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There are more than 7,000 rare diseases, some of which affect 3,500 or fewer patients in

the US. Due to clinicians’ limited experience with such diseases and the considerable het-

erogeneity of their clinical presentations, many patients with rare genetic diseases remain

undiagnosed. While artificial intelligence has demonstrated success in assisting diagnosis, its

success is usually contingent on the availability of large labeled datasets. Here, we present

SHEPHERD, a deep learning approach for multi-faceted rare disease diagnosis. SHEPHERD

is guided by existing knowledge of diseases, phenotypes, and genes to learn novel connec-

tions between a patient’s clinico-genetic information and phenotype and gene relationships.

We train SHEPHERD exclusively on simulated patients and evaluate on a cohort of 465 pa-

tients representing 299 diseases (79% of genes and 83% of diseases are represented in only

a single patient) in the Undiagnosed Diseases Network. SHEPHERD excels at several diag-

nostic facets: performing causal gene discovery (causal genes are predicted at rank = 3.52

on average), retrieving “patients-like-me” with the same gene or disease, and providing in-

terpretable characterizations of novel disease presentations. SHEPHERD demonstrates the

potential of artificial intelligence to accelerate the diagnosis of rare disease patients and has

implications for the use of deep learning on medical datasets with very few labels.
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Main
Rare diseases affect 300-400 million people worldwide, yet each disease has a very low preva-

lence, involving no more than 50 per 100,000 individuals [1, 2]. Due to their low prevalence,

most front-line clinicians lack disease experience, resulting in numerous specialty referrals and

expensive clinical workups for patients across multiple years and institutions. Furthermore, pa-

tients with the same disease can present variable symptoms, disease severity, and age of onset [3].

Such challenges make the task of rare disease diagnosis extremely difficult; approximately 70%

of individuals seeking a diagnosis and up to 50% of the suspected Mendelian conditions remain

undiagnosed [4, 5]. These diagnostic delays can lead to redundant testing or unnecessary medical

procedures, inappropriate or delayed disease management, and irreversible disease progression if

the time window for intervention is missed.

Machine-assisted diagnosis offers the opportunity to shorten diagnostic delays for rare dis-

ease patients. Advances in artificial intelligence (AI) and deep learning have considerably im-

proved diagnostic accuracy [6–15]. Deep learning models that have been trained (via supervised

learning) on labeled datasets can achieve near-expert clinical accuracy for common diseases, in-

cluding diabetic retinopathy [16], skin cancers [17], and pediatric diseases [18]. In addition, these

AI-assisted tools can augment physicians’ decision-making in the clinic and support medical diag-

nosis, particularly in settings with limited or time-constrained resources.

However, existing AI-assisted diagnostic approaches require labeled datasets with thousands

of diagnosed patients per disease in order to train deep learning models. Therefore, the applicabil-

ity of these models to rare diseases is unclear — datasets are three orders of magnitude smaller than

in other uses of AI for medical diagnosis. For example, a deep convolutional neural network devel-

oped for diagnosing diabetic retinopathy and diabetic macular edema was trained using a labeled

dataset of retinal images from 128,175 patients [16]. Meanwhile, due to the heterogeneity and low

prevalence of each rare disease, AI models are unlikely to have seen patients with the same—or

similar—genetic disorders during training. Moreover, the low prevalence of rare diseases pre-

cludes the creation of datasets of sufficient size to use deep learning, even with manual expert

curation. These reasons indicate that AI-assisted diagnosis of rare diseases encounters challenges

distinct from other uses of AI for diagnosis. Concretely, approaches must be able to extrapolate

beyond the training distribution to novel genetic conditions and atypical disease presentations (in

other words, generalize to conditions or presentations of known conditions that were not observed

during training). Further, given the lack of large labeled datasets, the successful use of AI depends
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on the ability to learn from sparsely labeled datasets.

Here, we introduce SHEPHERD, a deep learning approach for multi-faceted diagnosis of pa-

tients with rare genetic conditions. SHEPHERD operates at multiple points throughout the rare

disease diagnosis process to perform causal gene discovery, retrieve “patients-like-me” with sim-

ilar conditions, and provide interpretable names for novel disease presentations. To overcome

the limitations of supervised learning, SHEPHERD performs label-efficient training by (1) train-

ing exclusively on simulated rare disease patients without the use of any real-world labeled cases

and (2) incorporating external knowledge of known phenotype, gene and disease associations via

knowledge-guided deep learning. The simulated patients used for training are created using an

adaptive simulation approach that provides realistic rare disease patients with varying numbers of

phenotypes and candidate genes [19]. Knowledge-guided learning is achieved by training a graph

neural network to represent a patient (specifically, the patient’s presenting phenotypes) in relation

to other phenotypes, genes, and diseases. When a new patient arrives, SHEPHERD produces an

embedding (a dense vector of real numbers) of the patient such that the patient’s embedding in the

latent space is located close to the patient’s candidate causal gene and disease as well as to other

patients with the same gene or disease, and far away from irrelevant genes and diseases of other

patients with different diseases. Using the embedding space optimized for rare disease diagnosis,

SHEPHERD nominates genes and diseases for a patient even when no other patients are diagnosed

with the same disease. Taken together, the two above mentioned components of SHEPHERD enable

deep learning to diagnose rare genetic diseases, a medical problem defined by a small number of

labeled cases.

We evaluate SHEPHERD on an external cohort of patients in the Undiagnosed Diseases Net-

work (UDN) [20], a nationwide initiative with 12 clinical sites in the US tasked with diagnosing

patients with rare, difficult to diagnose genetic conditions. In addition to the multi-site UDN co-

hort, our external evaluation includes a nationwide MyGene2 patient cohort. SHEPHERD performs

granular, phenotype-based causal gene discovery by ranking candidate genes that are output from

bioinformatics or expert pipelines. We find that SHEPHERD ranks the correct gene first in 40% of

patients spanning 16 disease areas, improving diagnostic efficiency by at least twofold compared

to a non-guided baseline. In addition, SHEPHERD nominates the correct diagnosis for patients

with atypical presentations or novel genetic diseases, ranking the correct gene among the top five

predictions for 75% of those hard-to-diagnose patients. By testing SHEPHERD on each disease

area, clinical site, and year of diagnosis, we find that SHEPHERD has sustained performance over

3

 . CC-BY 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 13, 2022. ; https://doi.org/10.1101/2022.12.07.22283238doi: medRxiv preprint 

https://doi.org/10.1101/2022.12.07.22283238
http://creativecommons.org/licenses/by/4.0/


time and across diseases and clinical sites in the UDN. Further, SHEPHERD generates meaning-

ful patient representations that capture patient similarity (Adjusted Mutual Information = 0.304)

and enable retrieval of “patients-like-me” with similar genetic conditions. Finally, SHEPHERD can

provide interpretable characterizations of novel disease presentations. By describing never-before-

seen diseases based on their similarity to known genetic diseases, SHEPHERD can point clinical

researchers towards the most closely related diseases to investigate the novel disease in depth. For

each use case, we illustrate SHEPHERD’s capabilities on case studies from patients in the Undiag-

nosed Diseases Network and provide an interactive demo to explore SHEPHERD’s predictions at

https://huggingface.co/spaces/emilyalsentzer/SHEPHERD.

Results

Overview of the Undiagnosed Diseases Network patient cohort

We assemble a cohort of 465 patients in the Undiagnosed Diseases Network (UDN) with

molecular diagnoses. Most patients are diagnosed with a single causal gene that explains their

symptoms, 14 patients (3%) have two causal genes, and two patients (0.4%) have three causal

genes. Most patients in the UDN receive an extensive clinical workup and whole genome or exome

sequencing (Figure 1a). Sequencing data is analyzed with the involvement of clinicians and genetic

counselors to identify candidate genes that harbor variants likely to explain the patient’s symptoms.

Once one to five strong candidates are identified, causality is assessed by searching for genotype-

and phenotype-matched individuals in human and animal databases or by introducing candidates

into model organisms to assess in vivo impact [21].

Through this diagnostic process, patients are annotated with a set of Human Phenotype On-

tology (HPO) terms describing their symptoms or findings and a set of candidate genes that may

explain the patient’s syndrome. Clinical experts additionally annotate diagnosed patients with

an Online Mendelian Inheritance in Man (OMIM) identifier describing their disease (if available).

Each patient is characterized by 23.9 phenotypes on average (SD = 16.1; Figure 1b). The candidate

genes are patient-specific and include genes in which the patient has a mutation. For each patient,

the diagnostic process creates two sets of candidate gene lists, which are derived from genes con-

sidered at two different phases in the UDN diagnosis pipeline (Figure 1a): VARIANT-FILTERED, a

gene list produced by initial variant-based filtering of candidate genes, and EXPERT-CURATED, a

gene list that includes genes marked by clinical experts as strong candidates for the patient (Meth-

ods 2.1). The VARIANT-FILTERED gene lists are produced using Exomiser [22,23], a variant-based
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tool that is used in parallel to existing pipelines at three UDN sites [21]. The two candidate gene

lists contain 244.3 and 13.3 genes on average respectively (SD = 244.0 and SD = 8.0; Figure 1b).

Each gene list is fed into SHEPHERD to nominate the causal gene, i.e., the gene harboring variants

that cause the patient’s disease, from both a long list of candidates derived from automated filter-

ing (VARIANT-FILTERED) and a short list of the strongest candidates that are more challenging to

prioritize (EXPERT-CURATED).

Patients have heterogeneous disease presentations: 378 unique genes and 299 unique dis-

eases are represented in the cohort, and 48% of phenotypes, 79% of genes, and 83% of diseases

are represented in only a single patient (Figure 1c). On average, patients with the same disease have

only 67% of phenotypes in common (SD = 43%). In addition, 7% of patients have novel genetic

diseases, and only 28% of each patient’s phenotypes are known to be associated with the causal

gene on average (SD = 21%). The assembled cohort of UDN patients has been evaluated at 12

clinical sites across the United States (Figure 1d). While 75.9% of patients are less than five years

old, patients can present to the UDN with suspected genetic diseases in their 40s or 50s (Figure

1e). Most patients present with neurological symptoms but can exhibit cardiac, musculoskeletal,

rheumatic, and many other symptoms (Figure 1f). Due to the lag between starting the process at

the UDN and receiving the diagnosis, most patients included in the analysis were evaluated by

UDN clinicians in 2016-2018 (Figure 1g). The phenotypic heterogeneity and presence of novel

and atypical diseases pose a challenge for diagnosis, requiring diagnostic technology that can ac-

commodate previously unseen phenotypes, genes, and diseases and leverage knowledge beyond

direct gene, phenotype, and disease associations (Supplementary Figure S1). The UDN patients

represent a diverse, independent cohort that we use exclusively for model evaluation. Importantly,

these patients are not used to train SHEPHERD.

