0.024 

p=0.835 

rs=-0.172 

p=0.444 

rs=-0.487** 

p=0.010 

AQP4%   
r=-0.154 

p=0.172 

r=-0.163 

p=0.468 

rs=0.091 

p=0.652 

Aβ42%    
r=-0.167 

p=0.459 

rs=0.258 

p=0.185 

rs Spearman’s rank correlation; r Pearson’s rank correlation; **p≤0.01; ***p≤0.001; significant p values are in italic. 
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