Overview of SHEPHERD algorithm

Given a set of patient’s clinical phenotypes and candidate disease(s) or candidate gene(s)

harboring causal variants, SHEPHERD performs multi-faceted diagnosis of the patient to identify

causal genes, retrieve “patients-like-me” with the same causal gene or disease, or provide inter-

pretable characterizations of novel disease presentations (Figure 1h). SHEPHERD can integrate

into the rare disease diagnostic process workflow at multiple points: (1) to find similar patients

after the patient’s clinical workup, (2) to identify strong candidate causal genes after the initial

sequencing analysis or in conjunction with the clinical case review, and (3) to characterize the
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patient’s disease and/or find similar patients for experimental or cohort validation after candidate

causal genes are identified.

SHEPHERD is a few-shot deep learning approach for rare disease diagnosis. Few-shot learn-

ing, which can make predictions when very few, if any, labeled data points are available, is central

to rare disease diagnosis, given the low prevalence of each disease. Key to SHEPHERD’s ability

to provide diagnostic prediction when zero or at most a few labeled (diagnosed) patients per dis-

ease are available is to use a rare disease knowledge graph. SHEPHERD represents each patient

as a subgraph of phenotypes in the knowledge graph of gene, phenotype, and disease associations

(Methods 1). It jointly embeds each patient’s phenotype subgraph and the candidate genes or dis-

eases such that embeddings are informed by all of the existing biomedical knowledge (Figure 2a).

The embedding function is a graph neural network that maps biomedical concepts and patient in-

formation to the embedding space such that patients embed nearby their causal gene(s), disease(s),

and other similar patients. SHEPHERD leverages an attention mechanism to generate the aggregated

embedding for each patient’s set of phenotypes, which can be inspected to assess the contribution

of each phenotype to the prediction.

Mathematically, SHEPHERD is first pretrained to embed genes, phenotypes, and diseases by

learning to predict whether relations exist in the knowledge graph (Figure 2a). This step produces

embeddings that satisfy three criteria: they are compact and amenable to further AI analyses,

embeddings are biologically meaningful, and they are broadly generalizable by accounting for

complementarity between diseases. Then, using the pretrained model as initialization, SHEPHERD

is further trained for multi-faceted diagnosis of rare diseases through a novel objective function

(Methods 3).

Due to the scarcity of data for patients with rare monogenic diseases, we leverage simulated

but realistic rare disease patients for training SHEPHERD. We develop SHEPHERD on a cohort of

over 40,000 simulated rare disease patients representing over 2,000 rare diseases in Orphanet (Fig-

ure 2b, Methods 2.3). The simulated data is critical for training a deep learning model for rare

disease diagnosis. The simulated cohort is considerably larger, more diverse, and more representa-

tive of phenotype and genotype heterogeneity than any real-world dataset of rare disease patients.

Furthermore, the trained models can be released without the risk of exposing any patient infor-

mation [24]. While unable to represent all rare diseases, this dataset enables the training of deep

learning models in conjunction with knowledge-guided few-shot approaches. Importantly, SHEP-

HERD learns how to generalize to novel diseases by being trained in a disease-stratified manner, in
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which we assign patients with the same disease exclusively to the training or validation set. We

externally evaluate SHEPHERD on the multi-site UDN cohort and nationwide MyGene2 cohorts of

patient diagnoses.

SHEPHERD can perform causal gene discovery

A critical step in rare disease diagnosis is identifying the gene(s) that are strong candidates for

causing the patient’s syndrome (Figure 1a). Given a patient’s set of phenotypes and a list of genes

in which the patient has a mutation, SHEPHERD nominates genes harboring variants most likely to

explain the patient’s presenting symptoms. SHEPHERD produces a score for each candidate gene

in the patient that fuses two complementary aspects of information: an embedding-based aspect

that captures the global network topology and an aspect based on knowledge graph distance that

captures local network information (Methods 3.3). We use SHEPHERD to prioritize genes found in

both the EXPERT-CURATED and VARIANT-FILTERED candidate gene lists (Methods 2.1). In both

instances, SHEPHERD performs granular prioritization by refining lists of patients’ candidate genes

outputted by bioinformatics pipelines. As such, SHEPHERD can complement existing variant-

based approaches for gene prioritization while leveraging the extensive knowledge sources of gene-

phenotype associations.

We report SHEPHERD’s performance as the average recall at k, defined as the number of

causal genes retrieved in the top k ranked genes on average for all patients in the cohort. SHEPHERD

ranks the patient’s causal gene first in 40% of UDN patients, achieving a recall of 0.69 when k = 3

and 0.85 when k = 5 on average (Figure 3a). On the much longer VARIANT-FILTERED gene lists,

SHEPHERD achieves an average recall of 0.30, 0.60, and 0.73 for k = 1, 5, and 10, respectively

(Supplementary Figure S2).

We evaluate SHEPHERD against six approaches, including an information-theoretic method,

a network science baseline, shallow embedding lookup, two supervised learning strategies, and

non-guided random reference (Methods 5.2). The baselines represent the different classes of meth-

ods that can perform the task. SHEPHERD significantly outperforms the second best approach in

retrieving the causal gene first by 5% (p-value = 9.30 × 10−4) and outperforms other machine

learning approaches by 24% or more (p-value = 3.60×10−6). Using SHEPHERD, clinicians would

need to evaluate 1,012 genes from the EXPERT-CURATED lists or 4,019 genes from the VARIANT-

FILTERED lists in order to arrive at the causal gene for all 465 UDN patients. In contrast, with

non-guided ranking, clinicians would need to evaluate a total of 2,231 EXPERT-CURATED genes
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or 27,727 VARIANT-FILTERED genes, suggesting that SHEPHERD has the potential to improve di-

agnostic efficiency by 2.2-times and 6.9-times, respectively. Furthermore, compared to the second

best approach, SHEPHERD reduces the number of genes clinicians need to consider by 118 and

1,479 for the EXPERT-CURATED and VARIANT-FILTERED lists, achieving a 10% and a 40% reduc-

tion in the number of genes, respectively.

Stratified performance across UDN patients

We find no significant difference in performance across UDN sites throughout the US (p-

value = 0.235; Kruskal-Wallis H-test Figure 3c), across the year of evaluation by UDN clinicians

(p-value = 0.789; Figure 3d), and across patients with varying presenting symptoms (p-value

= 0.762; Figure 3e). These results indicate that SHEPHERD is broadly generalizable across UDN

sites and disease presentations over time. SHEPHERD’s ability to generalize is essential because

rare disease patients represent a heterogeneous group, and developing separate models that perform

well for each subgroup is intractable due to the low prevalence of the disorders.

SHEPHERD can diagnose patients with atypical and novel genetic diseases

Patients in the UDN have atypical or novel disease presentations, which makes them chal-

lenging to diagnose because there are no direct associations between patients’ genes, symptoms,

and the correct diagnosis. This means that a lookup against medical knowledge bases is ineffec-

tive for diagnosis. We find that SHEPHERD can identify the causal gene even when the patient’s

presenting phenotypes are multiple hops away from the gene causing the disease in the knowledge

graph. No strong correlation exists between SHEPHERD’s performance and the distance between

the patient’s phenotypes and causal gene (Figure 3b; R2 = 0.166).

In the following, we demonstrate the use of SHEPHERD for patients diagnosed with atypi-

cal presentation of a known disease or a novel syndrome. Let us first illustrate how SHEPHERD

nominates the correct diagnosis for a patient with atypical disease representation and consider-

able phenotypic heterogeneity. In particular, patient UDN-P1 (Figure 4a; SHEPHERD Demo Tab 1,

Patient UDN-P1) received a diagnosis for POLR3-related leukodystrophy three years after accep-

tance into the UDN. While the involvement of gene POLR3A with leukodystrophy (MIM:607694)

is known, the patient’s case was challenging due to her atypical clinical presentation. Several

of her presenting phenotypes, including lack of tear production, premature adrenarche, laryngeal

cleft, hearing loss, and high blood pressure, are not typical of leukodystrophy. Further, only 28.3%

(13 out of 46) of the patient’s phenotypes are directly linked to POLR3A in the knowledge graph,
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and the patient phenotypes are 1.98 hops away from the causal gene in the knowledge graph on

average. The POLR3A gene is associated with five other diseases, and 93.7% (192 out of 205)

phenotypes directly linked to POLR3A are not found in the patient, further complicating the di-

agnosis. Despite this atypical disease presentation, SHEPHERD identifies the patient’s causal gene

in the top 2 out of 17 and 86 candidate genes in the EXPERT-CURATED and VARIANT-FILTERED

gene lists, respectively. Other genes placed high in the ranking by SHEPHERD include KAT6A and

UBE3A, which cause Arboleda-Tham and Angelman syndromes and explain many symptoms the

patient has had, but also indicate that symptoms alone cannot disambiguate diseases. Strikingly,

SHEPHERD can disambiguate diseases by optimally up- and down-weighting phenotypes using an

attention mechanism and correctly down-weights phenotypes that are atypical of leukodystrophy.

SHEPHERD can also identify strong candidate genes for patients with novel uncharacterized

syndromes. Patient UDN-P2 (Figure 4b; SHEPHERD Demo Tab 1, Patient UDN-P2) was accepted

into the UDN with several disparate presenting symptoms, including duodenal atresia, intestinal

malrotation, vascular anomalies, pancreatic exocrine insufficiency, liver disease, and developmen-

tal delay. According to UDN clinicians, the most likely diagnosis for this patient’s symptoms is

a GLYR1-associated novel syndrome characterized by pancreatic insufficiency and malabsorption.

The GLYR1 gene is not associated with any known diseases. There are no phenotypes related to the

gene in the knowledge graph, and the average shortest path length from the patient’s phenotypes to

the causal gene is 2.2. Nevertheless, SHEPHERD correctly identifies the suspected causal gene first

in the EXPERT-CURATED candidate list and the top 9 of the 82 genes in the VARIANT-FILTERED

candidate list, illustrating how SHEPHERD can assist in recognizing novel genetic diseases.

SHEPHERD finds rare disease patients with similar genetic and phenotypic features

Another key consideration for rare disease diagnosis is finding patients that share the same

disease or causal gene, commonly referred to as “patients-like-me” [25] (Figure 1a). Starting

from a set of patient phenotypes, SHEPHERD flags other patients in the cohort with similar genetic

diseases suitable for follow-up diagnostic analysis. Concretely, SHEPHERD finds similar patients

through a deep embedding scorer optimized to represent patients with the same causal genes or

disease as nearby points in the embedding space (Figure 5a). For this analysis, we combine pa-

tients from three cohorts for a total of 43,235 patients: the simulated cohort, the UDN cohort, and

another external MyGene2 cohort. The cohort from MyGene2 (part of the Matchmaker Exchange,

a federated platform used by the UDN for validating strong candidates via case matching [26])
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consists of patients with rare genetic diseases who decided to share their health information with

other families, clinicians, and researchers (Methods 2.2).

SHEPHERD represents each patient as a point in the embedding space colored by the dis-

ease category of their diagnosed disease. The categories correspond to the 33 disease categories

outlined in Orphanet (Methods 2). Robust clustering of patients by disease area (AMI = 0.304;

p-value < 0.01) shows that SHEPHERD generates the embedding space that meaningfully captures

patient relationships that can directly answer “patients-like-me” queries. Remarkably, even though

SHEPHERD is trained on simulated patients, it generalizes to real-world UDN and MyGene2 co-

horts, revealing disease-enriched regions in the embedding space where real-world patients are

positioned nearby simulated patients with the same disease area (Supplementary Figure S3).

To further evaluate patient embeddings, we compare embedding distances between patients

diagnosed with either the same or different disease (i.e., comparing diagonal vs. off-diagonal en-

tries, Figure 5b). We find that distances between patients of the same category are significantly

smaller than between patients of different categories (p-value < 1 × 10−10 across all disease cat-

egories; Mann-Whitney test), which indicates that SHEPHERD captures the similarity between pa-

tients with similar disease presentations. We also observe several distinct clusters of disease cate-

gories in the embedding space (Figure 5b; Supplementary Figure S4). For example, patients with

neoplastic diseases and gastroenterologic diseases cluster together. Similarly, patients with hema-

tologic and hepatic diseases, and patients with odontologic and renal diseases cluster together in the

embedding space. These clusters represent real co-occurrences of symptoms in disease presenta-

tions. For instance, patients with odontologic diseases, atypical dentin dysplasia, and orofaciodig-

ital syndrome I, have both orofacial and renal disease presentations. Atypical dentin dysplasia is

caused by a mutation in SMOC2, a matricellular protein involved in both craniofacial development

and kidney fibrosis [27, 28]. Orofaciodigital syndrome I is caused by a mutation in OFD1, which

is involved in organogenesis and plays an important role in the normal growth of orofacial and kid-

ney tissues [29, 30]. These relationships reflect that diseases often involve multiple organ systems

and indicate that the embedding space can capture the relationship between patients with similar

symptoms even when their diagnoses are different.

SHEPHERD can identify “patients-like-me” with similar genetic diseases

We next examine SHEPHERD’s ability to identify “patients-like-me” from a large cohort of

rare disease patients. We either rank all simulated, UDN, and MyGene2 patients (UDN-P3 and
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UDN-P4 cases) or all UDN and MyGene2 patients (UDN-P5 and UDN-P6 cases; Figure 5a; SHEP-

HERD Demo Tab 2) to identify patients most similar to the query UDN patient. We locate each

query patient and all similar patients with the same causal gene in SHEPHERD’s embedding space

and find that patients with the same causal gene are embedded nearby in the space. In all four

patient cases, SHEPHERD retrieves patients with the same causal gene and disease as the query

patient among the top 5 predictions. Patients ranked above the patient with the same causal gene

have very similar disease presentations to the query patient. For UDN-P4 and UDN-P5, the pa-

tients have a variant of the same disease caused by a different gene (Figure 5a). For UDN-P6,

patients with Coffin-Siris syndrome 8 (ranked first) and GATAD2B-associated syndrome (ranked

second) both exhibit impaired intellectual development, hypotonia, feeding difficulties, and hyper-

telorism, among other phenotypes. For UDN-P3, patients with X-linked intellectual disability due

to GRIA3 (ranked first) and Coffin-Lowry syndrome (ranked second) share impaired intellectual

development, seizures, scoliosis, and other phenotypes.

The most similar patients identified by SHEPHERD do not necessarily have the most phe-

notypes in common with the query patient. This reflects SHEPHERD’s ability to capture pheno-

typic similarity rather than just calculating a direct overlap in phenotypes, which is typical of some

information-theoretic approaches used in practice. In particular, patients that share the same causal

gene have two to four phenotypes in common. Only 10.0%, 9.0%, 26.6%, and 7.7% of phenotypes

found in query patients UDN-P3, UDN-P4, UDN-P5, and UDN-P6 are also found in the most sim-

ilar genotype-matched individual respectively. In contrast, patients who have the most phenotypes

in common with the query are ranked at positions 366, 463, 41, and 16, respectively. For exam-

ple, one patient shares 10 phenotypes with UDN-P6, which is 38.5% of UDN-P6’s phenotypes,

yet has a different causal gene and is ranked 16th. This capability of SHEPHERD to consider in-

direct, deep associations between genes and phenotypes makes SHEPHERD highly complementary

to graph theoretic techniques and statistical tests that can only score direct associations, which can

be ineffective for poorly characterized diseases.

Further, we compare SHEPHERD to two approaches that can calculate phenotypic similarity:

an information theoretic approach, which uses information theory to calculate the similarity be-

tween two sets of phenotypes based on shared ancestors in the Human Phenotype Ontology, and a

set-based approach that uses Jaccard distance defined as 1−(|Pi∩Pj|)/(|Pi∪Pj|) where Pi and Pj

represent phenotype sets for two patients. We measure the phenotypic similarity between all pairs

of UDN patients and MyGene2 patients with known disease categories, and we rank the 43,820
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total comparisons according to their phenotypic similarity. Finally, we assess whether each method

for calculating phenotypic similarity can differentiate between patients with the same versus dis-

tinct disease categories. Intuitively, patients with diseases in the same disease category should be

more similar than those with diseases in different disease categories.

We find that SHEPHERD is best able to capture the similarity between patients with the same

disease category (Figure 5c). Furthermore, SHEPHERD assigns higher phenotypic similarity to pa-

tients with diseases in the same disease category compared to patients with diseases in different

disease categories (median rank of 13,296 and 25,015 for pairs of patients with the same versus

different disease categories, respectively). In contrast, the information-theoretic approach can only

differentiate these two groups to a lesser extent (median rank of 16,094 versus 24,035, respec-

tively). The set-based distance metric fails to capture the similarity between patients whose diag-

nosed diseases are of the same category. This is unsurprising given the limited phenotypic overlap

across rare disease patients, as the set-based distance only considers the overlap in phenotype terms

between patients and cannot capture phenotypic similarity.

Finally, we evaluate whether SHEPHERD embeds patients with the same disease (rather than

disease category) closer to each other than to patients with different diseases. We compare UDN

patients to MyGene2 patients. Again, we find that embedding distances between patients diag-

nosed with the same disease are significantly smaller compared to patients with different diseases

(p-value = 2.42× 10−8; Kolmogorov-Smirnov test; Figure 5d), further strengthening the evidence

that SHEPHERD can capture similarities between different diseases with similar presenting symp-

toms, but can nevertheless differentiate patients that have the same diagnosed disease.

SHEPHERD provides an interpretable characterization of novel diseases

In addition to supporting causal gene discovery and patients-like-me identification, SHEP-

HERD can help characterize novel clinical presentations through our current knowledge of rare

diseases (Figure 1a). Given a patient’s phenotypes, SHEPHERD provides an interpretable name for

the patient’s disease based on its similarity to each disease in the KG. Specifically, SHEPHERD

produces a ranked list of all diseases using the embedding similarity between each disease and the

patient’s phenotypes. More concretely, SHEPHERD learns an embedding space in which the simi-

larity between a patient and a disease is inversely proportional to the embedding distance between

the patient and their diagnosed disease (Figure 6a). To enable additional interpretable characteriza-

tion of the patient’s disease, we aggregate SHEPHERD-generated similarities of individual diseases

12

 . CC-BY 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 13, 2022. ; https://doi.org/10.1101/2022.12.07.22283238doi: medRxiv preprint 

https://doi.org/10.1101/2022.12.07.22283238
http://creativecommons.org/licenses/by/4.0/


by their disease category to generate a distribution of similarities to disease categories (where the

distribution sums to 100%). For example, a patient’s presenting syndrome may be w1% similar

to rare neurologic diseases, w2% similar to rare bone diseases, w3% similar to rare developmental

defects during embryogenesis, etc. Overall, we find that SHEPHERD learns to embed patients near

diseases of the same category; on average, 45.7% of the top 10 ranked diseases with a known dis-

ease category belong to the same category as the patient’s disease, which is nearly three times more

than random expectation alone (16.4%). We investigate such capabilities by separately exploring

SHEPHERD’s predictions for known and novel rare diseases.

To evaluate SHEPHERD’s ability to provide interpretable disease names for patients with

known rare diseases, we first calculate the similarity between UDN patients and all diseases. This

allows us to assess whether the patients are most similar to diseases that share the same disease

category as the patient’s disease (Figure 6b). Concretely, for each patient, we stratify patients

by their primary disease category and calculate the average similarity of a patient to all disease

nodes under each disease category. As expected, we find that patients tend to be most similar to

diseases of the same disease category as their own. For example, patients with a rare bone disease

are most similar to diseases under the category of rare bone disease (13.0% similarity), followed

by rare developmental defects during embryogenesis (10.2%), rare inborn errors of metabolism

(9.6%), and rare odontology diseases (8.2%). Similarly, patients with a disease categorized as

a rare developmental defect during embryogenesis, a rare inborn error of metabolism, or a rare

neurologic disease tend to be most similar to other diseases of the same category.

We next examine two patients in depth to interrogate SHEPHERD’s predictive capabilities for

characterizing known rare diseases: UDN-P7 and UDN-P9. Patient UDN-P7 (red, top left corner of

Figure 6a; SHEPHERD Demo Tab 3, Patient UDN-P7) received a diagnosis for limb-girdle muscular

dystrophy 3 (sarcoglycanopathy; MIM:608099) due to variants in SGCA. SHEPHERD compares the

patient’s clinical presentation to diseases across 19 disease categories and finds that the patient is

most similar to rare neurologic diseases, as expected. In fact, from SHEPHERD’s interpretable name

for the patient’s disease, two of the top five most similar diseases are other types of AR limb-girdle

muscular dystrophy, and all five are related to muscular dystrophy. Patient UDN-P9 (light blue,

bottom right corner of Figure 6a; SHEPHERD Demo Tab 3, Patient UDN-P9) was diagnosed four

years after acceptance to the UDN with the bone disease spondyloepimetaphyseal dysplasia caused

by a mutation in RPL13. Again, SHEPHERD can ascertain in its predicted interpretable name that

the patient’s symptoms are similar to other bone diseases, and all top 5 ranked disorders are rare
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bone diseases with overlapping phenotypes found in the query patient.

Finally, we investigate SHEPHERD’s ability to provide interpretable names for two patients

with novel genetic conditions, UDN-P8 and UDN-P2. The novelty of their genetic conditions

is due to the lack of patients with disease-gene relationships. UDN-P8 (dark blue, bottom left

corner of Figure 6a; SHEPHERD Demo Tab 3, Patient UDN-P8) was diagnosed with ATP5PO-

related Leigh syndrome caused by a novel mutation in ATP5PO, a gene previously unassociated

with any disease [31]. As Leigh syndrome is a metabolic disorder with neuropathological features,

SHEPHERD produces the interpretable name that correctly identifies UDN-P8’s disease as being

most similar to diseases under the categories of rare inborn errors of metabolism and rare neu-

rologic diseases. Three of the top five diseases—combined oxidative phosphorylation deficiency

39 (MIM:618397; ranked by SHEPHERD as #1), pyruvate dehydrogenase E3-binding protein de-

ficiency (MIM:245349; ranked by SHEPHERD as #3), and combined oxidative phosphorylation

defect type 26 (MIM:616672; ranked by SHEPHERD as #5)—are mitochondrial diseases affect-

ing the same pathway as ATP5PO and result in a defect in the aerobic energy production. These

diseases’ causal genes co-localize with ATP5PO [32–35]. Combined oxidative phosphorylation

deficiency 39 and combined oxidative phosphorylation defect type 26 are associated with neu-

rological presentations of mitochondrial disease, including hypotonia, seizures, and features of

Leigh syndrome [36]. The remaining two most similar diseases (ranked by SHEPHERD as #2 and

#4) are rare neurologic diseases with phenotypes identical to UDN-P8’s. The causal gene, CNP,

for the second-ranked disease, hypomyelinating leukodystropy-20 (MIM:619071), is three hops

away from ATP5PO in the physical protein interaction network [37, 38], suggesting that they may

be functionally related [39–41] or operate together [42, 43] to mediate phenotypes associated with

UDN-P8’s disease and hypomyelinating leukodystropy-20.

Patient UDN-P2 (dark blue, top right corner of Figure 6a; SHEPHERD Demo Tab 3, Patient

UDN-P2), previously described in Figure 4b), is characterized by SHEPHERD’s interpretable name

as most similar to diseases under the categories of rare inborn errors of metabolism, rare hep-

atic disease, rare gastroenterological disease, and rare endocrine disease. These top categories are

aligned with many of the patient’s symptoms, particularly duodenal atresia, intestinal malrotation,

pancreatic exocrine insufficiency, liver disease, and developmental delay. Three of the top five

most similar individual diseases from SHEPHERD’s interpretable name—Methylmalonic acidemia

with homocystinuria type cblF (MIM:277380; ranked by SHEPHERD as #1), Neonatal hemochro-

matosis (MIM:231100; ranked by SHEPHERD as #2), and ALG8-CDG (MIM:608104; ranked by
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SHEPHERD as #4)—are also due to inborn errors of metabolism, and the diseases are associated

with phenotypes that are similar to those seen in the patient, including abnormalities in liver and

gastrointestinal function and developmental delay. Notably, the rare respiratory disease category is

the third lowest-ranked category. UDN clinicians hypothesized that the patient’s GLYR1 variants

cause a mislocalization of the cystic fibrosis conductance regulator (CFTR), which is associated

with cystic fibrosis. While the patient has gastrointestinal and pancreatic symptoms similar to

those in cystic fibrosis, the patient does not have any of the pulmonary features classic for that

condition. Such granularity in SHEPHERD’s predictions is a reflection of SHEPHERD’s ability to

differentiate between diseases despite partially overlapping phenotypes and causal genes sharing

the same pathway.

Discussion
We present SHEPHERD, a deep learning approach for multi-faceted rare disease diagnosis. SHEP-

HERD overcomes limitations of traditional data-hungry AI approaches by (1) infusing external

knowledge via deep learning on a knowledge graph, (2) leveraging label-efficient learning to align

patient, gene, and disease representations, and (3) training on a large disease-split cohort of simu-

lated patients. SHEPHERD generalizes to never-before-seen phenotypes, genes, and diseases, per-

forming well in patients with heterogeneous clinical presentations and novel genetic conditions

(Extended Data S1). The model leverages an attention mechanism to generate patient phenotype

embeddings, whose weights provide insight into the contribution of each phenotype to the predic-

tion. SHEPHERD is broadly applicable across multiple points in the diagnostic process, as shown

by evaluations on two multi-site patient cohorts with varying disease presentations.

A unique feature of SHEPHERD is its ability to generate multi-modal representations of pa-

tients with rare genetic diseases. We model patient phenotypes as subgraphs and candidate genes

and diseases as nodes in a large knowledge graph, which allows the representations to be infused

with external biomedical knowledge. The multi-layer graph neural network enables indirect asso-

ciations multiple hops away in the knowledge graph to influence the learned representations. While

many existing approaches rely exclusively on known phenotype-gene-disease associations [44,45],

leveraging indirect associations is essential for diagnosing patients with novel or atypical genetic

conditions. Furthermore, subgraphs provide an elegant, flexible mathematical definition for model-

ing sets of patient phenotypes. Rather than model each phenotype individually [46], we can encode

patients as a structured object (namely, a subgraph) and consider the co-occurrence of phenotypes
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when diagnosing rare diseases. Genetic mutations can yield pleiotropic effects, and joint model-

ing of patient phenotypes is important for capturing co-morbidities, which can uniquely identify

diseases [47–49].

SHEPHERD demonstrates the value of simulated data for training machine learning models.

While simulated data is increasingly being leveraged to augment existing training sets to improve

model robustness and generalizability [24, 50–54], here we exclusively use simulated patients to

train SHEPHERD. Simulated data is not just an additional asset but a critical necessity for train-

ing deep learning models in the rare disease space, where data is extremely scarce. The synthetic

patients are generated by a simulator [19] grounded in clinical-genetic knowledge. Furthermore,

training on simulated data mitigates concerns regarding privacy breaches, in which specific indi-

viduals can be identified from the training data [55,56]. Hence, it is possible to publicly release the

fully trained SHEPHERD without privacy concerns. We show that the models trained on simulated

patients are readily applicable to diverse patients in the UDN and MyGene2 cohorts, providing

evidence of the impact of synthetic data in a real-world clinical application.

There are several extensions to this work. Our method relies on a knowledge graph of dis-

ease, gene, and phenotype associations. Still, other sources of information, such as variant-level

information or databases of model organism phenotype-gene associations, could be incorporated

as well [57]. SHEPHERD’s knowledge graph includes curated gene-phenotype-disease relation-

ships and can be extended to include information from research literature [58]. The graph neural

network underlying SHEPHERD is also readily extensible to multi-modal data types. For example,

gene co-expression data or textual descriptions of diseases can be incorporated as node features.

Furthermore, while efforts like the UDN are critical for establishing diagnoses for rare disease pa-

tients, they alone cannot address the rare disease burden. Approaches such as SHEPHERD can help

identify and diagnose rare disease patients using claims data, electronic health records, and other

data types. SHEPHERD’s ability to characterize a patient’s clinical presentation could be used to

identify sub-specialists who should review the patient’s case for the diagnostic recommendation.

Our study has a few limitations. First, our knowledge graph was constructed in June 2021.

Additional associations of diseases, genes, and phenotypes since then may further improve SHEP-

HERD’s performance. To this end, the knowledge graph curation and processing approaches are

fully reproducible, and the graph can be automatically updated as data resources evolve and new

data become available [59]. Second, the still-undiagnosed UDN patients may be more challeng-

ing than the already-diagnosed ones SHEPHERD was tested on. There are two categories of still-
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undiagnosed patients: patients admitted to the UDN years ago who have yet to receive a diagnosis

due to sequencing limitations (e.g., hard-to-detect variant types such as short tandem repeats or

structural variants, missing second variants in recessive disorders, variants that lie in difficult-

to-sequence regions or are masked due to biases in the human reference genome and ancestral

genomes [60]), and patients recently admitted to the UDN. As sequencing approaches continue to

advance, SHEPHERD can be evaluated on the still-undiagnosed patients whose causal variants will

be detectable by the more accurate sequencing technologies. Moreover, the lack of an observed

drop in SHEPHERD’s performance for recently diagnosed patients indicates that data leakage has

not occurred, evidently avoiding the bias that would otherwise cause overfitting of the model to

the training data (e.g., information about older diagnoses being incorporated into the knowledge

graph).

SHEPHERD demonstrates the use of AI for diagnosing rare disease patients. While AI-

assisted diagnosis has focused on diseases for which large labeled datasets exist, this study shows

how AI can be used for underserved rare diseases. Existing diagnostic processes require collabo-

rations across bioinformaticians, clinicians, and genetic counselors. Reviewing even a single case

can take many hours of a many-person team over days or weeks. SHEPHERD can substantially

reduce the number of genes clinicians need to consider to provide a molecular diagnosis and iden-

tify patients with similar genetic conditions, even before they have undergone genetic sequencing.

Scalable AI-based diagnostic strategies can enable efforts such as the UDN to shorten the diagnos-

tic odyssey for rare disease patients.
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Data availability. All data used in the paper, including the rare disease knowledge graph, simu-

lated and MyGene2 cohorts, and the final and intermediate results of the analyses are shared with

research community at https://zitniklab.hms.harvard.edu/projects/SHEPHERD. While the UDN

dataset cannot be released in its entirety due to privacy concerns, anonymized UDN data has been

deposited in dbGaP (accession phs001232) and PhenomeCentral. Phenotypes and causal vari-

ants and genes related to UDN diagnoses are also shared publicly in ClinVar at https://www.ncbi.

nlm.nih.gov/clinvar/submitters/505999. The UDN study is approved by the NIH IRB Protocol

15HG0130. All patients accepted to the UDN provide written informed consent to share their data

across the UDN.

Code availability. Python implementation of the methodology developed and used in the study

is available via the project website at https://zitniklab.hms.harvard.edu/projects/SHEPHERD. The

code to reproduce results, together with documentation and examples of usage, are at https://github.

com/mims-harvard/SHEPHERD. We also provide an interactive demo for users to explore SHEP-

HERD’s predictions at https://huggingface.co/spaces/emilyalsentzer/SHEPHERD.
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Figure 1: Overview of SHEPHERD in the rare disease diagnosis pipeline. (a) After years of failed diagnostic attempts,
once a patient is accepted to the UDN, they receive a thorough clinical workup and genetic sequencing, and their case is
analyzed in an iterative process to identify the candidate genes likely to explain the patient’s symptoms. SHEPHERD can
be used throughout the diagnostic process: after the clinical workup to find similar patients, after the sequencing analysis
to identify strong candidate genes, and after the case review to further prioritize candidate genes, characterize the patient’s
disease, and/or validate candidate genes by finding phenotype and genotype-matched patients. (b) Number of phenotypes
and candidate genes in each of the two candidate gene lists across patients in our UDN cohort. (c) Overlap of phenotypes,
genes, and diseases across patients. Most phenotypes, genes, and diseases are found in only a single UDN patient. (d-g)
Number of patients in each (d) UDN clinical site, (e) age category, (f) primary presenting symptom, and (g) evaluation year.
(h) SHEPHERD takes in as input the patient’s set of phenotypes as well a list of either candidate genes, patients, or diseases
and leverages an external rare disease knowledge graph to perform multi-faceted rare disease diagnosis. For simplicity, the
knowledge graph is depicted using three shapes: circles as genes, squares as phenotypes, and pentagons as diseases; refer to
Methods for all node types.
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Figure 2: SHEPHERD architecture, training, and generalizability. (a) SHEPHERD is trained in a two-step process. First,
the model is pretrained to embed the biomedical knowledge in the knowledge graph (left side). Then, the pretrained model
is applied to the task of rare disease diagnosis (right side). Patient information is overlaid on the knowledge graph, and
SHEPHERD generates an embedding for the patient phenotypes and each candidate gene, disease, or patient. The model is
trained via a loss function that encourages patient embeddings to be close to the embeddings of their causal gene or disease or
other patients with the same gene or disease. (b) SHEPHERD is trained on a large cohort of simulated patients and externally
validated on patients across multiple sites in the Undiagnosed Diseases Network. For simplicity, the KG is depicted using
three shapes: circles as genes, squares as phenotypes, and pentagons as diseases; refer to Methods for all node types.
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Figure 3: SHEPHERD performs generalizable causal gene discovery. (a) Performance of SHEPHERD and six baseline
models evaluated via average recall at k for k = 1, 3, and 5. (b) Correlation between model performance (i.e., rank of causal
gene) and the average distance between a patient’s phenotypes and causal gene in the knowledge graph. (c-e) Performance of
SHEPHERD in ranking causal genes stratified by (c) clinical sites, (d) evaluation year, and (e) primary presenting symptom.
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Disease: Novel syndrome - pancreatic insufficiency & malabsorption
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Figure 4: Causal gene discovery case studies for patients with novel genetic conditions. SHEPHERD identifies the causal
gene even in atypical or novel disease presentations. Each patient case study, shown in (a) and (b), includes the subset of the
knowledge graph containing all nodes in the shortest path between the patient’s phenotypes, causal gene, and disease; a table
of the patient’s phenotypes and attention weights learned by SHEPHERD; and bar plots of scores SHEPHERD assigned to each
candidate gene in the EXPERT-CURATED and VARIANT-FILTERED lists. The top and bottom 5 ranked genes in the VARIANT-
FILTERED list are shown. The causal gene is highlighted in orange. In patient UDN-P1’s network, the direct neighbors of the
causal gene are emphasized. The patient’s causal gene is directly connected to the disease in the knowledge graph. In patient
UDN-P2’s network, there is no disease node because the patient has a novel uncharacterized syndrome. All panels, except
those labeled as a “Patient Card” (colored box with the information provided by the UDN), depict SHEPHERD’s predictions
or analyses performed on outputs of SHEPHERD.
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Figure 5: SHEPHERD identifies patients-like-me from simulated, UDN, and MyGene2 cohorts. (a) Two-dimensional
UMAP plot of SHEPHERD’s embedding space of all simulated (circle), UDN (up-facing triangle), and MyGene2 (down-
facing triangle) patients colored by their Orphanet disease category. Each of the four case studies consists of a zoomed-in
UMAP displaying the query patient (star) and all patients with the same causal gene as the query (colored circles) and a
table containing information regarding the top five most similar patients retrieved by SHEPHERD. Patients are bolded in the
table if they share the same causal gene. (b) Heatmap of the average distance between the phenotype embeddings of pairs
of patients across disease categories. Darker colors indicate smaller distances and lighter colors indicate larger distances
between patients of each pair of disease categories. (c) Violin plot comparing the ranks of patients with the same vs. different
disease (dx) category using SHEPHERD, an INFORMATION THEORETIC approach, or a SET BASED approach. The white line
in the violin plots represents the median value. (d) Distribution of SHEPHERD embedding distance between patients with the
same vs. different diseases. All panels, except those labeled as a “Patient Card” (colored box with the information provided
by the UDN), depict SHEPHERD’s predictions or analyses performed on outputs of SHEPHERD.
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Figure 6: SHEPHERD performs novel disease characterization. (a) UMAP of SHEPHERD’s embedding space of all UDN
patients (up-facing triangle) and Orphanet disease nodes (circle), colored by disease category. Each of the four case studies
consists of a list of the patient’s five phenotypes that are most highly attended by SHEPHERD, distribution of average similarity
of the patient to diseases in a particular disease category, and a table of the five most similar diseases according to SHEPHERD.
(b) Radar plots of the similarity between UDN patients and diseases found in each disease category. We show group UDN
patients by the disease category of their true disease and show plots for all categories with at least 5 patients. The disease
category of each patient’s true disease is bolded and colored. All panels, except the causal gene and disease listed in the
“Patient Card” (colored box), depict SHEPHERD’s predictions or analyses performed on outputs of SHEPHERD.
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Online Methods
The Methods are structured as follows: 1) description of our rare disease knowledge graph, 2)

description of our rare disease patient cohorts, 3) summary of our algorithmic approach for rare

disease diagnosis, 4) details regarding model training, and 5) outline of our statistical analysis and

evaluation setup.

1 Rare Disease Knowledge Graph Construction
We create a comprehensive knowledge graph (KG) for rare disease diagnosis. We start with

PrimeKG [59] and adapt it to the rare disease setting by removing drug-specific entities and rela-

tions and adding additional sources of the gene, phenotype, and disease relationships. The resulting

rare disease KG contains seven node types (i.e., phenotype, protein, disease, pathway, molecular

function (MF), cellular component (CC), and biological process (BP)) and 15 unique relation types

(i.e., phenotype-protein, disease-phenotype(-) (indicating that disease does not have phenotype),

disease-phenotype(+) (indicating that disease has phenotype), protein-pathway, disease-protein,

protein-MF, protein-CC, protein-BP, BP-BP, MF-MF, CC-CC, phenotype-phenotype, protein-protein,

disease-disease, pathway-pathway).

1.1 Data Sources and Harmonization

Relationships are extracted from the following data sources: Gene Ontology (GO) [61], Reac-

tome pathway knowledgebase [62], DisGeNET [63], NCBI [64], Human Phenotype Ontology

(HPO) [65], MONDO disease ontology [66], and Orphanet [67]. PrimeKG contains disease-

protein relationships from DisGeNET, and we add additional disease-protein and disease-phenotype

relationships from Orphanet if they are not already present in the knowledge graph. All phenotypes

are mapped to the Human Phenotype Ontology, all genes/proteins are mapped to Ensembl identi-

fiers, and all diseases are mapped to MONDO identifiers. In instances where a concept is repre-

sented in both the HPO and MONDO ontologies, we remove the MONDO identifier. This differs

from the original PrimeKG preprocessing, where conflicting identifiers are mapped to MONDO

IDs. We perform all other preprocessing as in the original PrimeKG knowledge graph. For addi-

tional information about each data source and the harmonization process, refer to PrimeKG [59].
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1.2 Knowledge Graph Pre-processing

We enforce homophily between genes and phenotypes by computing the triadic closure between

gene-disease and disease-phenotype edges [68, 69]. We extract the largest connected component

to ensure that the KG is fully connected. The largest connected component retains 99.91% of the

nodes and 99.99% of the edges from the knowledge graph. Finally, we add reverse edges to ensure

that the KG is represented as an undirected graph during model training.

1.3 Final Knowledge Graph Statistics

The final knowledge graph contains 105,220 nodes and 1,095,469 edges. Tables 1-2 outline the

number of nodes and edges by node type and relation type, respectively.

Table 1: Rare disease knowledge graph. Reported is the number of nodes by node type. MF: molecular function,
CC: cellular component, BP: biological process.

NODE TYPE COUNT AVERAGE DEGREE VOCABULARY

PHENOTYPE 15,874 49.5± 190.6 HUMAN PHENOTYPE ONTOLOGY [65]
DISEASE 21,233 17.1± 37.4 MONDO [66]
PROTEIN 21,610 74.2± 119.8 ENSEMBL [70]
PATHWAY 2,516 19.0± 29.9 REACTOME [62]
MF 11,169 8.7± 127.4 GENE ONTOLOGY [61]
CC 4,176 22.3± 197.2 GENE ONTOLOGY [61]
BP 28,642 8.7± 28.1 GENE ONTOLOGY [61]

2 Rare Disease Patient Cohorts
We use three distinct rare disease patient cohorts for training and evaluating SHEPHERD: UDN

(Section 2.1), a real-world cohort of hard-to-diagnose patients in the Undiagnosed Diseases Net-

work, MYGENE2 (Section 2.2), a publicly available real-world cohort of patients with rare genetic

conditions who have opted to share their information on the MyGene2 Portal, and SIMULATED

(Section 2.3), a large diverse and realistic simulated patient cohort representing 2,134 unique rare

diseases in Orphanet.

For every patient cohort, we categorize each patient’s causal disease according to the 33 dis-

ease categories outlined in Orphanet. We map all diseases to Orphanet and leverage the Orphanet

linearisation process (http://www.orphadata.org/cgi-bin/rare free.html) to assign each disease to a

single disease category based on a series of rules that consider the most severely affected body
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Table 2: Rare disease knowledge graph. Reported is the number of edges by relation type. HPO: Human
Phenotype Ontology.

RELATION TYPE COUNT SOURCES

PHENOTYPE-PHENOTYPE 21,925 HPO [65]
PHENOTYPE-PROTEIN 10,518 HPO [65], MONDO [66], ORPHANET [67]
DISEASE-DISEASE 35,167 DISGENET [63], MONDO [66], ORPHANET [67]
DISEASE-PHENOTYPE(−) 1,483 HPO [65], DISGENET [63], MONDO [66], ORPHANET [67]
DISEASE-PHENOTYPE(+) 204,779 HPO [65], DISGENET [63], MONDO [66], ORPHANET [67]
DISEASE-PROTEIN 86,299 DISGENET [63], MONDO [66], ORPHANET [67]
PROTEIN-PROTEIN 321,075 MENCHE et al. [71], BIOGRID [72], STRING [73], LUCK et al. [43]
PROTEIN-PATHWAY 42,646 REACTOME [62]
PATHWAY-PATHWAY 2,535 REACTOME [62]
PROTEIN-MF 69,530 GENE ONTOLOGY [61]
PROTEIN-CC 83,402 GENE ONTOLOGY [61]
PROTEIN-BP 144,805 GENE ONTOLOGY [61]
MF-MF 13,574 GENE ONTOLOGY [61]
CC-CC 4,845 GENE ONTOLOGY [61]
BP-BP 52,886 GENE ONTOLOGY [61]

system and the specialists most likely to be involved in treatment.

2.1 Patients in the Undiagnosed Diseases Network

Undiagnosed Diseases Network The Undiagnosed Diseases Network (UDN) is a nationwide re-

search study supported by the National Institutes of Health Common Fund, which aims to bring

together clinical and research experts around the United States to diagnose patients with rare ge-

netic conditions [74]. The UDN consists of 12 clinical sites across the United States that eval-

uate patients, a sequencing core, a model organism screening center, a central biorepository, a

metabolomics core, and a coordinating center. Patients are admitted to the UDN if they have

objective findings and clinical testing has failed to produce a diagnosis. Most admitted patients

receive either exome or full genome sequencing and an extensive clinical workup. The Undiag-

nosed Diseases Network study is approved by the National Institutes of Health institutional review

board (IRB), which serves as the central IRB for the study (Protocol 15HG0130). All patients

accepted to the UDN provide written informed consent to share their data across the UDN as part

of a network-wide informed consent process.
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Constructing patient subgraphs Deep phenotyping of patients during the clinical workup is a

central component of the UDN process. Clinicians annotate each patient with a set of terms from

the Human Phenotype Ontology (HPO) using PhenoTips, a tool integrated into the electronic health

record that allows for structured phenotyping of patient symptoms [75]. We discard 406 unique

prenatal phenotype terms related to the mother’s pregnancy and use all remaining phenotype terms

to construct patient subgraphs. Each patient subgraph is formed from the phenotype nodes in

the rare disease knowledge graph that describe the patient’s symptoms (Methods 3). In total, we

construct phenotype subgraphs for the 465 UDN patients with annotated phenotypes who have

received a molecular diagnosis as of January 5, 2022.

Obtaining EXPERT-CURATED candidate gene lists Genomic samples for each patient are se-

quenced at Baylor Genetics or Hudson Alpha. We construct an EXPERT-CURATED candidate gene

list for each patient from the patient’s sequencing data. Importantly, these gene lists are unique

to each patient. The EXPERT-CURATED candidate gene list for each patient includes the union of

both (1) disease-associated and other clinically-relevant genes listed on the patient’s clinical se-

quencing reports from Baylor or Hudson Alpha per the UDN protocol and American College of

Medical Genetics and Genomics (ACMG) guidelines [76–78] and (2) genes that were prioritized

by UDN clinical teams who handled the patient’s case. The genes in this list represent the strongest

candidates identified by the UDN sequencing core or the clinical team. In addition, the list often in-

cludes known disease-causing genes, genes with suspected pathogenic variants, or genes expressed

in tissues relevant to the patient’s clinical presentation. While the EXPERT-CURATED gene list con-

tains the strongest candidates, the list nevertheless requires further filtering to identify the ultimate

causal gene(s) that explain the patient’s condition. We exclude patients whose candidate gene lists

have fewer than five candidate genes for the causal gene discovery task. The cohort contains 278

patients with at least five EXPERT-CURATED candidate genes.

Obtaining VARIANT-FILTERED candidate gene lists As part of the UDN analysis pipeline, the

UDN performs the whole genome and/or exome sequencing for a patient and their immediate

family members. Here, we use the patients’ whole genome sequencing (WGS) data, which are

aligned to the GRCh38.p13/hg38 human genome build and have undergone variant calling via the

Genome Analysis Toolkit (GATK) best practices workflow [21]. Please refer to [21] for more

details about the computational workflow across UDN sites. Access to the UDN patients’ WGS
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data allows us to construct for each patient a VARIANT-FILTERED candidate gene list consisting of

genes that have at least one variant and that have been prioritized by a variant-level prioritization

algorithm. We leverage the Exomiser algorithm, which considers variant frequency, predicted

pathogenicity, and (if family members’ sequencing data are available) mode of inheritance [79].

While Exomiser can leverage known associations between genes and phenotypes, we do not use it

to construct our VARIANT-FILTERED candidate gene lists.

We analyze the patients’ variant-called WGS data (i.e., variant call format, or VCF) us-

ing Exomiser under the following inheritance modes: autosomal dominant, autosomal recessive

homozygous alternate, autosomal recessive compound heterozygous, X dominant, X recessive ho-

mozygous alternative, X recessive compound heterozygous, and mitochondrial. Their respective

cutoff values (i.e., the maximum minor allele frequency in percent (%) permitted for an allele to

be considered a causative candidate under that mode of inheritance) are 0.1, 0.1, 2.0, 0.1, 0.1,

2.0, and 0.2. We remove variants with non-coding effects (i.e., 5’ and 3’ UTR exon/intron variants,

non-coding transcript exon/intron variants, coding transcript intron variants, up-/down-stream gene

variants, intergenic variants, and regulatory region variants). We use the following pathogenicity

sources, POLYPHEN, MUTATION TASTER, and SIFT. We apply a frequency filter to remove

variants with a frequency of at least 0.5% according to the variant frequency databases used. All

variant frequency databases are used, as recommended by the Exomiser manual. We retain non-

pathogenic variants in the output gene list. As with the EXPERT-CURATED gene lists, we filter out

patients who do not have at least five candidate genes in their VARIANT-FILTERED gene list. The

cohort includes 152 patients with at least five VARIANT-FILTERED candidate genes.

Preprocessing disease labels Diagnosed patients in the UDN are labeled with a disease identi-

fier from the Online Mendelian Inheritance in Man (OMIM) database [80] when the patient is

diagnosed with a known genetic disease. We map the OMIM disease identifiers to MONDO iden-

tifiers [66] using the MONDO ontology crosswalk in order to identify the diseases in the rare

disease knowledge graph (Section 1).

Dataset statistics The final UDN cohort contains 465 patients representing 319 MONDO diseases

and 378 unique causal genes. The EXPERT-CURATED and VARIANT-FILTERED candidate gene

lists contain 244.3 and 13.3 genes on average, respectively (SD = 244.0 and SD = 8.0). Patients

have 23.9 phenotypes on average (SD = 16.1).
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2.2 Patients in the MyGene2 Portal

We assemble another cohort of real-world rare disease patients participating in the MyGene2 ex-

change [81]. MyGene2, developed by the University of Washington, is a portal through which fam-

ilies with rare genetic conditions can share their health information to connect with other families,

clinicians, and researchers. MyGene2 contains information about 2,106 genes and the phenotypes

of patients with mutations in the genes. MyGene2 is a member of the MatchMaker Exchange,

a federated network designed to enable clinicians to find phenotype and genotype matches for

rare disease patients [82]. The UDN leverages the MatchMaker exchange for validating patients’

candidate genes by finding genotype-matched individuals.

Dataset preprocessing and patient subgraph construction We retrieved data containing the sets

of phenotype terms and candidate genes for rare disease patients on MyGene2 as of May 7, 2022.

We filter the patients to only include patients labeled with an OMIM disease identifier. This limits

the cohort to patients that are likely already diagnosed. As with the other cohorts, we map all genes

to Ensembl identifiers, diseases to MONDO identifiers, and construct patient subgraphs from the

set of positive HPO terms associated with each patient.

Dataset statistics The final MyGene2 cohort contains 146 patients representing 55 MONDO dis-

eases and 48 unique causal genes. Patients have 7.9 phenotypes on average (SD = 6.6). There are

14 unique causal genes and 12 diseases found in both the MyGene2 and UDN cohorts.

2.3 Simulated Patients with Rare Mendelian Disorders

We leverage simulated but realistic rare disease patients for training SHEPHERD [19]. The sim-

ulated patients closely resemble real-world patients found in the UDN. Each simulated patient is

represented by an age range, a set of positive phenotypes they exhibit, a set of negative pheno-

types they do not exhibit, and a set of challenging candidate genes that may cause the presenting

symptoms. The patients are generated using a simulation framework that jointly samples candidate

genes and phenotypes.

Generating realistic simulated rare disease patients To generate patients with rare Mendelian

disorders, we adopt the pipeline described in [19]. Briefly, the simulation pipeline has two stages:

phenotype generation and candidate gene generation. First, each patient is initialized with a set of

phenotypes associated with a genetic disorder characterized in the rare genetic disease database Or-
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phanet [67]. To reflect the imprecision of real-world diagnostic evaluations, the initial phenotypes

undergo phenotype dropout and corruption (i.e. phenotypes are randomly removed or replaced

with more general phenotype terms), and additional “noisy” phenotypes that are unrelated to the

patient’s disease are sampled from a large medical insurance claims database and added to the phe-

notype set. Next, candidate genes are sampled from “distractor” gene categories that do not cause

the patient’s disease yet would be plausible candidates during the diagnostic process. The chal-

lenging distractor genes and some of their associated phenotype terms are added. For additional

details about the simulation process and validation of simulated patients, refer to [19]. To standard-

ize across all patient cohorts, we ensure all genes are mapped to Ensembl identifiers, all diseases

are mapped to MONDO identifiers, and we construct patient subgraphs from the phenotype terms

associated with each patient.

Dataset statistics There are 42,624 simulated patients representing 2,132 unique Mendelian disor-

ders and 2,396 unique causal genes in the simulated patient dataset. Each patient is characterized

by an average of 18.4 positive phenotypes (SD = 7.7) and 14.0 candidate genes (SD = 3.5). Of the

378 unique causal genes and 319 unique MONDO diseases found in patients in the UDN cohort,

220 and 109 are represented in the simulated patient cohort, respectively. Furthermore, 81.8%

of the phenotypes found across UDN patients are also found in the simulated patient cohort, and

29.7% of a single UDN patient’s phenotypes are found in the most similar simulated patient on

average. This indicates that the simulated patients have utility in training models that can apply to

real-world UDN patients but also emphasizes the need for developing models that can generalize

to genes, diseases, and phenotypes unseen at train time.

3 Few-shot Learning Framework for Rare Disease Diagnosis
We develop SHEPHERD, a geometric deep learning approach that uses few-shot capability and

external biomedical knowledge for multi-faceted diagnosis of rare diseases. SHEPHERD learns to

embed diseases, phenotypes, and genes and generate multi-modal representations of rare disease

patients. It performs multi-faceted diagnosis, addressing the following challenges of rare disease

diagnosis:

• Causal Gene Discovery: Each patient Ti in the dataset has Pi phenotypes and Gi candidate

genes. The task is to identify the causal gene(s) Gc
i ∈ Gi harboring the variants that explain

the patient’s presenting symptoms.
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• Identification of Similar Patients: Given a cohort of rare disease patients C, the goal is

to identify patients from the cohort that are similar to the query patient Ti, i.e., patients that

share a disease or causal gene. Mathematically, for each patient Ti, the task is to identify the

set of patients Sc
i = {Tj ∈ C|Gc

i ∩ Gc
j 6= ∅}. We leverage each patient’s set of phenotypes

Pi to perform patient matching.

• Characterization of Novel Diseases: The goal is to characterize novel diseases according

to their similarity to a set of known genetic diseases D. We input the set of phenotypes Pi

for each patient Ti and provide interpretable names for the patient’s presenting syndrome.

Notation Let denote a heterogeneous knowledge graph comprised of a set of nodes V and a set of

edges E. Each edge is defined by a triplet (u, r, v) where u is the source node, v is the target node,

and r ∈ R denotes the relationship between u and v. Each patient i is represented on the graph as a

patient subgraph induced by a set of phenotype nodes Pi where Pi ⊆ V . The patient subgraph can

contain any number of phenotypes and can consist of multiple connected components throughout

G. Each patient may also have a set of candidate genes Gi ⊆ V .

3.1 Encoding Biomedical Knowledge

The first step in SHEPHERD is to encode biomedical relationships found in the rare disease knowl-

edge graph (KG). We pretrain SHEPHERD on millions of biomedical entity pairs across all entity

and relation types in the KG to capture the topology of biomedical knowledge in the KG. To this

end, we use a graph attention network [83], a type of graph neural network (GNN) model to gen-

erate embeddings xv for every node v in the KG. Specifically, the choice of a graph attention

network is necessary to achieve semantically-relevant mixing of biomedical entities in the embed-

ding space, that is, to encourage distinct node types (e.g., genes, diseases, and phenotypes) to be

positioned near each other in the embedding space. GAT models, like most GNNs, can be for-

mulated as message-passing networks, in which messages are propagated to a node v from all of

the nodes in its neighborhood Nv. The messages are aggregated and combined with the previous

layer’s representation of v to produce v’s representation for the current layer. Concretely, each

layer l in SHEPHERD’s GNN encoder involves the following steps:

Step 1: Propagate neural messages: We define the message m
(l)
v,k for each node v as:

m
(l)
v,k = W

(l)
k h(l−1)

v (1)
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where k represents the attention head, W is a relation-specific trainable weight matrix, and hv is

the embedding of node v in the (l − 1)-th hidden layer.

Step 2: Aggregate messages from local neighborhoods: We leverage the local neigh-

borhood to generate a representation of each node v. Specifically, we aggregate messages of its

neighboring nodes u ∈ Nv using an attention mechanism to generate a
(l)
v,k:

a
(l)
v,k =

∑
u∈Nv

α
(l)
v,u,k ·m

(l)
u,k (2)

where αv,u,k is the normalized attention weight on an edge from node v to node u computed by the

k-th attention mechanism.

Step 3: Update node embeddings: To transform the messages into an order-invariant hid-

den representation h
(l)
v , we apply a nonlinearity function σ and concatenate all of the aggregated

messages as follows:

h(l)
v =

Kn

k=1

σ
(
a
(l)
v,k

)
(3)

In the final layer, we perform averaging instead of concatenation. We define the final embed-

ding for each node v after L layers of neural message passing as xv = h
(L)
v .

Objective function We frame pretraining as a binary classification task. SHEPHERD learns to

perform link prediction, i.e., predict whether a relationship exists between a pair of nodes for a

given relation type. Formally, we compute the likelihood of an edge existing between node u and

node v with relation r given their node embeddings zu and zv using a DistMult decoder [84]:

LPSIM(u, r, v) = ACT(xT
uWrxv) (4)

where Wr is a relation-specific trainable weight matrix and ACT is a nonlinear function, here tanh.

SHEPHERD is pretrained via a hinge loss objective. For any pair of nodes u and v connected by

relation r, the loss function is defined as:

LLP =
1

|E|
∑

(u,r,v)∈E

max(0,∆− LPSIM(u, r, v) + LPSIM(u, r, v−)), (5)

where u and v are source and target nodes, v− is a target node, representing a negative example

that is not linked to u in the KG, LPSIM returns the score indicative of the knowledge relationship
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existing between u and v, and ∆ is a margin, which is set to 1 throughout all experiments in this

study. For each triplet (u, r, v) in the KG, its contribution to the value of the loss function is 0 if the

difference between the LPSIM ’s score for the triplet and the LPSIM ’s score for a negative example

is at least as large as the margin.

3.2 Generating Rare Disease Patient Representations

We apply the pretrained SHEPHERD model to our multi-faceted rare disease diagnosis tasks. Start-

ing with the pretrained GNN model, we learn patient embeddings that encode each patient’s phe-

notype subgraph. Depending on the diagnostic task, we also learn embeddings for each patient’s

candidate genes, diseases, or other patients. Concretely, for every patient Ti, we generate an aggre-

gated representation of all phenotypes p ∈ Pi in the phenotype subgraph via an attention-weighted

average of the individual phenotype embeddings:

xPi
=
∑
p∈Pi

α · xp, where α =
exp(xp · a)∑

p∈Pi
exp(xp · a)

(6)

where α denotes the attention weights, xp denotes the embedding for phenotype p, and a is a

trainable vector initialized via Xavier [85]. The aggregated phenotype representation xPi
, each

candidate gene node embedding xg, and each candidate disease node embedding xd are pushed

through two nonlinear layers to produce the embeddings zPi
, zg, and zd, respectively, as:

zPi
= f(f(xPi

·W1 + b1)W2 + b2) (7)

zg = f(f(xg ·W1 + b1)W2 + b2) (8)

zd = f(f(xd ·W1 + b1)W2 + b2) (9)

where f is a nonlinear function (here, leaky ReLU), and W1, W2, b1, and b2 are trainable weights.

3.3 Discovering Causal Genes

SHEPHERD can prioritize candidate genes to assist clinicians in finding the causal gene(s) harboring

the variants that best explain a patient’s presenting symptoms. Candidate genes for each patient

are scored by measuring the similarity SIM(P, g) between a candidate gene g and a patient’s set of

phenotypes P . SHEPHERD is optimized such that the candidate gene embedded nearby the patient’s

set of phenotypes in the embedding space indicates that the gene is likely to cause the patient’s
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symptoms. SIM(P, g) consists of two components, EMBSIM(P, g) and SPLSIM(P, g). It is designed

such that EMBSIM(P, g) captures global network topology (i.e., by leveraging SHEPHERD’s rich

low-dimensional embedding space) and SPLSIM(P, g) captures local network information (i.e., by

calculating shortest path length distances). This approach is grounded in the observation that while

methods that learn global network topology yield higher overall performance than local methods

considering only local network information, the latter tends to rank true candidate genes higher

when provided a short list of candidate genes [86].

Embedding-based similarity We calculate EMBSIM, an embedding-based similarity between ag-

gregated embeddings of phenotypes P and an embedding of the candidate gene g as follows:

EMBSIM(P, g) = ACT(zTPWzg) (10)

where ACT is a nonlinear function, here tanh(x). EMBSIM values range between [−1, 1].

Network-based similarity We calculate the shortest path length (SPL) similarity between aggre-

gated phenotypes P and candidate gene g as follows:

SPLSIM(P, g) = NORM(AGGp∈P (−d(p, g))) (11)

where P is the patient’s phenotypes and g is a candidate gene, AGG is some aggregation function

(e.g., mean), NORM(x) = 2(x−max(x))
max(x)−min(x)

− 1 is a normalization function to scale the values in the

range [−1, 1], and d(p, g) is the minimum number of hops between p and g in the KG.

Overall similarity The final score between a patient’s phenotypes P and candidate gene g is

defined as:

SIM(P, g) = η · EMBSIM(P, g) + (1− η) · SPLSIM(P, g) (12)

where η is a hyperparameter ranging from [0, 1] that represents the amount of weight to place on

EMBSIM versus SPLSIM in the final gene prioritization scoring. SIM values range between [−1, 1].

Objective function We leverage a multi-similarity loss to encourage patient phenotype embed-

dings to be near to their causal gene embedding and far away from the incorrect candidate gene
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embeddings. The multi-similarity loss is defined as follows [87]:

LG =
1

N

N∑
i=1

 1

α
log(1 +

∑
g∈Gc

i

exp(−α(SIM(Pi, g)− γ))) +
1

β
log(1 +

∑
g∈Gd

i

exp(β(SIM(Pi, g)− γ)))

 ,

where N is the number of patients, α, β, and γ are hyperparameters, and SIM(Pi, g) denotes the

similarity between the aggregated phenotype embedding for patient i and the gene embedding of

either the patient’s causal gene (g ∈ Gc) or distractor gene (g ∈ Gd) (Section 3.3). The optimized

embedding space encodes patient information such that similarity between a patient’s phenotypes

and candidate genes – i.e., how likely it is that a given gene explains the patient’s symptoms – is

inversely proportional to the distance between the patient embedding and the embedding of the

candidate gene.

3.4 Finding Similar Patients

SHEPHERD can find similar patients from a cohort of rare disease patients. This is important for

identifying molecular diagnoses and validating already prioritized candidate genes. To match rare

disease patients, SHEPHERD generates an embedding space in which the similarity between two

patients is inversely proportional to the distance between the two patient embeddings and uses

the embedding space to answer “patients-like-me” queries. We define the similarity between two

patients i and j as the L2 distance between their aggregated phenotype embeddings zPi
and zPj

:

SIM(Pi, Pj) = −‖zPi
− zPj

‖22 (13)

When calculating patient similarity, importantly, we do not include any genotype information for

the patients. This makes the model applicable in settings where the patient’s genome has not been

sequenced or when the analysis results are still pending.

Objective function SHEPHERD is trained to capture patient similarity using the neighborhood

component analysis loss:

LPH =
−1

|Bp|
∑
Pi∈Bp

log


∑

Pj∈Bp\Pi;Pj∈Sc
i

exp(SIM(Pi, Pj))∑
Pj∈Bp\Pi

exp(SIM(Pi, Pj))

 , (14)
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where Bp is a batch of patients sampled from the training set and Sc
i is the set of patients with

the same causal gene as patient Pi. Optimizing the NCA loss [88] minimizes the distances be-

tween patient embeddings with the same causal gene and maximizes the distances between patient

embeddings with different causal genes.

3.5 Estimating Patient-Disease Similarity

Finally, SHEPHERD can characterize a clinical presentation based on existing knowledge about

other rare and common diseases. We analogously perform novel disease characterization by learn-

ing an embedding space such that the similarity between a patient and a disease - i.e., how likely

it is that a patient has that disease – is inversely proportional to the distance between the patient

embedding and the disease embedding. We define the similarity between a patient’s phenotypes

P and disease d as the L2 distance between the aggregated phenotype embedding and the disease

embedding:

SIM(P, d) = −‖zd − zP‖22 (15)

Objective function To optimize patient phenotype embeddings to be near their correct disease(s),

we leverage a multi-modal version of the NCA loss, defined as:

LD =
−1

|Bp|
∑
Pi∈Bp

log


∑

dj∈Bd;dj∈Dc
i

exp(SIM(Pi, dj))∑
dj∈Bd

exp(SIM(Pi, dj))

 (16)

where Bp and Bd are batches of patients and candidate diseases, respectively, that are sampled

from the training set, Pi corresponds to the phenotype set for patient i, and Dc
i is the set of correct

diseases for patient i. While |Dc
i | = 1 for most patients in our cohorts, several patients with

multiple diseases exist.

4 Training SHEPHERD Models
We first describe our approach for training SHEPHERD to perform multi-faceted diagnoses. We

provide details about negative sampling strategies, patient-driven sampling, and disease-split train-

ing on simulated patient data. We conclude with details regarding hyperparameter tuning and

implementation in Pytorch.
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4.1 Overall Objective Function

We train SHEPHERD in two stages. First, we train the model to learn to capture the relationships

between biomedical entities in the rare disease knowledge graph (Section 3.1). Then, we simul-

taneously train the model to perform patient-centric rare disease tasks and continue predicting

knowledge relationships in the KG (Section 3.2-3.4). Concretely, the model is jointly trained to

achieve two distinct objectives: (1) to capture the relationships in the underlying knowledge graph

and (2) to match a patient’s presenting symptoms with the patient’s causal gene(s), disease(s), or

other similar patients. We model these objectives with two separate loss functions, the pretraining

link prediction loss, LLP, and a diagnosis loss, LDX ∈ {LG, LD, LPH}, which aligns patient pheno-

types to genes, diseases, or other patient phenotypes respectively. The overall loss is as follows:

L = λLDX + (1− λ)LLP (17)

where λ is a hyperparameter controlling the weight of each loss. Whereas during pretraining,

we train the model to capture generalizable biomedical knowledge by performing link prediction

for all relation types, during fine-tuning, we focus on predicting gene, phenotype, and disease

relations, which are most important for rare diseases. Training the model to perform link prediction

is important for enabling the model to generalize to phenotypes and genes unseen in the training

data.

4.2 Negative Sampling

To learn a meaningful representation space, we need negative examples, i.e., edges that do not

exist in the KG or candidate genes, diseases, or other patients that are not associated with a given

patient. In the following, we outline the negative sampling strategies used for pretraining and each

of the three rare disease diagnosis tasks.

Link prediction We construct negative examples of triplets (u, r, v−) that do not exist in the KG

by perturbing the target nodes while preserving the types of the source and target nodes and edge

relation. For example, given a positive example of a triplet where the node and relation types are

(protein, has phenotype, phenotype), a negative example is obtained by shuffling all phenotype

nodes in the batch, thereby maintaining the node and relation types of the positive example.

Causal gene discovery Negative examples are constructed by taking the union of the candidate
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genes for all patients in a given batch. As noted in Section 2.3 and 2.1, each simulated and UDN

patient has a list of candidate genes that have been shortlisted as the most probable genes to cause

the patient’s symptoms, and identifying the true causal gene(s) among them is especially challeng-

ing. We ensure that these “hard” candidate genes are included in the candidate list for each patient

during training, as using such “hard” examples tends to improve the efficiency of training [89].

Furthermore, to maximize the number and frequency of candidate genes seen during train time, we

up-sample a subset of candidate genes that are under-represented across all patients. Concretely,

we count the frequencies of candidate genes in the prior and current batches, select the k most

infrequently seen candidate genes (i.e., the k rarest candidate genes) in training batches, and add

them to each patient’s candidate gene list. Note that we only prioritize the “hard” candidate genes

for each patient at inference time without any up-sampling.

Novel disease characterization Negative examples consist of all diseases that do not explain the

patient’s presenting symptoms. First, we randomly sample 1,000 diseases from all diseases in the

KG to serve as negative examples for each batch. Then, we calculate a patient’s similarity to all

disease nodes in the KG at inference time.

Identifying similar patients Negative examples are simply all of the patients in the batch who

do not have the same causal gene as the patient. We construct batches to ensure that there are

at least two positive examples (i.e., patients with the same gene) for each patient in the batch.

All remaining patients serve as negative examples. At inference time, we calculate a patient’s

similarity to all patients in the cohort.

4.3 Disease-Split Training on Simulated Patients

We train our model exclusively on the simulated patient dataset. Training on simulated data alone

offers several benefits: the simulated cohort is larger and more diverse than any real-world patient

dataset, the trained models can be released without the risk of exposing any patient information,

and the models can be evaluated on an independent real-world cohort to test how well a model

can generalize to patients unseen during training. Further, and most importantly, we achieve gen-

eralizability to real-world cohorts by splitting patients into train and validation sets according to

disease. Concretely, we first split the list of diseases represented by the simulated patient cohort

into train and validation and then assign patients to training or validation sets such that patients

with the same disease are either entirely in the training set or fully in the validation set. As a result,
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the model is optimized such that its parameters are broadly transferable to patients with different

diseases. The resulting train and validation cohorts contain 36,224 and 6,400 patients, respectively.

4.4 Additional Training Details

Patient-driven sampling We design a new approach for batch sampling that enables the model

to perform patient gene prioritization while maintaining the topology of the KG. We first sample

m patients and add their associated phenotypes and genes to the batch. Then, we add n nodes

randomly sampled from the genes, phenotypes, and disease nodes in the KG. This allows for

inductive generalization by maintaining the topology of nodes not found in the training data.

Normalization To help optimize model performance and convergence, we apply two normaliza-

tion strategies to SHEPHERD. Specifically, we use LayerNorm [90] immediately after each convo-

lutional layer and BatchNorm [91] following a nonlinear activation layer (here, leaky ReLU).

Hyperparameter tuning We leverage Weights and Biases [92] to select optimal hyperparameters

via a random search over the hyperparameter space. We first select pretraining hyperparameters to

optimize the micro F1 score on the pretraining validation set. Hyperparameters were selected via

random search from the following values: learning rate ∈ [0.0001, 0.0005, 0.001, 0.005], weight

decay ∈ [0, 0.005, 0.0005], dropout ∈ [0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8], and the number of GAT at-

tention heads ∈ [2, 4]. We also perform a search over the dimension of the network layers: input

size ∈ [2048, 4096], hidden size ∈ [256, 512, 1024], and output size ∈ [64, 128]. We then freeze

the pretraining hyperparameters and perform a hyperparameter search independently for each rare

disease task. We select task-specific hyperparameters to optimize the mean reciprocal rank of

the correct genes, diseases, or patients on the disease-split simulated validation set. We con-

sider the following hyperparameters: learning rate ∈ {0.00001, 0.00005, 0.0001, 0.0005, 0.001},
λ ∈ [0.1, 0.9], η ∈ [0.1, 0.9], k most infrequently seen genes ∈ {64, 128, 192}, and number of

nodes n to sample per batch in ∈ {100, 200, 300, 400}. The code for hyperparameter selection and

the optimal hyperparameters can be found at https://github.com/mims-harvard/SHEPHERD.

Implementation We implement SHEPHERD using Pytorch (Version 1.8.0) [93], Pytorch Lightning

(Version 1.4.5) [94], and Pytorch Geometric (Version 1.7.2) [95]. We leverage Weights and Biases

[92] for hyperparameter tuning and model training visualization, and we create interactive demos
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of the model using Gradio [96]. Models are trained on a single NVIDIA Quadro RTX8000 GPU.

5 Further Details on Statistical Analysis
We outline the evaluation setup, baseline models, and statistical tests used to evaluate SHEPHERD.

5.1 Performance Stratified by Patient and Site Characteristics

We evaluate the trained model on the cohort of real-world UDN patients who have received a

molecular diagnosis (Section 2.1). We measure the mean reciprocal rank of all of the patients’

causal genes and calculate the percentage of causal genes that appear in the top k ranked genes

for k ∈ {1, 3, 5} for the EXPERT-CURATED candidate gene lists and k ∈ {1, 5, 10, 25, 50} for the

longer VARIANT-FILTERED candidate gene lists. We analyze the performance across each of the

UDN clinical sites, disease categories, evaluation years, and diagnostic certainty, i.e., the likelihood

that the gene causes the patient’s symptom.

5.2 Comparison to Alternative Approaches

We compare SHEPHERD to several diverse approaches for causal gene discovery: (1) NETWORK, a

network-science approach that prioritizes genes according to their average shortest path in the KG

to all of a patient’s phenotypes; (2) INFORMATION THEORETIC, an information theory inspired

approach that leverages a Bayesian network to calculate semantic similarity between sets of phe-

notype terms to prioritize genes or diseases [44]; (3) LR (EMBED) a logistic regression approach

that frames prioritization as a binary prediction task for each candidate gene and represents each

patient-gene option as the concatenation of the candidate gene pretrained node embedding and

the patient’s averaged phenotype node embeddings; (4) LR (PCA) a logistic regression approach

similar to (3) that, instead of the KG node embeddings, utilizes a PCA-transformed shortest path

length matrix from gene nodes to gene, phenotype, and disease nodes; (5) SHALLOW EMBEDDING,

a shallow KG embedding approach that uses Node2Vec to learn node embeddings and ranks genes

by computing the score associated with each individual patient phenotype [46]; (6) RANDOM, a

simple shuffling approach of a gene list. These baselines constitute a diverse set of statistical,

network, and machine-learning approaches for rare disease diagnosis.

We further compare SHEPHERD to other approaches that can be used to identify similar

patients. SET BASED calculates distance between two sets of phenotypes Pi and Pj using Jaccard

distance, defined as J = 1− |Pi∩Pj |
|Pi∪Pj | . INFORMATION THEORETIC is the information theory approach
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from above that calculates the semantic similarity between two sets of phenotypes based on the

information content of their shared phenotype ancestors in the Human Phenotype Ontology [44].

5.3 Assessing Statistical Significance

We perform a one-sided Wilcoxon signed-rank test to assess whether there is a significant differ-

ence in causal gene performance between SHEPHERD and baseline methods. We evaluate whether

there is a statistically significant difference in SHEPHERD’s performance across sites, evaluation

years, and primary presenting symptoms using a Kruskal-Wallis H-test after confirming that the

data is not normally distributed. We calculate the Spearman correlation coefficient to measure the

correlation between causal gene rank and the distance between a patient’s phenotype and causal

gene in the knowledge graph. To assess whether patients cluster by disease category, we perform

K-means clustering with k set to the number of disease categories, and we evaluate the clusters

according to an adjusted mutual information score from scikit-learn, which is designed to evaluate

clusters of different sizes. We assess the significance of the resulting clustering via a permutation

test with 100 random permutations of the true cluster labels. We perform a Mann-Whitney test

to measure the difference in distances in embedding space for patients with the same versus dif-

ferent disease categories. Finally, we perform the two-sample Kolmogorov-Smirnov test to assess

whether the distribution of embedding distances for patients with the same disease is identical to

the distribution for patients with different diseases.

5.4 Visualization of Learned Embeddings

We visualize embeddings learned via SHEPHERD in a Uniform Manifold Approximation and Pro-

jection (UMAP) plot [97]. We use the umap-learn Python package [98] and perform a grid

search over the n neighbors, min dist, and spread UMAP parameters. We select parame-

ters that maintain global structure in the main panel of Figure 5a and Figure 6a.

5.5 Visualization of patient neighborhoods in the knowledge graph

To visualize the local neighborhood of patients’ disease, phenotype, and gene nodes (Figure 4), we

calculate the shortest paths between patient-relevant nodes and extract all nodes in those shortest

paths. We visualize the resulting patient neighborhoods using Gephi 0.9.4 [99]. We apply Fruchter-

man Reingold, Noverlap, and Label Adjust layouts, as well as manual adjustment, to organize the

nodes such that they are non-overlapping.
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Figure S1: SHEPHERD can generalize to heterogeneous phenotypic presentations and novel genetic conditions.
There are few patients with each rare disease, and patients with the same disease can have variable clinical presentations.
SHEPHERD is trained on simulated rare disease patients and can generalize to real-world patients with unique, unseen
phenotypes (left), with novel disease-causing genes (center), and with entirely novel diseases (right).
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Figure S2: Causal gene discovery performance on VARIANT-FILTERED gene lists. a. Performance of SHEPHERD
and six baseline models evaluated via average recall at k for k = 1, 5, 10, 25, and 50. b. Correlation between model
performance (i.e., the rank of a disease-driving gene) and the average distance between a patient’s phenotypes and causal
genes in the knowledge graph. c-e. Performance of SHEPHERD in ranking causal genes stratified by c. clinical sites, d.
evaluation year, and e. primary presenting symptom.
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Figure S3: Visualization of rare disease patients by disease category. Two-dimensional UMAP plot of SHEPHERD’s
embedding space of all simulated patients (circles) and two real-world cohorts of UDN patients (up-facing triangles) and
MyGene2 patients (down-facing triangles) grouped by the Orphanet disease category of medical diagnosis. Simulated,
MyGene2 and UDN patients embed nearby other patients whose diagnoses belong to the same disease category.
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Figure S4: Visualization of the relationship between disease categories. Two-dimensional UMAP plot of SHEPHERD’s
embedding space for the most similar pairs of disease categories. Circles correspond to simulated patients, up-facing
triangles to UDN patients, and down-facing triangles to MyGene2 patients.
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